
Analyzing Timing in Shorter Time: A Journey
through Heterogeneous Parallelism for Static

Timing Analysis
Zizheng Guo1,2, Yibo Lin1,2,3∗ Runsheng Wang1,2,3, Ru Huang1,2,3

1School of Integrated Circuits, Peking University 2Institute of Electronic Design Automation, Peking University
3Beijing Advanced Innovation Center for Integrated Circuits

Abstract—This paper reviews recent work on the acceleration
of static timing analysis (STA), with a special focus on parallel
and heterogeneous computing techniques. Timing analysis is
one of the most critical tasks in circuit design. The ever-
increasing size and complexity of modern circuit design has
asked for unprecedented STA runtime speed-up which has to
be achieved through CPU-GPU heterogeneous computing. GPU-
accelerated STA is however difficult due to its nature of irregular
computation and memory access patterns. We demonstrate and
analyze the algorithm design and scheduling considerations in
recent works targeting various different STA stages, and discuss
future directions of STA acceleration as well as the future of
timing optimization in heterogeneous circuit design flow.

Index Terms—Static timing analysis, Heterogeneous computing

I. INTRODUCTION

The analysis and optimization of timing is one of the most
critical tasks in circuit design as it is directly tied to the chip’s
correctness and runtime performance. With the ever-increasing
size and complexity of modern circuit design as well as the
ever-rising difficulty to model physics in advanced nodes, the
runtime it takes to complete a design cycle has become much
longer. This runtime burden is worsened by the increasing de-
mand to explore and search the design space more thoroughly
for power, performance, and area (PPA) improvements. Within
this runtime burden, static timing analysis (STA) has become
a remarkable bottleneck.

During the circuit design flow, STA will be invoked for
hundreds to thousands of times because most design steps like
synthesis, placement, and routing are iterative. As a result, the
performance of STA is critical for efficient design turnaround.
STA consists of graph algorithms running on large circuit
graphs with millions of nodes and edges. An efficient STA
engine thus calls for massive parallelism that is beyond the
reach of traditional multi-core CPUs.

In this paper, we survey recent works on GPU-accelerated
STA. These works focus on different STA stages including
graph-based analysis, path-based analysis, delay modeling,

*Corresponding author: Yibo Lin (yibolin@pku.edu.cn).

Delay Calculation Graph-based STA Path-based STA

Liberty, SPEF, Netlist

SDF

Port Slew and Load

Arrival Times, 
WNS/TNS

k, Clocks, 
Timing Exceptions

Path Report

PI1
PI2
PI3

PO1
PO2

30ns/35ns

20ns/25ns
10ns
15ns

ab

c

d
e

i

fg
h

j

k

input
slew

Driving 
Cell

RC Interconnect

Deviation 1Deviation 2

Second Deviation 1
Second Deviation 2

Fig. 1: Overview of STA steps, inputs, and outputs.

etc. We review various techniques on GPU-friendly algoithms,
data structures, scheduling algorithms, and other engineering
efforts to overcome the inherent difficulty in STA paral-
lelization such as irregular graph computation workload and
memory access patterns.

The rest of the paper is organized as follows. Section II
introduces the background of STA in a heterogeneous com-
puting perspective. Then, Sections III, IV, and V reviews
recent work categorized into different STA stages including
delay modeling, graph-based analysis, and path-based analysis
respectively. Finally, Section VI concludes the review and
discuss future directions.

II. PRELIMINARIES

STA takes as input a circuit represented as a directed acyclic
graph (DAG) with nodes indicating pins and edges indicating
signal connections. Along with the circuit, STA also takes
physical information such as cell library in process design kit
(PDK) as well as parasitics information for circuit intercon-
nects. With these inputs and further clock and path settings,
STA analyzes design timing and outputs worst negative slack
(WNS), total negative slack (TNS), and a set of critical logic
paths [1].

STA is usually divided into 3 steps, as shown in Figure 1:



1) Delay calculation. This step makes use of parasitics
information to derive a compact modeling of the metal
interconnects.

2) Graph-based analysis. This step propagates voltage slew
and signal arrival time of pins throughout the circuit
graph in topological order. After this step, WNS and
TNS as well as pin slacks can be derived.

3) Path-based analysis. This step searches for top-k most
critical signal paths with k given by designers. Option-
ally, the path slacks are recalculated based on path-
specific conditions for better accuracy.

The performance of STA is critical as it is frequently used
in circuit design. The runtime of delay calculation and graph-
based STA is proportional to the scale of circuit DAG, which
can exceed millions or even more pins and arcs. The runtime
of path-based STA is further multipled by the number of paths
k requested, which may range from tens to thousands. A
typical STA run on a million-sized design can take tens of
minutes to hours and become a bottleneck in the physical
design flow.

Parallel computation is the key to accelerating STA due
to its problem scale. Current major STA engines like Open-
STA [2], PrimeTime [3], and OpenTimer [4] all supports
parallel STA using multi-core CPUs. It has been widely
observed, however, that CPU-based parallel STA cannot scale
beyond 8–16 CPU threads [4], and the performance may even
degrade after that threshold.

Heterogeneous computing using general-purpose graphics
computing units (GPGPU) has been shown to provide un-
precedented speed-up on a variety of tasks, with machine
learning a notable example. However, successful heteroge-
neous application requires balanced and regular patterns in
computation and memory access, which is hardly the case
for STA. Delay calculation requires solving interconnect
equations in a long-tailed net size distribution, which incurs
workload imbalance between working threads. Graph-based
and path-based analyses work on highly irregular circuit graph
with induced task dependencies and irregular memory access.
These make GPU-accelerated STA quite challenging.

III. DELAY MODELING

Delay modeling or delay calculation is the first step in
STA and it determines the analysis accuracy when choosing
from different delay models. This section introduces GPU-
accelerated delay calculation works arranged inside a brief
review of different delay models. One can refer to [5], [6] for
a more comprehensive introduction of delay models.

There are usually two separate delay models inside a STA
engine for net and cell delay calculation, respectively. Net de-
lay model analyzes the voltage response of metal interconnects
represented in resistors and capacitors (RC) networks. Cell
delay model characterizes the standard cell voltage response

into compact forms like look-up tables conditioned on the
environment of the cell. Voltage response consists of signal
delay and transition time.

A. Heterogeneous net delay model

One widely used and simple net delay model is the Elmore
delay model [7]. Elmore delay approximates net delay and
slew by summing up RC products along the tree path from
the source to every sink. In reality, this process is implemented
as a tree-based dynamic programming algorithm [4]. Guo Z. et
al [8], [9] present a GPU-accelerated Elmore delay calculator
on top of OpenTimer. As GPU has very limited call stack, they
propose a sweeping-based algorithm to simulate the dynamic
programming on GPU. An Elmore delay speed-up of 2.54×
and overall speed-up of 3.69× over OpenTimer has been
reported.

As process technology continues to develop, high-order
voltage effects including resistive shielding have evolved in
sub-14nm nodes. This calls for more accurate interconnect
modeling than the Elmore approximation. To this end, Arnoldi
models and other model order reduction techniques have been
proposed [10], [11], [12]. They construct the linear system
equation of each RC interconnect, and then reduce the system
order using algebraic tricks. Guo Z. et al [13] present a GPU-
accelerated Arnoldi delay calculator based on the coordinate-
transformed Arnoldi algorithm [12] and reported 7.27× speed-
up over PrimeTime. Advanced net delay models face more
severe workload imbalance challenge because both the inter-
connect size variation and the time complexity of interconnect
modeling are higher. They tackled this problem by splitting
the algebraic computations (e.g., sparse LU decomposition)
into multiple stages with different parallelism to exploit.

B. Heterogeneous cell delay model

The most widely used cell model is called non-linear delay
model (NLDM) which is often combined with the Elmore
model to derive delays for both nets and cells. NLDM models
cell timing arcs as linearly-interpolated look-up tables (LUTs)
indexed by input voltage transition and output capacitive load.
A look-up table query needs to access two index arrays to
locate interpolation point, and then access the result matrix
4 times. The CASTA timer presented by Wang H. et al [14]
propose to optimize such memory access by placing indices
and values close to each other (table-index remapping) and
inside texture memory. They reported up to 14.89× speed-up
on NLDM calculation.

As transistors shrink to nanoscale, current-source models
(CSM) begin to replace NLDM for its better accuracy es-
pecially in signoff scenarios. CSM does not directly model
the delay and transition of cell arcs, but instead models a
cell as a time- and voltage-controlled current source (for
composite current source model, CCS [15], [16]) or voltage



source (for effective current source model, ECSM [17]). Lin
S. et al [18] propose a GPU-accelerated CCS model calculator.
They propose an efficient matrix inverse precomputation tech-
nique making use of the similarity of conductance matrices
and achieve up to 3.4× speed-up in 2% error.

IV. GRAPH-BASED ANALYSIS

A delay calculator is itself not an end-to-end STA engine
without graph-based analysis. End-to-end STA engines are
more difficult to accelerate on GPU due to the synchronization
and data transfer overhead between CPU and GPU. Prior
works like [14], [19] can achieve high speed-up ratios when
measuring only the kernel runtime. However, their end-to-end
performance may even be 0.9× inferior to a CPU flow. As
a result, a GPU-accelerated graph-based STA engine must
incorporate efficient task-scheduling strategies to overcome
the overhead. Guo Z. et al [8] overlaps memory transfer and
independent computations using CUDA streams. They make
choices on CPU/GPU task placement based on a runtime
breakdown to avoid over-optimization. In their journal exten-
sion [9], they extend this framework to multi-corner graph-
based STA by placing the corner-level parallelism at the GPU
thread-level to achieve better scalability up to 25.67×.

Arrival time propagation in graph-based STA is another
challenge due to its dependency constraints. To sort out the de-
pendency, levelization is widely used [8], [14] as a preprocess-
ing step to make sure nodes within each topological level can
run in parallel. However, levelization itself is shown to take a
significant amount of runtime, so GPU-accelerated topological
sorting and levelization is designed [8] that accelerates it
up to 4.51×. For traditional CPU-based task parallelism, a
better partition can also improve the performance by reducing
scheduling cost. Zhang B. et al [20] show that such partition
can be efficiently generated with the help of GPU.

Besides parallelism within a circuit graph, prior works
also explore the application of GPUs or FPGAs in Monte-
Carlo-based statistical static timing analysis (SSTA) [21], [22].
SSTA using Monte Carlo provides another parallelism across
different independent simulation runs which fits nicely with
heterogeneous platforms.

V. PATH-BASED ANALYSIS

Path searching is the ultimate step in STA flow. The
search of top-k critical paths often relies on prefix-suffix tree
algorithms [23] or its improvements [24], [25]. The algorithm
behaves like a A* search that relies on a priority heap and
a first-in-first-out (FIFO) queue. One challenge is that A*
algorithms are inherently sequential because only the best
current solution (in our formulation, current most-critical path)
can be used to expand solution space. Fortunately, it turns out
that this A* algorithm constraint can be carefully relaxed and
turned into an equivalent iterative-pruning algorithm. Guo G.

et al [26], [27] propose the above technique. Their evaluation
generates up to 1 million paths with up to 45× shorter
runtime than a saturated CPU parallel STA engine. Later, they
propose a path-search-oriented graph partitioning strategy [28]
to overcome the single-GPU memory limitation.

Path-based analysis is also a stage where various user-
defined constraints and exceptions are applied. These con-
straints, settings, and exceptions often create unique chal-
lenges for accelerating STA. One notable example is common
path pessimism removal (CPPR)1. CPPR requires adjustment
of path criticality based on the common clock driving paths
between its launching and capturing registers. A brute-force
algorithm for CPPR needs to enumerate all pairs of registers
which make the path search extremely slow for large designs.
Recently, better algorithms called depth-based CPPR have
been proposed [29], [30], [31] that clusters registers into
groups based on a batch of depth-relevant criticality adjust-
ments. Depth-based CPPR is also implemented on GPU in the
HeteroCPPR framework by Guo Z. et al [32]. They make use
of the independence between clustered groups to scale their
algorithm to multiple GPUs and achieve up to 16× speed-up.

Besides CPPR, other timing exceptions like false paths,
multi-cycle paths, path margins, and set delays have been
more and more frequently used in modern chip designs. These
rules are written in a design constraints file. Each rule gives
a path pattern (including from, through, and to) and actions
on the paths. For simple inclusive rules in final timing report,
Guo G. et al [33] propose constrained subgraph scanning and
sub-forest expansion techniques making use of the topological
structure. For advanced exclusive rules like false paths, multi-
cycle paths, etc., Guo Z. et al propose the HeteroExcept
framework [34] that solves most of the common timing excep-
tions. They prove the NP-hardness of general exclusive rules
handling. Practically, their GPU-accelerated exception-aware
STA achieves 6.84× speed-up over PrimeTime by various
techniques like GPU exception footprinting and copy-on-write
algorithms.

VI. CONCLUSION AND FUTURE CHALLENGES

This paper reviews the current state-of-the-art heteroge-
neous algorithms and frameworks for STA. Heterogeneous
CPU/GPU parallelism have introduced runtime benefit to all
major STA stages including delay calculation, graph-based
analysis, and path-based analysis. While each stage has its
unique challenge, the common challenges are irregular com-
putation and memory patterns as well as imbalanced workload.
Prior works introduce various algorithm transformation, pre-
processing, and scheduling techniques to achieve an end-to-
end speed-up ranging from 3× to 45× on different workloads.

1also known as clock reconvergence pessimism removal (CRPR).



With these advancements in heterogeneous STA, there are
a number of new challenges and opportunities.

• Efficient inter-GPU partitioning for large circuits. Mod-
ern system on a chip (SoC) design contains more than
tens to hundreds of millions of circuit elements. This
scale is beyond the capacity of a single GPU node, or
even a classical CPU node. Automatic partitioning and
hierarchical STA techniques can help in scaling the STA
task to multiple GPUs and multiple nodes, which is vital
for the successful application of heterogeneous STA.

• Advanced manufacturing technology. The development of
process node continues to require even more complex
circuit delay models, taking into account aging, multi-
input switching, electromigration, advanced variation,
etc. Specifically, the introduction of 3D ICs create chal-
lenge in multi-corner STA due to the explosion of corner
count.

• Timing-driven optimization. The ultimate goal of timing
analysis is to optimize circuit performance based on the
evaluation. This not only calls for effective use of fine-
grained timing analysis results through heterogeneous
timing-driven design algorithms, but also calls for cross-
stage prediction of timing results to enable early feedback
for both RTL and physical design.

ACKNOWLEDGEMENT

This work was supported in part by the Natural Science
Foundation of Beijing, China (Grant No. Z230002) and the
111 project (B18001).

REFERENCES

[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach, 1st ed. Springer Publishing Company,
Incorporated, 2009.

[2] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA.
[3] “Synopsys PrimeTime,” http://www.synopsys.com.
[4] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New

Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–789, 2021.

[5] J. Croix and D. Wong, “Blade and razor: cell and interconnect delay
analysis using current-based models,” in Proc. DAC, 2003, pp. 386–389.

[6] U. Baur, P. Benner, and L. Feng, “Model order reduction for linear
and nonlinear systems: a system-theoretic perspective,” Archives of
Computational Methods in Engineering, vol. 21, no. 4, pp. 331–358,
2014.

[7] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55–63, 1948.

[8] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing
analysis,” in Proc. ICCAD. ACM, 2020.

[9] ——, “Accelerating static timing analysis using cpu-gpu heterogeneous
parallelism,” IEEE TCAD, pp. 1–1, 2023.

[10] A. Odabasioglu, M. Celik, and L. T. Pileggi, “Prima: Passive reduced-
order interconnect macromodeling algorithm,” IEEE TCAD, vol. 17,
no. 8, p. 645, 1998.

[11] C. L. Ratzlaff and L. T. Pillage, “Rice: Rapid interconnect circuit
evaluation using awe,” IEEE TCAD, vol. 13, no. 6, pp. 763–776, 1994.

[12] L. Miguel Silveira, M. Kamon, I. Elfadel, and J. White, “A coordinate-
transformed Arnoldi algorithm for generating guaranteed stable reduced-
order models of RLC circuits,” in Proc. ICCAD, Nov. 1996, pp. 288–
294.

[13] Z. Guo, T.-W. Huang, Z. Jin, C. Zhuo, Y. Lin, R. Wang, and R. Huang,
“Heterogeneous static timing analysis with advanced delay calculator,”
in Proc. DATE, 2024.

[14] H. H.-W. Wang, L. Y.-Z. Lin, R. H.-M. Huang, and C. H.-P. Wen,
“Casta: Cuda-accelerated static timing analysis for VLSI designs,” in
Proc. ICPP. IEEE, 2014, pp. 192–200.

[15] S. Simoglou, I. Lilitsis, N. Blias, and C. Sotiriou, “Full Stage Delay
Calculation Using Full Waveform Propagation and Standard Library
CCS Model,” in Proc. ISQED. San Francisco, CA, USA: IEEE, Apr.
2024, pp. 1–8.

[16] D. Garyfallou, S. Simoglou, N. Sketopoulos, C. Antoniadis, C. P.
Sotiriou, N. Evmorfopoulos, and G. Stamoulis, “Gate delay estimation
with library compatible current source models and effective capaci-
tance,” IEEE TVLSI, vol. 29, no. 5, pp. 962–972, 2021.

[17] Cadence, “ECSM Library Format.” [Online]. Avail-
able: https://www.cadence.com/en US/home/alliances/standards-and-
languages/ecsm-library-format.html

[18] S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. F. Young, and M. D. Wong,
“GCS-Timer: Gpu-accelerated current source model based static timing
analysis,” in Proc. DAC, 2024.

[19] K. E. Murray and V. Betz, “Tatum: Parallel timing analysis for faster
design cycles and improved optimization,” in Proc. FPT. IEEE, 2018,
pp. 110–117.

[20] B. Zhang, D.-L. Lin, C. Chang, C.-H. Chiu, B. Wang, W. L. Lee,
C.-C. Chang, D. Fang, and T.-W. Huang, “G-PASTA: Gpu-accelerated
partitioning algorithm for static timing analysis,” in Proc. DAC, 2024.

[21] K. Gulati and S. P. Khatri, “Accelerating statistical static timing analysis
using graphics processing units,” in Proc. ASPDAC. IEEE, 2009, pp.
260–265.

[22] J. Cong, K. Gururaj, W. Jiang, B. Liu, K. Minkovich, B. Yuan, and
Y. Zou, “Accelerating Monte Carlo based SSTA using FPGA,” in
Proc. FPGA, 2010, pp. 111–114.

[23] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in Proc. ICCAD. IEEE, 2015, pp. 895–902.

[24] K. Zhou, Z. Guo, T.-W. Huang, and Y. Lin, “Efficient critical paths
search algorithm using mergeable heap,” in Proc. ASPDAC, 2022.

[25] C. Chang, T.-W. Huang, D.-L. Lin, G. Guo, and S. Lin, “Ink: Efficient
incremental k-critical path generation,” in Proc. DAC, 2024.

[26] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated path-
based timing analysis,” in Proc. DAC. ACM, 2021.

[27] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. F.
Wong, “A gpu-accelerated framework for path-based timing analysis,”
IEEE TCAD, pp. 1–1, 2023.

[28] G. Guo, T.-W. Huang, and M. Wong, “Fast sta graph partitioning
framework for multi-gpu acceleration,” in Proc. DATE, 2023, pp. 1–
6.

[29] Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically ef-
ficient algorithm for common path pessimism removal in large designs,”
in Proc. DAC. ACM, 2021.

[30] Z. Guo, M. Yang, T.-W. Huang, and Y. Lin, “A provably good and
practically efficient algorithm for common path pessimism removal in
large designs,” IEEE TCAD, pp. 1–1, 2021.

[31] T. Sun and C. Feng, “Dac-cppr: A fast and accurate approach for
common path pessimism removal with divide and conquer on the clock
tree.” IEEE, 2023, pp. 263–268.

[32] Z. Guo, T.-W. Huang, and Y. Lin, “HeteroCPPR: Accelerating common
path pessimism removal with heterogeneous cpu-gpu parallelism,” in
Proc. ICCAD. ACM, 2021.

[33] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated critical
path generation with path constraints,” in Proc. ICCAD, 2021, pp. 1–9.

[34] Z. Guo, Z. Zhang, W. Li, T.-W. Huang, X. Shi, Y. Du, Y. Lin, R. Wang,
and R. Huang, “HeteroExcept: A CPU-GPU heterogeneous algorithm
to accelerate exception-aware static timing analysis,” in Proc. ICCAD,
2024.


