IncreGPUSTA: GPU-Accelerated Incremental Static Timing
Analysis for Iterative Design Flows

Haichuan Liu', Zizheng Guo':?T, Runsheng Wang!':?:3, Yibo Lin®23*
1School of Integrated Circuits, Peking University 2Institute of EDA, Peking University
3Beijing Advanced Innovation Center for Integrated Circuits
lhaic@outlook.com, {gzz, r.wang, yibolin} @pku.edu.cn

Abstract—Static timing analysis (STA) plays an essential role in
VLSI design optimization. While CPU-based incremental STA methods
reduce computational overhead by selectively updating affected circuit
regions, and GPU-accelerated engines improve full-circuit analysis
throughput, effectively combining these approaches has remained
challenging. Existing solutions offer only partial incrementality, either
switching to CPU processing for small modifications or handling
solely delay value changes without supporting structural updates. We
introduce IncreGPUSTA, a novel GPU-accelerated incremental STA
algorithm with dual-CSR data structures and incremental levelization
that efficiently processes timing updates for both localized and struc-
tural modifications. Experimental results on industrial benchmarks
demonstrate speedups of up to 3.06x over GPU full Timer and up
to 72.50x over CPU incremental Timer for million-scale designs.

I. INTRODUCTION

Static timing analysis (STA) is a fundamental component of the
VLSI design flow, serving as the cornerstone for verifying circuit
functionality under given timing constraints [1]. Design optimiza-
tion algorithms repeatedly invoke STA to iteratively evaluate and
improve timing characteristics [2]. Various stages of the design
flow, including logic synthesis, placement, routing and physical
synthesis, rely heavily on timing feedback after local operations
which may impact both the local and global timing landscape [2].

During the optimization process, there are two different timing
analysis scenarios: full timing analysis and incremental timing
analysis. Full timing analysis involves analyzing the entire circuit
after any modification. This approach, while thorough, can be
computationally inefficient when changes affect only small portions
of the design. In contrast, incremental timing analysis selectively
updates only the part of timing data impacted by design changes,
as illustrated in Figure 1. Several CPU-based incremental tim-
ing engines such as iitRace [3], iTimerC2.0 [4], OpenTimer [5]
and OpenTimer v2 [6] have demonstrated considerable runtime
improvements through various incremental update strategies. For
instance, OpenTimer integrates local updates of affected levels with
task-level parallelism to accelerate incremental timing analysis,
achieving order-of-magnitude speedup over existing timers [5].

While these CPU-based parallel STA algorithms have made
significant advances [7], [5], [6], [8], [9], [10], [11], [12], [13],
most are inherently limited by multithreaded parallelism on tra-
ditional CPU platforms. Despite their performance benefits, these
approaches typically stop scaling beyond 8-16 CPU cores [13],
creating a performance ceiling for timing analysis.

t Equal contribution, * Corresponding author.

Forward propagation for arrival time
L

P11 a p p
]
b
PI2
——
C
P13
—

]
Backward propagation for required arrival time
Fig. 1: Buffer insertion introduces two new pins m and [. The
downstream cone of pin [(I, m, g, h, j, k, PO1, PO2) requires
forward propagation, and the upstream cone of pin m (m, I, e, c,
PI2) necessitates backward propagation.

To further accelerate timing analysis and overcome limitations
of CPU parallelism, researchers have proposed GPU-accelerated
STA engines that leverage the massive parallelism of modern
GPUs. These approaches have successfully accelerated various
time-consuming STA tasks, including delay calculation [14], [15],
[16], timing propagation [17], [18], path reports [19], [20], [21],
[22], Monte Carlo-based statistical STA (SSTA) algorithms [23],
[24], and path exception handling [25]. The performance enhance-
ments achieved by these GPU implementations are substantial
when compared to traditional CPU approaches, with documented
speedups reaching up to 3.69x for full timing analysis [18] and as
high as 25.67x for multi-corner timing analysis [18].

However, GPU-based STA engines encounter significant chal-
lenges when applied to incremental timing analysis. Their rigid
data structures are designed for bulk operations rather than selective
updates, making them ill-suited for iterative design flows. Existing
GPU-based approaches that claim “incremental” capabilities are
severely limited in their scope of incrementality. For example,
Guo et al. [18] merely switch between CPU and GPU processing
based on the number of propagation candidates. Similarly, the
method presented in [25] only supports updating delay values
without accommodating structural modifications. These approaches
circumvent the core challenge of incremental updates on GPUs
rather than solving it.

To address these limitations, we introduce IncreGPUSTA, a
novel GPU-accelerated incremental static timing analysis engine.
Table I provides a comprehensive comparison between our so-

TABLE I: Comparison of existing static timing analysis engines.

Timer Incremental | Full | CPU
OpenTimer [5]
OpenTimer v2 [6]
OpenSTA [13]
GPUTimer [18]
HeteroExcept [25]
IncreGPUSTA (Ours)
v': Supported ~ x: Not supported

\\\XXX%
c

LaRARs

N N N RN

SNSISENENEN

A: Limited support

lution and existing static timing analysis engines, highlighting
IncreGPUSTA’s unique position as the first framework to fully
support incremental updates (general to both structural and delay
modifications) on GPU. Our primary contributions include:

1) A dual-CSR graph representation supporting efficient GPU-
based incremental updates, achieving 9.83x speedup over full
graph reconstruction approaches.

2) Heterogeneous CPU-GPU update mechanisms that minimize
data transfer overhead through batch-processing of modifica-
tions into compressed arrays for GPU execution.

3) A three-phase incremental levelization algorithm that reduces
computational requirements by 77%, targeting only affected
circuit regions through optimized subgraph handling.

We validate IncreGPUSTA in a greedy buffer insertion flow and
evaluate its performance using industrial-standard benchmarks from
the TAU1S timing contest [2]. Experimental results demonstrate
that IncreGPUSTA achieves speedups of up to 3.06x over GPU
full Timer [18] and up to 72.50x over CPU incremental Timer [6]
for million-scale designs.

The rest of this paper is organized as follows. Section II in-
troduces the background of IncreGPUSTA and a buffer insertion
algorithm. Section III details our proposed dual-CSR data structure
and incremental update algorithms. Section IV presents our experi-
mental results and analysis. Finally, Section V concludes the paper
and discusses future work.

II. PRELIMINARIES
A. Static Timing Analysis

Static Timing Analysis (STA) is a fundamental verification
methodology for evaluating signal propagation delays and identify-
ing timing-critical paths within integrated circuits [1]. In the STA
process, circuits are modeled as directed acyclic graphs (DAGs)
denoted by (V, E), where nodes v € V' represent circuit pins and
edges e € F represent timing arcs associated with logic cells and
interconnections [1].

A normal STA engine executes several sequential steps: first, the
circuit is levelized to establish a topological ordering, which then
enables forward propagation of arrival times (AT) and backward
propagation of required arrival times (RAT). This timing infor-
mation subsequently facilitates further analyses, such as critical
path extraction. STA typically employs an early-late split paradigm,
where timing data are characterized by both early (minimum) and
late (maximum) values [2].

B. Full and Incremental Timing Analysis

Modern digital circuit design involves iterative refinements. Each
modification necessitates timing verification, which can be per-

formed by two principal methodologies: full timing analysis and
incremental timing analysis.

Full timing analysis recalculates timing information for the entire
circuit after each round of modifications. This approach discards
all previous computation results. It follows a fixed sequence:
circuit graph construction, complete levelization, and exhaustive
timing propagation. Despite its thoroughness, this method proves
inefficient for iterative workflows, where design changes may affect
only small portions of the circuit [2].

Incremental timing analysis employs a more targeted strategy. It
preserves previous timing results and selectively updates only data
affected by specific modifications. Traditional CPU-based incre-
mental STA engines first identify affected nodes in the timing graph.
During forward propagation, only the downstream cones of mod-
ified nodes require recalculation. Similarly, backward propagation
limits updates to the upstream cones. Timing values for unaffected
nodes remain valid, thereby eliminating redundant computation.

C. GPU Incremental STA Challenges

While effective on CPUs, incremental analysis presents unique
challenges for GPU implementations. Our performance analysis of
GPU Timer [18] on the netcard_iccad circuit yielded an impor-
tant insight. We discovered that GPU data structure construction
consumes approximately 70% of the total runtime, as illustrated
in Figure 2. This finding prompted us to develop specialized
data structures and update mechanisms that deliver substantial
performance improvements.

Notably, we found that for GPU-based implementations, the
computational overhead of identifying affected cones may exceed
the benefits of selective propagation. This insight suggests that a
more promising direction is GPU-accelerated incremental leveliza-
tion. Conventional STA engines recalculate levelization entirely
after each circuit modification. Some tools like OpenTimer [5]
implement incremental levelization using bucket list data structures.
However, subsequent research [6] identified significant performance
bottlenecks in this approach, and shifted towards utilizing task
graphs for parallel execution instead.

Moreover, the bucket list structure presents fundamental incom-
patibilities with GPU architectures. Its dependence on frequent
memory allocation and deallocation operations conflicts with GPU
memory management principles. Our proposed incremental lev-
elization algorithm directly addresses these challenges. It minimizes
device-host transfer overhead while maximizing computational
throughput through specialized levelization strategies.

D. Greedy Buffer Insertion

Buffer insertion represents a widely adopted technique in timing
optimization for mitigating net delay, thus enhancing setup timing
margins (i.e., late slack). While this paper implements a greedy
buffer insertion methodology as a case study, the underlying frame-
work is designed to accelerate any iterative, structure-modifying
optimization, such as logic synthesis restructuring, physical syn-
thesis optimizations, or the implementation of Engineering Change
Orders (ECOs). Our implementation builds upon and extends
the buffer insertion algorithms proposed by Van Ginneken [26]
and Lillis et al. [27]. To minimize computational overhead while

0]
o
]

{

68.26%

B Update
Refine

[Propagation

[Levelization

D
o
|
t

Runtime (%)
S
S

26.12%
20 ¢ 13.82%
5.62%
0l — | 12.30%
Update Refine Compute

Fig. 2: Runtime breakdown for GPU Timer [18] to complete one
round of full timing on a million-gate circuit.

maintaining accuracy, we adopt the Elmore delay model [28], [29]
for calculating signal propagation delays.

The Elmore delay model provides a first-order approximation of
RC delays in interconnect structures. Its computational efficiency
and reasonable accuracy make it a standard choice in numerous STA
engines [6], [30], [13]. Within this framework, interconnects are
represented as distributed RC networks. The Elmore delay between
two pins is mathematically expressed as the product of resistance
and downstream capacitive load. This formulation follows the
topological methods established in [31].

Our greedy algorithm initially identifies critical nets by analyzing
their timing slack values. These slack values are calculated as
the difference between arrival time (AT) and required arrival time
(RAT). We then select the top k nets for buffer insertion optimiza-
tion. For each selected net, the algorithm evaluates potential delay
reduction at every candidate insertion position. Using the Elmore
delay model, we calculate the insertion timing gain for inserting a
buffer preceding pin p as follows:

Gain = Rupslream,p . (Cload,p - C’buf) — Rt - Cour — delaybuf

After completing this analysis across all selected nets, we imple-
ment the recorded buffer insertions and update the circuit netlist
accordingly. The final step is to recalculate delay values for all
affected nets, using GPU-accelerated implementation of the Elmore
delay model [18].

III. THE INCREGPUSTA ALGORITHMS

In this work, we propose IncreGPUSTA, an efficient incremental
algorithm for GPU-accelerated static timing analysis. Building upon
previous GPU-accelerated STA frameworks [17], [19], [18], our
work focuses on minimizing redundant computation and host-
to-device (H2D) data transfers overheads. The core innovations
include a dual-CSR graph representation, a heterogeneous update
mechanism and a GPU-based incremental levelization algorithm.

As depicted in Fig. 3, the IncreGPUSTA workflow consists
of four components: Greedy Buffer Insertion, Incremental CSR
Update, Incremental Levelization, and GPU-Accelerated Graph-
Net STA. The middle two components—representing our primary
technical contributions—are detailed in this section.

A. Dual-CSR Data Structure

The core of our methodology is a dual-CSR graph representation
that integrates two complementary CSR matrices with a specialized

Greedy Buffer Insertion
Parallel Net Delay Graph
Buffer * Computation » Structure
Insertion P Update
@ Legends
GPU
I 1 CSR
ncremental CSR Update Kernel
Original CSR Base CSR Aux CSR
Update ™ Construction ™ Generation CPU
Kernel
A7
Original CSR Dual CSR H2D
Update Transfer
Incremental Levelization
Subgraph Memcpy Transfer Update
Construction & » Tasks » levels to > Node2Level
Levelization Setup GPU
GPU-Accelerated Graph-Net STA
Forward Back Net Slacks TNS&WNS
Propagation Propagation Ranking Slack Report

Fig. 3: Our IncreGPUSTA algorithm flow.

mapping array. This architecture decouples stable circuit topology
from incremental updates. To illustrate this, we first explain the
standard CSR format using the original graph. In the Compressed
Sparse Row (CSR) format, a graph’s connectivity is stored in two
arrays: an offset array and an edge array. For each node i, its
adjacency information is stored contiguously in the edge array from
the index specified by offset[i] to offset[i+1]-1. For instance, the
original DAG in Figure 4(a) is represented by the standard CSR in
(c), where the edge array [1, 2, 3, 3] holds all destination nodes
and the offset array [0, 2, 3, 4, 4] points to the start of each node’s
edge list.

When the graph is modified as shown in Figure 4(d), our Dual-
CSR structure provides a clear procedure to handle the updates by
leveraging a Base CSR and an Auxiliary CSR structure.

The Base CSR matrix is primarily used to manage the foun-
dational graph structure and to incorporate edges emanating from
newly introduced nodes. As depicted in Figure 4(f), when nodes 4
and 5 are added, their outgoing edges (4—3 and 5—3) are simply
appended to the Base CSR’s edge array E'p. The offset array
Op is correspondingly extended to map these new nodes to their
edges. During initialization, we strategically pre-allocate additional
capacity in both arrays to accommodate such future modifications
without complete restructuring.

Complementing this foundation, the Auxiliary CSR structure is
designed to capture incremental modifications, specifically new
edges emanating from existing nodes. This is illustrated in Fig-
ure 4(g). To handle the new edges 0—4 and 2—35, an Auxiliary
Mapping Array (Ma) first maps each original node to its corre-
sponding index in the auxiliary structure (e.g., M_A[0] = 0, M_A[2]
= 1) or to -1 if there are no new edges. Then, the auxiliary structure,

CSR: [1,2,3,3] Base CSR: [1,2,-1,4,3,3] Auxiliary CSR: [4.5]

Edge_start: | [0,2,3,4,4] | | Edge_start: [0,2,3,4,4,5,6] | | Aux Edge_start: [0.1,2]

Mapping array: | [0,-1, 1,-1,-1,-1]

(© (0

€3]
Fig. 4: Illustration of the Dual-CSR graph representation and
mixed subgraph construction: (a) Original DAC. (b) Original Level
View. (c) CSR representation of (a). (d) Modified DAC. (e) Mixed
subgraph View. (f) Basic CSR component of (d). (g) Auxiliary CSR
component of (d).

Algorithm 1: Modification APIL

1 Function insert_edge (sre, dst, delay):
if src is an existing node then
‘ inserted_edges|src].push({dst, delay});
if dst is an existing node then
‘ inserted_revedges|dst].push({sre, delay});
Function remove_edge (src, dst) :
if dst € inserted_edges[src] then
| inserted_edges|src].remove(dst);
else if src is an existing node then
‘ removed_edges|src].push(dst);
if dst is an existing node then
‘ removed_revedges|dst].push(src);

o e N ;R W N

-
p= o

which replicates the base CSR format with its own offset array O 4
and edge array E 4, stores these new connections ([4, 5]) according
to the mapping. This approach isolates incremental changes from
the stable graph, enabling precise and efficient updates.

B. Data-Centric Heterogeneous Graph Update Strategy

Traditional update approaches regenerate the entire CSR structure
on the CPU before transferring the complete data structure to the
GPU, incurring substantial performance penalties during iterative
design workflows. Our heterogeneous update strategy mitigates
this overhead by leveraging the dual-CSR structure for targeted
operations on both the CPU and GPU. To support efficient graph
traversal on the GPU, this strategy maintains all data structures for
both forward edges and reverse edges, denoted by superscripts out
and in, respectively (e.g., E%" and EL).

1) CPU API for Modification: We introduce a modification
API that efficiently captures circuit edge changes on the CPU
for subsequent CSR updates. Algorithm 1 presents two key func-
tions and four specialized data structures manage these operations:
inserted_edges and inserted_revedges track new connections,
while removed_edges and removed_revedges monitor edge
deletions. These structures serve as temporary buffers enabling

Algorithm 2: CPU CSR Update Kernel.

1 Function update_csr():

2 for dst, rm_revedges € removed_revedges do

3 ins_revedges < inserted_revedges|dst];

4 for i <— 0 to len(rm_revedges) — 1 do

5 src < rm_revedges|i);

6 id < index of (dst, src) in E5;

7 E[id] + ins_revedges]i];

8 revedges_change.push({id, ins_revedges[i]});
9 na < 0;

10 for src, ins_edges € inserted_edges do

1 for i < O3 [src] to OF* [src+ 1] do

12 if £5"'[i] = —1 then

13 Eg“[i] + ins_edges.back();

14 ins_edges.pop();

15 edges_change.push({id, ins_edges.back()});
16 if ins_edges.empty() then

17 ‘ break;

18 rm_edges < removed_edges[src];

19 while —ins_edges.empty() A ~rm_edges.empty()

do

20 dst <— rm_edges.back();

21 id < index of (src, dst) in E%*";

2 E3*[id) + ins_edges.back();

23 edges_change.push({id, ins_edges.back()});
24 rm_edges.pop();

25 ins_edges.pop();

26 if —ins_edges.empty() then

27 nodes_Aux.push(src);

28 M_Alsrc] + na++;

29 O_A[na] < O_A[na — 1] + len(ins_edges);
30 for src, rm_edges € removed_edges do
31 for dst € rm_edges do

32 id < index of (src, dst) in Eg*;

3 Eg*fid) + —1;

34 edges_removal.push(id);
35 build_auxiliary_csr (nodes_Aux, Ma);
36 append_base_csr (nodes_new) ;

batch processing, facilitating both CPU-side modifications and
compact descriptor generation for GPU execution kernels.

2) CSR Update Kernels: The CPU-side update process (Al-
gorithm 2) modifies local CSR structures and generates compact
descriptors for GPU kernels. Our strategy is founded on a key
property of circuits: the fan-in of a pin remains constant as internal
gate connections follow fixed patterns. This stability allows us to
employ an efficient substitution strategy for reverse edges: new
incoming connections directly replace deleted ones in the base
CSR matrix E%. This in-place update, shown in lines 2-8 of the
algorithm, avoids costly restructuring of the primary graph data.

For forward edges with variable fan-out characteristics, a dy-
namic approach is required. Our algorithm prioritizes reusing
invalidated entries (tracked in edges_change, lines 11-25). Any
excess insertions are directed to the auxiliary CSR (lines 26-29,

Algorithm 3: CPU CSR Matrices Construction.

Algorithm 5: Mixed Subgraph Construction

1 Function append_base_csr (new_nodes) :

2 for u € new_nodes do
3 OF" .push(OF"" .back() + len(inserted_edges[u]));
4 Og' .push(Og' .back() +

len(inserted_revedges[u]));
for e € inserted_edges[u] do
‘ Eg* .push(e);
for e € inserted_revedges[u] do
‘ EZ push(e);
Function build_auxiliary_csr (nodes_A, My):
10 for v € nodes_A do
11 for e € inserted_edges[u] do
12 Oa.push(Oa.back() + 1);
13 Ea.push(e);
14 for e € inserted_revedges[u] do
15 Oa.push(0Oa.back() + 1);
16 Ea.push(e);

C e N W

Algorithm 4: GPU CSR Update Kernel.

1 Function RemoveEdgesKernel ():
2 for ¢ < 0 to n_edges_removal — 1 do in parallel
3 id + edges_removallil;

4 Eg'Gpulid] + —1;

5 Function ChangeEdgesKernel ():

6 for i <— 0 to n_edges_change — 1 do in parallel
7 id < edges_changeli].first;

8 Eg*pylid] + edges_changel[i].second;

9 Function ChangeRevEdgesKernel ():

10 for ¢ < 0 to n_revedges_change — 1 do in parallel
11 id <+ revedges_changeli].first;

12 ER'[id] < revedges_changeli].second;

13 Function update_gpu ():

14 RemoveEdgesKernel ();

15 ChangeEdgesKernel ();

16 ChangeRevEdgesKernel ();

17 copy the appended portion of E3* to GPU;
18 copy the appended portion of E2' to GPU;

19 copy Ea to GPU;

35), while excess deletions leave invalidated markers (-1) in the
base CSR for future use (lines 30-34). New nodes are efficiently
incorporated by appending their connectivity to the base CSR (line
36). Finally, the inserted_edges list is preserved across cycles to
facilitate subsequent balancing operations.

To complete our heterogeneous framework, we implement spe-
cialized GPU kernels for direct device-side CSR modifications
(Algorithm 4). The kernels perform the following tasks: (1) re-
moving edges, (2) changing edges, (3) changing reverse edges,
(4) transferring the appended portion of Base CSR to GPU, and
(5) transferring the Auxiliary CSR to GPU. Each kernel reads
from CPU data structures without writing conflicts, thus eliminating
synchronization barriers and ensuring efficient parallelization.

1 Myized_vertices — Nnew_vertices + Niw s
2 Initialize adjacency lists edges and in-degree array indeg;
3 for ¢ < 0 to ny, — 2 do

4 edges[i].add (i + 1);

5 indegli 4+ 1] < 1;

6 for i < 0 t0 Npew_vertices — 1 do

7 R + Niast_nodes s

8 foreach forward edge (u,v) do

9 if v < Nyast_nodes then

10 I < node2level|v];

1 edges[i + np].add(l);

12 indeg[l] + indeg[l] + 1;

13 else

14 ‘ edges[i + nu].add(v — Nast_nodes + Niw);
1s foreach reverse edge (v,u) do

16 if v < Niast_nodes then

17 ‘ edges[node2level[v]].add (i + nw);
18 indegli + niw| « indeg[i + nw| + 1;

C. Incremental Levelization Algorithm

In GPU-accelerated STA engines, level structures are also en-
coded in CSR format like edges, with a node array L and an offset
array Or,. Typical GPU levelization strategy requires both CPU and
GPU to reallocate memory for the arrays and recompute the entire
level structure after any design modification.

We address this inefficiency with a three-phase heterogeneous
incremental levelization algorithm. This algorithm seamlessly in-
tegrates new nodes with existing level data through: (i) mixed
subgraph construction, (ii) efficient topological sorting, and (iii)
optimized level array reconstruction that minimizes host-device
data transfers. This approach maintains topological accuracy while
significantly reducing the computational overhead inherent in it-
erative design workflows. It performs exceptionally well in GPU-
accelerated timing analysis, where the number of levels has minimal
impact on overall runtime.

1) Mixed Subgraph Construction: The initial phase generates
a compact representation that integrates existing level hierarchies
with newly introduced nodes (Algorithm 5, Figure 4(e)). Instead
of processing the complete circuit graph, we construct a condensed
mixed subgraph containing virtual level nodes (indices O to ng, —1)
that serve as topological proxies for established levels, and actual
circuit nodes (indices 7y, tO Tmized_vertices — 1) Tepresenting new
components awaiting level assignment.

This condensed representation significantly reduces further com-
putational complexity by scaling with the number of modified
elements rather than total circuit size.

2) Mixed Topological Sorting: This phase executes a topological
sort on the mixed subgraph to determine optimal level assignments
for new nodes(Algorithm 6). Notably, while new nodes appear as
N — Niast_nodes +Niv 10 the edge and in-degree arrays, we maintain
the original node identifier n directly in the levels array(lines
12-14). This design choice enables direct host-to-device (H2D)
memory transfers while keeping clear distinction between virtual
level nodes and actual circuit nodes.

Algorithm 6: Mixed Topological Sorting

1 new_levels < Initialize empty level vector;

2 level_0 < Collect nodes with outdeg[v] = 0;
3 new_levels.push_back(level _0);

4 for i < 0 to new_levels.size() — 1 do

5 next_level < Initialize empty node vector;
6 | for each u € new_levels[i] do

7 if u < n_lv then

8 ‘ u < u — n_last_nodes + n_lv;

9 for each v € edges[u] do

10 indegv] — —;

1 if indeg[v] = 0 then

12 if v < n_lv then

13 ‘ v < v — n_last_nodes + n_lv;
14 next_level.push_back(v);

15 if next_level.size() > 0 then

16 ‘ new_levels.push_back (next_level);

17 return new_levels;

Algorithm 7: Level Array Reconstruction

1 Function NodeToLevelKernel (start, end, level, L,
node2level) :
for i <— start to end — 1 do in parallel
‘ node2level[L[i]] < level;
Function level_reconstruct (new_levels) :
new_n_lv + new_levels.size(); O7°" «+ [0];
Lo + old level array; L, h2d_copies < ||
for i < 0 to new_n_Ilv —1 do
len < 0
if find a virtual_node in new_levels[i] then
src_offset < Op|virtual_node];
len <— Oplvirtual_node + 1] — src_offset;
D2DCopy(L+ O1°“[i], Loa + src_offset, len);
new_levels[i] remove the virtual_node;
01 .push(O7"[i] + len + new_levels[i].size());
if new_levels[i].size() > 0 then
h2d_copies.push({L + O7°“[i] +
len, new_levels[i], new_levels[i].size() });
17 sort(h2d_copies, descending by size);
18 for task € h2d_copies do
19 ‘ H2DCopy(task.dst, task.src, task.size);
20 Or + Or*"; node2level < [|;
21 for ¢ < 0 to new_n_Ilv —1 do
2 NodeToLevelKernel (O7[i], Of°[i + 1], 4,
L, node2level) ;

e e N AW N

R e
S N ER W N =S

3) Efficient Level Array Reconstruction: The final phase of our
algorithm focuses on reconstructing level arrays for both CPU
and GPU with efficient copy optimization (Algorithm 7). We
integrate virtual nodes into the new level structure and immediately
perform device-to-device (D2D) transfers(lines 9-13). Meanwhile,
we enhance bandwidth utilization by strategically prioritizing host-
to-device (H2D) transfers of new node levels(lines 15-19). This
optimization is facilitated by a memory copy task structure that

TABLE II: Benchmark circuit statistics. For each benchmark, we
generated random netlists to achieve critical setup slacks and
constructed a random buffer library comprising four buffer types.

Benchmark # Nodes # Edges # Nets # Pins

leon3mp_iccad 3376832 4039949 649444 5013505
netcard_iccad 3999174 4805566 960615 6979109
leon2_iccad 4328255 5123695 794900 6095880
vga_led_iccad 679258 805955 164975 1169323
b19_iccad 782914 1042015 219289 1781026
edit_dist_ispd2 416609 527121 133222 964561
mgc_edit_dist_iccad 450354 560866 133222 964761
matrix_mult_ispd 475186 611390 158526 1164178

encapsulates specific source/destination pointers and transfer di-
mensions for efficient batch operations. Finally, we implement a
parallel GPU algorithm to reconstruct the node-to-level mapping
array(lines 21-22).

IV. EXPERIMENTAL RESULTS

We implemented our GPU-accelerated incremental STA engine
IncreGPUSTA using GCC 9.3.0 and CUDA 11.5. It was evaluated
on an Ubuntu 18.04 Linux server equipped with dual Intel(R)
Xeon(R) Gold 6230 CPUs operating at 2.10GHz (20 cores each), 1
NVIDIA GeForce RTX 2080Ti GPU, and 503GB DDR4 RAM. For
efficient parallel operations on the GPU and CPU, we leveraged the
Thrust library [32] and the TaskFlow library [8], [9], respectively.

We evaluated IncreGPUSTA using a set of benchmarks originated
from TAU timing analysis contest [2], with statistics presented in
Table II. Our implementation of both full and GPU incremental
timer builds upon established GPU-accelerated timing analysis
frameworks from prior research [17], [19], [18]. To establish
a comprehensive performance baseline, we also use OpenTimer
v2 [6] as a reference for CPU incremental timing analysis.

A. Performance and Refinement Comparison

To illustrate the overall performance of IncreGPUSTA, we eval-
uated two distinct refinement strategies. The first approach targets
the top-1000 critical nets in a single pass. The second strategy
processes the top-100 critical nets over 10 rounds, better simulating
industrial iterative design workflows. Each experiment was repeated
three times with results averaged to ensure statistical validity.

Table III demonstrates the significant performance advantages
of IncreGPUSTA over alternative implementations. For single-pass
refinement scenarios, our approach achieves speedups up to 65.05x
compared to the CPU Timer, with an average acceleration ratio
of 27.19x. It simultaneously outperforms the GPU full timer by
factors up to 2.55x, averaging 1.78x across all benchmarks. The
iterative refinement methodology yields even stronger results, with
CPU-relative speedups reaching 72.50x (23.95x on average) and
GPU-relative improvements up to 3.06x (2.20x on average).

Table IV presents the worst negative slack (WNS) and total
negative slack (TNS) for all flip-flops, comparing the original
circuits with those refined through greedy buffer insertion, and
lists the total number of inserted buffers. Both WNS and TNS
show remarkable improvement, indicating that the greedy insertion
strategy effectively eliminates setup time violations. The results thus

TABLE III: Total Execution time (ms) and Speed-up Ratio of CPU incremental Timer [6], GPU full Timer [18], and our IncreGPUSTA.

| refine top-1000 nets

I refine top-100 nets for 10 rounds

Benchmark Total Execution time (ms)

CPU Incre

Speed-up Ratio

Speed-up Ratio

‘ Total Execution time (ms)

CPU Incre [6] GPU Full [18] IncreGPUSTA | SEulnere _GPURML_ || CPU Incre [6] ~GPU Full [18] IncreGPUSTA | SPUlce _GPLIWL
leon3mp_iccad_eval 8077.67 331.33 158.67 50.91 2.09 54406.67 2926.67 1082.00 50.28 2.70
netcard_iccad 5786.00 378.67 194.33 29.77 1.95 16110.33 3175.00 1108.00 14.54 2.87
leon2_iccad_eval 9497.00 372.00 146.00 65.05 255 76362.33 3223.00 1053.33 72.50 3.06
vga_led_iccad_eval 57633 11333 71.00 8.12 1.60 6299.33 1048.67 589.00 10.69 178
b19_iccad_eval 608.67 15133 81.33 7.48 1.86 2052.67 1567.33 73433 2.80 213
edit_dist_ispd2 1510.67 108.33 75.33 20.05 1.44 7898.33 801.33 476.67 1657 1.68
mgc_edit_dist_iccad_eval 1411.33 111.67 77.67 18.17 1.44 8677.00 797.67 500.67 17.33 1.59
matrix_mult_ispd 1482.33 109.33 82.67 17.93 132 3148.33 811.67 454.67 6.92 1.79
Avg. Ratio | - | 27.19 178 || - \ 23.95 220

TABLE IV: Setup WNS and TNS (s) of all flip-flops for original and refined designs as well as the total number of inserted buffers.

original refine top-1000 nets refine top-100 nets for 10 rounds

Benchmark setup wns (ns) setup tns (ns) # bufs setup wns (ns) setup tns (ns) # bufs setup wns (ns) setup tns (ns)
leon3mp_iccad_eval -76.0702 -311960 4455 -28.2327 -107359 17277 -3.77973 -299.070
netcard_iccad -97.2268 -340247 4019 -57.4648 -138811 11501 -16.6360 -18920.1
leon2_iccad_eval -59.4002 -163785 1615 -32.3794 -87438.5 4504 -1.70759 -6.77478
vga_lcd_iccad_eval -89.9565 -209813 5141 -47.7815 -167005 11983 -11.5624 -66370.5
b19_iccad_eval -53.5467 -99586.8 3147 -42.4668 -94296.0 8980 -22.5999 -80211.8
edit_dist_ispd2 -28.7498 -37304.6 3946 -26.0549 -32962.7 6393 -23.1183 -29639.3
mgc_edit_dist_iccad_eval -26.4511 -32655.4 4166 -18.4419 -25650.4 6634 -14.8918 -22418.2
matrix_mult_ispd -25.2580 -25310.8 3590 -22.8098 -19769.5 4481 -18.6961 -18267.0

demonstrate that our workloads are from real incremental design
update scenarios, not from synthetic test cases.

B. Runtime Scalability

We further analyze the runtime scalability of IncreGPUSTA with
respect to the number of inserted buffers, using the netcard_iccad
benchmark. Instead of the greedy buffer insertion strategy, we im-
plemented a controlled methodology that randomly selects insertion
positions and buffer types. This approach enabled precise control
over insertion quantities and timing update scales. We executed
each test configuration 3 times and averaged the results to minimize
statistical variations. For fair comparison, identical buffer insertion
operations were applied to both GPU timers in each experiment.

Figure 5 reveals distinct performance patterns across different
buffer insertion scales. When buffer insertion quantities remain
significantly below the total net count (kK < 960615), IncreG-
PUSTA demonstrates superior performance with total speedup
ratios between 2.21x and 2.96x for buffer quantities from 1 to
1k. Both timers exhibit relatively stable core runtime because GPU
propagation overhead depends primarily on the overall graph size.
The actual buffer insertion component remains computationally
negligible at these scales.

As buffer insertion increases, the performance advantage of the
incremental timer gradually diminishes. The total speedup ratio de-
creases to 1.39x at 10k insertions and approaches parity (1.11x) at
100k insertions. Core runtime analysis reveals two primary factors
behind this performance convergence. First, the buffer insertion
overhead, which scales linearly with the number of buffers in both
implementations, consumes an increasing proportion of the total
execution time. Second, while the overheads from kernel launches
and memory operations are negligible for smaller workloads, they
become progressively more significant at larger scales.

_ —e— GPU Full] < 9
B —&— IncreGPUSTA] g
2 1,000} . g,
2 [1 §
: o
E] 3!
= &
100 E T vl vl vl vl il 4 0 Lol vl vl ol vl
1 10 100 1K 10K 100K 1 10 100 1K 10K 100K
inserted buffers # inserted buffers
(a) Total Runtime (b) Total Speed-up Ratio
_ —e— GPU Full o
& —&— IncreGPUSTA ki
i) (=%
£ 316 z
= &
8 &
100 ©

1 10
inserted buffers

100 1K 10K 100K 1 10

100 1K 10K 100K
inserted buffers

(c) Core Runtime (d) Core Speed-up Ratio
Fig. 5: Performance of GPU full timer vs. IncreGPUSTA on
netcard_iccad with increasing inserted buffers: (a) total execution
time, (b) total speedup ratio, (c) core runtime (excluding buffer
insertion), and (d) core speedup ratio.

identified a threshold effect in GPU-
incremental timing analysis. Below a certain
modification-to-total-size ratio, performance is dominated by
the fixed overheads of kernel launches and memory management.
Beyond these thresholds, incremental timing consistently
outperforms full timing approaches—a pattern particularly
valuable for timing-driven placement and routing applications [33],
[34], [35].

These observations
accelerated

1028 r—F—FTTTT T T T T T T T [T T

»
=)
S
S

1024 |- -

—e— GPU Full
—&— IncreGPUSTA

1072 |- |

102,E\S\HQ—M}\E\E,

(a) Runtime per Round
Fig. 6: Detailed runtime and buffer insertion comparison on net-
card_iccad using top-100 nets refinement strategy over 10 rounds.

Runtime (ms)
Number of Buffers
—

o
(=1
IS)

T
Il

1,000 |- iy

(b) Buffer Insertions per Round

refine refine dat
update
compute 7.41% 20.13% 18.35%
29.64%
compute
61.52%

update
62.95%

(a) GPU Full (3175 ms) (b) IncreGPUSTA (1108 ms)
Fig. 7: Runtime breakdown comparing (a) GPU full timer and (b)
IncreGPUSTA, demonstrating a 2.87x speedup. Levelization time
is incorporated within the compute component.

A notable discrepancy emerges between the iterative refinement
in Table III and the random insertion experiments in Figure 5.
Despite averaging 1,150 buffers per round, our iterative approach
achieves a 2.87x speedup—substantially outperforming controlled
scenarios with equivalent buffer counts. Detailed analysis of per-
round performance in Figure 6 reveals GPU cache warming as
the primary contributor to this phenomenon. In IncreGPUSTA,
improved cache locality dramatically reduces memory access la-
tencies . The full timer experiences similar cache-related benefits
in absolute terms; however, these improvements represent only a
negligible fraction of its overall runtime.

C. Runtime Breakdown

We explore deeper into the performance of IncreGPUSTA by
conducting a runtime breakdown analysis compared to the GPU
full timer[18]. Using the netcard_iccad benchmark, We focused on
the 10-rounds top-100 nets refinement strategy, representing real-
world design workflows with frequent local modifications.

Figure 7 illustrates the total runtime profile for both implemen-
tations. The GPU full timer requires 3175ms while IncreGPUSTA
requires just 1108ms, yielding a 2.87x speedup. Both implemen-
tations follow the same workflow: refinement of critical nets, CSR
update, and timing propagation. The refinement step consumes
minimal time in both cases as it targets only a small part of the
design. The most significant difference appears in the CSR update
step, which dominates the full timer’s execution time (nearly % of
total) but constitutes less than % of the incremental timer’s runtime.

Further analysis reveals the source of these performance gains.
The timing update phase demonstrates the most dramatic improve-
ment, with IncreGPUSTA achieving a 9.83x speedup as shown in

CPU update
H2D copy 69.02%

47.05% ’I '
CPU

reconstruct
52.95%

GPU update
30.98%

(a) GPU Full (1998.67 ms) (b) IncreGPUSTA (203.33 ms)
Fig. 8: Update runtime breakdown comparing (a) GPU full timer
and (b) IncreGPUSTA, demonstrating a 9.83x speedup.

reconstruct copy
node2level subgraph levelize 16.80% 7.20%
23.63% 3.20%

prepare
clock tree
14.29%

oudeg node2level
45.05% 72.80%
comb logic

17.03%

(a) GPU Full (364 ms) (b) IncreGPUSTA (83.33 ms)
Fig. 9: Levelization runtime breakdown comparing (a) GPU full
timer and (b) IncreGPUSTA, demonstrating a 4.37x speedup.

Figure 8. While both implementations involve similar CPU/GPU
operation proportions, the full update requires complete CSR
structure memory reallocation and transfer—a significant bottleneck
eliminated by our incremental algorithm through targeted updates
on localized circuit modifications.

The levelization process shows additional efficiency gains in
runtime, with IncreGPUSTA achieving a 4.37x speedup as il-
lustrated in Figure 9. In the full timer, preparing the out-degree
array dominates execution time (nearly % of the phase) due to
complete circuit traversal. IncreGPUSTA processes only modified
components and optimizes memory transfers through strategic use
of device-to-device copies for unmodified levels while batching
host-to-device transfers for modified levels.

V. CONCLUSION

This paper presents IncreGPUSTA, a GPU-accelerated incre-
mental static timing analysis engine for efficient timing updates in
iterative design flows. We employ dual-CSR graph representation,
heterogeneous update mechanisms, and an incremental levelization
algorithm. Experimental results on industrial benchmarks demon-
strate speedups of up to 3.06x over GPU full Timer and up to
72.50x over CPU incremental Timer for million-scale designs.

ACKNOWLEDGEMENT

This work was supported in part by the National Science Foun-
dation of China (Grant No. T2293700, T2293701), the Natural
Science Foundation of Beijing, China (Grant No. Z230002), and
the 111 Project (B18001).

(1]

(2]

[3]

[4]

[3]

[6

—_

(71
(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

J. Bhasker and R. Chadha, Static timing analysis for nanometer
designs: A practical approach. Springer Science & Business Media,
2009.

J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incre-
mental timing analysis,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2015, pp. 882-889.

C. Peddawad, A. Goel, B. Dheeraj, and N. Chandrachoodan, “iitrace:
A memory efficient engine for fast incremental timing analysis and
clock pessimism removal,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 903-909.

P-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang,
“iTimerC 2.0: Fast incremental timing and cppr analysis,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2015, pp. 890-894.

T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance
timing analysis tool,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2015, pp. 895-902.

T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 40, no. 4, pp. 776-789, 2021.

W. E. Donath and D. J. Hathaway, “Distributed static timing analysis,”
Apr. 29 2003, uS Patent 6,557,151.

T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-Taskflow:
Fast Task-based Parallel Programming using Modern C++,” in Interna-
tional Parallel & Distributed Processing Symposium (IPDPS). 1EEE,
2019, pp. 974-983.

T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” in [EEE TPDS, vol. 33, no. 6, 2022, pp. 1303-1320.

T.-W. Huang, M. D. Wong, D. Sinha, K. Kalafala, and
N. Venkateswaran, “A distributed timing analysis framework for large
designs,” in ACM/IEEE Design Automation Conference (DAC). IEEE,
2016, pp. 1-6.

K. E. Murray and V. Betz, “Tatum: Parallel timing analysis for
faster design cycles and improved optimization,” in IEEE International
Conference on Field-Programmable Technology (FPT). 1EEE, 2018,
pp. 110-117.

Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically
efficient algorithm for common path pessimism removal in large
designs,” in ACM/IEEE Design Automation Conference (DAC). ACM,
2021.

“OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA.
H. H.-W. Wang, L. Y.-Z. Lin, R. H.-M. Huang, and C. H.-P. Wen,
“Casta: Cuda-accelerated static timing analysis for VLSI designs,” in
International Conference on Parallel Processing (ICPP). 1EEE, 2014,
pp. 192-200.

Z. Guo, T.-W. Huang, Z. Jin, C. Zhuo, Y. Lin, R. Wang, and R. Huang,
“Heterogeneous static timing analysis with advanced delay calculator,”
in IEEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE), 2024.

S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. F. Young, and M. D.
Wong, “GCS-Timer: Gpu-accelerated current source model based
static timing analysis,” in ACM/IEEE Design Automation Conference
(DAC), 2024.

Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing
analysis,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). ACM, 2020.

——, “Accelerating static timing analysis using cpu-gpu heteroge-
neous parallelism,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), pp. 1-1, 2023.

——, “HeteroCPPR: Accelerating common path pessimism removal
with heterogeneous cpu-gpu parallelism,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). ACM, 2021.

G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated path-
based timing analysis,” in ACM/IEEE Design Automation Conference
(DAC). ACM, 2021.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

(34]

[35]

——, “Gpu-accelerated critical path generation with path constraints,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2021, pp. 1-9.

G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. F.
Wong, “A gpu-accelerated framework for path-based timing analysis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), pp. 1-1, 2023.

K. Gulati and S. P. Khatri, “Accelerating statistical static timing
analysis using graphics processing units,” in /EEE/ACM Asia and
South Pacific Design Automation Conference (ASPDAC). 1EEE, 2009,
pp. 260-265.

Y. Shen and J. Hu, “GPU acceleration for PCA-based statistical
static timing analysis,” in IEEE International Conference on Computer
Design (ICCD). IEEE, 2015, pp. 674-679.

Z. Guo, Z. Zhang, W. Li, T.-W. Huang, X. Shi, Y. Du, Y. Lin, R. Wang,
and R. Huang, “HeteroExcept: A CPU-GPU heterogeneous algorithm
to accelerate exception-aware static timing analysis,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2024.
L. P. Van Ginneken, “Buffer placement in distributed rc-tree networks
for minimal elmore delay,” in 1990 IEEE International Symposium on
Circuits and Systems (ISCAS). 1EEE, 1990, pp. 865-868.

J. Lillis, C.-K. Cheng, and T.-T. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay model,” /[EEE Journal
of Solid-State Circuits, vol. 31, no. 3, pp. 437-447, 1996.

W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55-63, 1948.

R. Gupta, B. Krauter, B. Tutuianu, J. Willis, and L. T. Pileggi, “The
elmore delay as bound for rc trees with generalized input signals,”
in Proceedings of the 32nd Annual ACM/IEEE Design Automation
Conference, 1995, pp. 364-369.

Y.-M. Yang, Y.-W. Chang, and I. H.-R. Jiang, “iTimerC: Common path
pessimism removal using effective reduction methods,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1EEE,
2014, pp. 600-605.

J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in
rc tree networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 2, no. 3, pp. 202-211, 1983.

N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
cuda,” in GPU computing gems Jade edition. Elsevier, 2012, pp.
359-371.

M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “Iccad-2015 cad contest
in incremental timing-driven placement and benchmark suite,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 1IEEE, 2015, pp. 921-926.

N. Viswanathan, G.-J. Nam, J. A. Roy, Z. Li, C. J. Alpert, S. Ramji,
and C. Chu, “Itop: Integrating timing optimization within placement,”
in Proceedings of the 19th international symposium on Physical
design, 2010, pp. 83-90.

D. Liu, B. Yu, S. Chowdhury, and D. Z. Pan, “Tila-s: Timing-
driven incremental layer assignment avoiding slew violations,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 1, pp. 231-244, 2017.

