
HeteroLatch: A CPU-GPU Heterogeneous
Latch-Aware Timing Analysis Engine

Xizhe Shi1†, Zizheng Guo1,2†, Yibo Lin1,2,3∗, Zuodong Zhang2, Yun Liang1,2,3, Runsheng Wang1,2,3∗
1School of Integrated Circuits, Peking University 2Institute of Electronic Design Automation, Peking University

3Beijing Advanced Innovation Center for Integrated Circuits
Email: xizheshi@stu.pku.edu.cn, {gzz, yibolin, ericlyun, r.wang}@pku.edu.cn, zhangzd@pkueda.org.cn

Abstract—Latches, prevalent in high-frequency circuits, chal-
lenge timing analysis due to time borrowing and latch loops, com-
plicating static timing analysis (STA) algorithms and paralleliza-
tion strategies. To address these issues, we propose HeteroLatch, a
CPU-GPU heterogeneous framework that enables efficient latch-
aware timing analysis. By integrating adaptive loop handling with
hierarchical parallel timing propagation, our method mitigates
sequential bottlenecks through CPU-GPU collaboration, hiding
graph decomposition overhead via early termination, while op-
timizing GPU throughput with dynamic workload allocation.
Experimental results show average speed-ups of 12.64×, 9.45×,
and 1.96× over industrial timers PrimeTime, OpenSTA, and
SOTA work, respectively. HeteroLatch bridges the gap between
latch-specific timing complexities and GPU acceleration, offering
a scalable solution for advanced-node verification.

I. INTRODUCTION

As the backbone of signoff and timing closure, static timing
analysis (STA) plays a central role in design verification. STA
engines are repeatedly invoked across design stages, requiring
efficient support for diverse sequential elements and adaptabil-
ity to increasing complexity and shrinking timelines [1]. These
demands are especially acute in latch-intensive designs.

Unlike flip-flops, latches support time borrowing, which
redistributes slack across cycles to ease timing pressure, and
they also offer a simpler structure that saves area and power.
However, latch flexibility introduces two core challenges: 1)
time borrowing leads to clock-phase-dependent AT propaga-
tion, complicating setup checks and AT updates; 2) latch loops
create cyclic dependencies that invalidate DAG-based routines.

Current industrial STA tools, such as PrimeTime [2] and
OpenSTA [3], leverage clock-phase-aware modeling and it-
erative propagation to handle latch-based timing. As shown
in Figure 1(a), latch D-Q arcs are disabled after delay com-
putation to break loops and enable pin-based levelization.
After AT propagation, setup checks at latch endpoints detect
timing violations and capture time-borrowing behaviors. The
extracted time-borrowing information is then used to guide AT
updates through the disabled D-Q arcs and downstream paths,
and the process repeats until all ATs converge. This modeling
captures time borrowing through latch transparency windows
rather than clock edges. For latch loops, timers apply iterative
arc relaxations and repeated AT updates to ensure convergence.

† Equal contribution, * Corresponding authors.
This project is supported in part by the National Science Foundation of

China (Grant No. T2293701), the Natural Science Foundation of Beijing,
China (Grant No. Z230002), and the 111 Project (B18001).

Read Input Files & Delay
Calculation & Levelization

on Pins

Pin-Based AT Propagation
(Break Latch D-Q arcs)

Setup Checks on Latches

AT Updates on
Latch State Pins

Endpoint Timing Checks

RAT Propagation Top-k Paths
Generation

Read Input Files & Delay
Calculation

Graph Decomposition into
SCCs

Levelization on SCCs

SCC-Based AT
Propagation

Endpoint Timing Checks

RAT Propagation Top-k Paths
Generation

(a) (b)CPU-Based

Fig. 1: Current frameworks of latch timing analysis in (a)
industrial timers and (b) academic method in [4].

Despite their wide adoption, these approaches face notable
limitations. Iterative updates from time borrowing induce re-
dundant recomputation, propagating AT changes to subcircuits
multiple times. Moreover, handling latch loops with global
iteration strategies leads to worst-case O(n2) complexity in
circuits with n pins. These inefficiencies are exacerbated in
modern designs with dense latch clusters and deep latch loops.

Academic research has actively addressed latch-related STA
challenges. For time-borrowing modeling, [5, 6] employed
iterative and constraint-based strategies to handle latch trans-
parency. For latch loop handling, early work [7] applied graph
decomposition and traversal heuristics at the cost of precision.
Later, [8] improved accuracy through iterative propagation,
but incurred higher costs due to extra graph constructions. To
accelerate latch analysis without accuracy loss, [4] proposed
an SCC-based propagation framework that restructured timing
graphs into strongly connected components (SCCs). As shown
in Figure 1(b), this approach avoids cyclic dependencies via
SCC-based propagation. However, it introduces scalability
bottlenecks: SCC decomposition is sequential and resists
parallelization; inclusion of latch D-Q arcs imposes extra
dependencies; and variations in SCC sizes lead to significant
workload imbalance between threads. These limitations hinder
parallelism and scalability in latch-heavy designs.

Beyond sequential element handling, STA efficiency re-
mains vital for iterative VLSI design closure. Heterogeneous
CPU-GPU architectures have shown significant speedups in
STA tasks such as delay characterization [9–11], graph anal-
ysis [12–15], and path-based evaluation [16–21]. However,
these frameworks merely focus on flip-flop-based designs

Timing
Check

D Q

CK

D Q

E

Combinatio
nal Logic D Q

E

input output

TclkdiffR TclkdiffP

TclkdiffF

capture clocklaunch clock

launch clock

capture clock

launch clock

capture clock

Path Delay

Borrowed Time

Latch is transparent
during its active level

DFF LATCH

Fig. 2: A two-stage sequential circuit demonstrating time
borrowing through latch transparency during its active phase.

and lack support for phase-sensitive constraints in latch-based
circuits, limiting their applicability to advanced-node designs.

To address these limitations and enable latch-aware acceler-
ation, we propose HeteroLatch, a CPU-GPU heterogeneous
framework for STA that integrates the first GPU-accelerated
engine that supports timing analysis on latch-based circuits.
The design achieves this through three key contributions:

1) We propose a hybrid graph processing strategy for latch
timing analysis. The novel framework divides AT propa-
gation into two stages, resolving excessive iterations and
limited parallelism in traditional algorithms.

2) Our CPU-GPU collaboration framework introduces a
scheduling strategy that almost hides the overhead of
sequential graph decomposition via possible early termi-
nation, leading to measurable acceleration in runtime.

3) We enable selective GPU parallelism with mixed granu-
larity for AT propagation, dynamically applying thread-
and block-level strategies to optimize runtime efficiency.

We integrate our algorithm into an STA engine and show
up to 12.64×, 9.45×, and 1.96× speed-ups over PrimeTime,
OpenSTA, and SOTA work [4], respectively on large designs.

II. PRELIMINARIES

A. Time Borrowing and Latch Loops

The setup check mechanism for latches differs fundamen-
tally from that of flip-flops due to their time-borrowing capa-
bility, where the data signal leverages the transparency window
to “borrow” time from subsequent paths. In a two-stage circuit
composed of a D flip-flop and an active-high transparent latch
(Figure 2), the setup checks of the latch endpoint include:
(1) aligning launch and capture clocks; and (2) computing
the timing metrics slack, actual time borrow (ATB) and

QD

E

QD

E

Logic Path 1

DQ

E

DQ

E

Logic Path 3
Lo

g
ic P

a
th

 2

Lo
g

ic P
a

th
 4

clk clk

clk clk

Fig. 3: An example of a latch loop.

max time borrow (MTB) to quantify transparency usage.
They are calculated as follows:

MTB = TclkdiffP − Tsetup

Slacknominal = TclkdiffR − Tsetup +ATE −ATD

ATB =

{
0, Slacknominal ≥ 0

min(|Slacknominal|,MTB), Slacknominal < 0

Slackeff =


Slacknominal, ATB = 0

Slacknominal +ATB, 0 < ATB ≤MTB

Slacknominal +MTB, ATB > MTB

Time borrowing allows delayed data in the current cycle to
be captured during the next cycle’s transparency window. This
resolves setup timing violations by reallocating unused slack
from the subsequent cycle, without extending clock periods.

Notably, time borrowing remains inapplicable to hold time
checks of latches, which require data stability after the clock
edge and differ merely in clock alignment.

The ATQ update, particularly the latch D-Q arc relaxation
process (which differs from conventional arc relaxation), inher-
ently involves multi-clock-domain timing behavior due to the
transparency characteristic of latches. Its computation follows:

ATQ = max(ATD +DelayD−Q +ATB,ATE +DelayE−Q)

The introduction of latches can also generate latch loops in
circuits (Figure 3), where combinational elements and latches
form cyclic topologies. These loops disrupt DAG-based STA
methodologies. Cyclic dependencies prevent pin levelization
and force timing information such as ATs to propagate itera-
tively until convergence or divergence is detected.

TABLE I: Overview of latch-analysis support in different
academic and commercial STA engines.

STA engine Time borrowing analysis Latch loop handling Time complexity GPU support

OpenTimer [22] —

[23, 24] ✓ ✓ O(n2)

[4] ✓ ✓ O(
∑

k2i)

GPU Timers† — ✓

OpenSTA [3] ✓ ✓ O(n2)

PrimeTime [2] ✓ ✓ O(n2)

This work ✓ ✓ O(
∑

k2i) ✓

n denotes pin num in circuits, ki represents the pin num of each SCC.
†: GPU timer works include: [10, 11, 13–18, 20]. None of them supports
timing analysis on latches.

Graph Decomposition
into SCCs

Tag Graph Build & Non-
Time-Borrow AT Propagation

Latch Setup Checks & AT
Updates on Latch State Pins

SCC-Based
Levelization

AT Re-Propagation
on SCCs

Endpoint Timing
Checks

RAT Propagation Top-k Paths
Generation

CPU-Based GPU-Based

No Pins UpdatedPins Updated

STOP

Mandatory

AT-Updated Pins
Subgraph Marking

SKIP

Read Input Files & Delay Annotation
& Pin-Based Levelization

SCC Binning by Size

Pin-based
Propagation

SCC-based
Analysis

Fig. 4: Overall flow of HeteroLatch.

B. Latch Analysis with CPU-GPU Parallelism

As shown in Table I, existing industrial STA engines and [4]
support latch analysis with time borrowing and loop handling,
but remain CPU-bound with limited scalability beyond 8–16
cores. In contrast, existing GPU-based STA tools offer accel-
eration but lack support for latch-specific features, leaving a
clear gap for a unified, GPU-accelerated latch timing engine.

However, designing GPU-accelerated latch-aware STA faces
three core challenges: First, time-borrowing analysis mis-
matches GPU STA frameworks for flip-flop circuits, and iter-
ative methods remain ill-suited to GPU architectures. Second,
latch loop resolution imposes a trade-off: pin-level methods
require many iterations, while coarse SCC-based propagation
limits parallelism. They are both antithetical to GPU accelera-
tion paradigms. Third, when adopting SCC-based AT propaga-
tion strategies, CPU-only graph decomposition nullifies GPU
gains, as inherently sequential steps dominate runtime.

III. ALGORITHMS

To address the limitations mentioned above and enable
compatibility with GPU-accelerated frameworks, we propose
HeteroLatch, an efficient heterogeneous STA engine for latch
timing analysis. We build our flow on top of prior works
including levelization on pins and SCCs, graph-based STA
algorithms [4, 13, 14] and path search algorithms [16–18].

As shown in Figure 4, our framework divides full AT propa-
gation into two stages: pin-based pre-propagation without time
borrowing and on-demand SCC-based re-propagation, assisted
by necessary auxiliary procedures. Latch setup checks are
performed during these steps, while the final endpoint checks
handle remaining constraints, such as latch hold checks.

We introduce four main parts of the flow: hybrid CPU-GPU
preliminary timing analysis, SCC binning by size, subgraph
marking, and SCC AT re-propagation. These components are
mapped to CPU and GPU to efficiently handle latch behaviors.

Algorithm 1: Hybrid-CPU-GPU-Update-Timing
Input : Timing Graph G, Constraints Graph C
Output: Arrival Times (ATmin, ATmax),

Actual Time Borrows ATB, SCCs S,
Updated Pins Collection P

1 initialize stop flag ▷ Thread-shared termination flag
2 begin Parallel processing between T1 and T2
3 Thread T1: AT Pre-Propagation ▷ GPU
4 build tag graphs(G,C)
5 (ATmin, ATmax)← propagate at(G)
6 ATB ← eval latch setup(ATmin, ATmax, C)
7 P ← latch at reupdate(G,&ATmax, ATB)
8 if P = ∅ then atomicSet(stop flag, true)
9 Thread T2: Graph Decomposition ▷ CPU

10 for each unvisited pin v in G do
11 Tarjan SCC(v,G,&S,&stop flag)
12 synchronize T1 and T2

Algorithm 2: Tarjan-SCC-with-Early-Termination
Input : Pin v, Timing Graph G, SCCs &S

1 if is set(stop flag) then return ▷ Early termination
2 index← index+ 1
3 dfn[v]← index, low[v]← index, push(stack, v)
4 for each v’s fanout arc e(v, u) do
5 if u is not Visited then
6 call Tarjan SCC(u) and mark u as Visited
7 low[v]← min(low[v], low[u])
8 else if u is in stack then
9 low[v]← min(low[v], dfn[u])

10 if low[v] = dfn[v] then
11 push all pins in stack into S as an SCC [25]

A. Hybrid CPU-GPU Preliminary Timing Analysis

To enable SCC-based re-propagation, we first apply Tarjan’s
algorithm [25] to decompose the graph. Although linear in
complexity, this process is sequential and must run on a single
CPU thread. Conversely, the AT pre-propagation stage, includ-
ing tag graph construction, non-time-borrow AT propagation
(with latch D-Q arcs disabled), latch setup checks and AT
re-updates of latch state pins, exhibits high GPU parallelism.
Since these two stages are data-independent, they can execute
concurrently on CPU and GPU, as shown in Algorithm 1.

Based on whether latch state pin ATs are re-updated on the
GPU and the relative runtime of GPU thread and CPU thread,
our hybrid CPU-GPU timing analysis yields four cases:

Case 1. CPU Early Termination: CPU should have dominated
runtime, but no ATmax re-updates on latch state pins (P = ∅)
trigger CPU termination via stop flag. GPU sets the shared
flag, and CPU’s recursive Tarjan algorithm (Algorithm 2)
detects the flag at each call entry and immediately returns,
aborting entire graph decomposition. The algorithm skips the
SCC stage and proceeds to endpoint timing checks.

Algorithm 3: SCC-Binning-by-Size
Input : SCC Levelization L
Output: SCC Size Boundary (for each level) SB

1 Call SCC Binning Kernel on L and get SB
2 Kernel Function SCC Binning Kernel:

Input : SCC Levelization L
Output: SCC Size Boundary (for each level) SB

3 levelID ← blockIdx.x×blockDim.x+threadIdx.x
4 if levelID ≥ size(L) then return
5 Use the two-pointer partitioning technique [26] to

move all single-pin SCCs in L[levelID] before
multi-pin SCCs. Record the split position as
SB[levelID].

7 9 6 1 1 9

9 1 1 2 6 1 5 9

SCC BINNING

...

...

1 1 6 9 7 9

1 1 1 2 6 9 5 9
...

...

Fig. 5: Example of SCC Binning with SCC sizes in boxes.

Case 2. CPU Runtime Hiding and SCC Stage Skipping: AT
pre-propagation on GPU dominates runtime, fully hiding CPU
overhead. With no ATmax re-updates on latch state pins (P =
∅), the SCC-based analysis stage is safely skipped.

Case 3. CPU Runtime Hiding with SCC Stage Invoked: GPU
process dominates runtime and fully hides CPU overhead.
However, ATmax re-updates (P ̸= ∅) require re-propagation
on the affected subgraph, triggering SCC-based analysis.

Case 4. Dynamic Sync: CPU process dominates runtime, and
partial ATmax changes (P ̸= ∅) require post-task synchroniza-
tion. The GPU waits for the CPU to finish, after which the
algorithm proceeds to the SCC-based analysis stage.

This design guarantees that graph decomposition overhead
on CPU, which is traditionally a critical bottleneck, is either
fully masked by GPU process and early termination (Cases
1-3) or partially mitigated through hybrid execution (Case 4).

B. SCC Binning by Size and Subgraph Marking

Graph decomposition converts the original cyclic graph into
an SCC-based DAG. To start SCC-based analysis, preparatory
steps are required: SCC levelization [4], SCC binning by size,
and subgraph marking of updated latch state pins.

To enable a more efficient data layout for GPU-based AT re-
propagation on SCCs, Algorithm 3 bins the SCCs in each level
into single-pin and multi-pin regions in parallel. The design is
motivated by the observation that levelized SCCs vary largely
in size, with single-pin ones dominating in practical circuits.
Figure 5 shows an example of SCC binning.

Algorithm 4: Subgraph-Marking-on-SCCs
Input : SCCs S, Updated Pins Collection P ,

Timing Graph G, SCC Levelization L
1 GPU Parallel for each p in P do ▷ Initial marking
2 mark S[scc id[p]] as Updating
3 for each l in L do ▷ Marks propagation level by level
4 GPU Parallel for each SCC s in l do
5 if s is Updating then continue
6 for each p in s do
7 for each p’s fanin arc e(from, p) in G do
8 if scc id[p] = scc id[from] then continue
9 if S[scc id[from]] is Updating then

10 mark S[scc id[p]] as Updating

Updated pins in set P

SCCs

Marked SCCs in initial masking

(a) (b)

Pins

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

Marked SCCs when marks propagating to level 2 & 3&

Fig. 6: Example of subgraph SCC marking.
(a) Phase 1: Mark SCCs that the updated pins belongs to.
(b) Phase 2: Marks propagate to level 2 & 3.

The subgraph marking identifies the downstream SCCs of
pins in the set P , limiting the scope of AT re-propagation to the
affected subgraph. To implement this, Algorithm 4 uses a two-
phase approach: it first marks SCCs with updated pins, then
propagates marks level by level to their downstream neighbors.
Figure 6 demonstrates how it marks dynamically determined
subgraph rather than the entire circuit. The algorithm leverages
SCC hierarchy, allowing each SCC to examine only its direct
predecessors, and is well suited for GPU-level parallelism.

These steps collectively optimize the data layout and com-
putation scope for later SCC-based steps. Together, they en-
hance GPU efficiency and ensure heterogeneous execution.

C. AT Re-Propagation on SCCs

This step re-propagates ATs on the downstream subgraph of
pins in P , ensuring convergence to correct values. It proceeds
level by level over marked SCCs using prior results from
SCC levelization and subgraph marking. Due to size variations
of SCCs, single-pin SCCs allow direct input arc relaxation,
while multi-pin SCCs require iterative propagation. A naive
thread-per-SCC strategy suffers from divergence and workload
imbalance, making a tailored GPU approach necessary.

To address this, we propose a parallel strategy with mixed
granularity that decouples the AT propagation for single- and
multi-pin SCCs. Based on SCC binning, Algorithm 5 performs
level-by-level propagation by concurrently launching two GPU
kernels per level: one for single-pin SCCs (Algorithm 6) and
one for multi-pin SCCs (Algorithm 7). The dual-stream model
uses CUDA stream parallelism and synchronizes among levels.

Algorithm 5: AT-Re-Propagation-on-SCCs
Input : Arrival Times &ATmax, Timing Graph G,

SCC Levelization L, SCC Size Boundary SB
Actual Time Borrows &ATB

1 for each l in L do ▷ Re-propagate ATs level by level
2 Launch AT ReProp Single Pin SCCs kernel on

cudaStream S with (l,&ATmax, G, SB,&ATB)
3 Launch AT ReProp Multi Pin SCCs kernel on

cudaStream M with (l,&ATmax, G, SB,&ATB)
4 synchronize cudaStream S, cudaStream M
5 destroy cudaStream S, cudaStream M

Algorithm 6: AT-ReProp-on-Single-Pin-SCCs

1 Kernel Function AT ReProp Single Pin SCCs:
2 sccID ← blockIdx.x× blockDim.x+ threadIdx.x
3 if sccID ≥ SB[l] then return
4 if l[sccID] is not Updating then return
5 p← l[sccID].get pins()
6 Relax all p[0]’s fanin arcs, update ATmax and ATB.

For single-pin SCCs, Algorithm 6 assigns one GPU thread
per SCC to perform input arc relaxations. Each thread directly
updates the AT of the single pin by relaxing its fanin arcs. This
thread-per-SCC mapping aligns with the uniform workload of
single-pin SCCs, achieving near-ideal thread utilization.

For multi-pin SCCs, Algorithm 7 assigns one GPU block
per SCC to run iterative AT propagation until convergence.
Threads in each block share and process the pin queue until
it is empty. Each GPU thread is assigned to a pin in queue
on demand. For each pending pin, the kernel 1) relaxes all
unrelaxed input arcs from upstream SCCs, 2) then performs
atomicRelax on intra-SCC fanout arcs to prevent data races
during concurrent AT updates on one pin by multiple threads.
Updated pins with changed ATs are atomically enqueued back
into queue if they are not in it. The algorithm also detects
divergence: following [2], propagation is guaranteed to diverge
if any pin is enqueued more times than its SCC size.

This mixed-grained strategy combines thread-level agility
for single-pin SCCs with block-level parallelism for multi-pin
SCCs. It achieves better load balance and maximizes GPU
utilization. As a result, synchronization overhead is reduced
and timing analysis is accelerated for latch-intensive circuits.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We developed our latch-aware STA framework, named Het-
eroLatch, designed as a heterogeneous timing analysis engine
specifically for latch-based circuits. HeteroLatch leverages
high-performance C++, CUDA, and Rust to ensure efficient
computation, and it offers a flexible user interface.

To systematically evaluate the runtime benefits of Hetero-
Latch on latch timing analysis, we compared its performance
against three representative baselines: (1) Synopsys PrimeTime

Algorithm 7: AT-ReProp-on-Multi-Pin-SCCs

1 Kernel Function AT ReProp Multi Pin SCCs:
2 sccID ← blockIdx.x+ SB[l]
3 if sccID ≥ size(l) then return
4 if l[sccID] is not Updating then return
5 initialize queue← l[sccID].get pins()
6 while queue is not empty do
7 threads num← min(size(queue), blockDim.x)
8 if threadIdx.x ≥ threads num then return
9 p← queue[threadIdx.x] and dequeue p

10 for each p’s unrelax fanin arc e(from, p) in G do
11 if p and from are not in the same SCC then
12 Relax(e,&ATmax,&ATB)
13 for each p’s fanout arc e(p, to) in G do
14 if p and to are in the same SCC then
15 atomicRelax(e,&ATmax,&ATB)
16 if ATmax[to] is unchanged then continue
17 if to is Enqued then continue
18 Add(enq cnt[to], 1), atomicEnque(queue, to)
19 if enq cnt[to] > size(l[sccID]) then
20 Report divergent loops.
21 synchronize all threads in the block blockIdx.x

(2021.06), a commercial industry standard; (2) the latest ver-
sion of OpenSTA; and (3) a state-of-the-art SCC-based latch
STA engine from [4]. GPU-based STA tools are excluded due
to their lack of full latch support. Table II presents benchmark
statistics of seven industrial latch-based designs. The first four
circuits use 14nm technology, while the rest are 28nm. Among
them, case3 and case4 natively incorporate latches with
latch usage rates of around 30% and 40%, respectively; the
remaining benchmarks, originally flip-flop-based, are modified
to include 20% latch replacement. case7 features multi-clock
domains, unlike the single-clocked others.

Our experimental environment is a CentOS 7.9 Linux
server with a 64-core Intel Xeon Platinum 8358 CPU and 8
NVIDIA A800 GPUs. The server is configured with 1 TB of
system memory, and each GPU provides 80 GB of dedicated
memory. Runtime is measured by the wall-clock time of the
report_timing command after loading design files.

For fair comparison, all designs were evaluated using iden-
tical netlists, Liberty files, SDF delays, and SDC constraints.
All experiments target setup paths; HeteroLatch also supports
accurate hold checks, though they are not the focus of this
work. All results in Table II were obtained under matched
path slacks with PrimeTime, the golden sign-off standard,
confirming HeteroLatch’s full accuracy during acceleration.

B. Full Timing Performance

According to runtimes in Table II, HeteroLatch outperforms
three baselines on all tested benchmarks. Speedup ratios
range from 3.17–47.58× over PrimeTime, 5.96–16.19× over
OpenSTA, and 1.60–2.29× over [4], with average gains of
12.64×, 9.45×, and 1.96×, respectively.

TABLE II: Runtime comparison between PrimeTime, OpenSTA, work in [4] and HeteroLatch on benchmarks.

Benchmark Circuit Statistics PrimeTime (16C) OpenSTA (16C) [4] (16C) Ours GPU (16C + 1G)
#Gates #Nets #Pins RT (s) Ratio RT (s) Ratio RT (s) Ratio RT (s) Ratio

case1 770K 913K 3.04M 20.336 5.37 30.661 8.10 8.656 2.29 3.786 1.00
case2 737K 848K 2.92M 20.678 4.96 24.844 5.96 7.143 1.71 4.170 1.00
case3 131K 173K 482K 19.476 19.73 15.983 16.19 1.582 1.60 0.987 1.00
case4 891K 1.62M 3.14M 211.306 47.58 55.217 12.43 9.888 2.23 4.441 1.00
case5 2.57M 2.58M 8.96M 41.922 3.48 89.252 7.40 25.902 2.15 12.057 1.00
case6 4.30M 4.67M 16.8M 70.416 3.17 147.329 6.63 45.205 2.03 22.216 1.00
case7 3.47M 3.85M 13.7M 78.927 4.16 — — 32.770 1.73 18.972 1.00

Avg. Ratio — — 12.64 — 9.45 — 1.96 — 1.00

RT: runtime in seconds. Ratio: runtime ratio compared to HeteroLatch on GPU.
All baselines are run with 16 CPU cores and 1 GPU, reporting k = 1000 paths. Note that due to inconsistencies in OpenSTA’s
path reporting rules across multiple clock domains, the last benchmark was not tested.

12 4 8 16 24 32

10

100

1,000

Number of Threads

R
un

tim
e

(s
)

(a) Thread Scalability

ours
PrimeTime
OpenSTA

[4]

1 10 100 1,000 10,000

10

100

Number of Paths Reported

R
un

tim
e

(s
)

(b) Path Generation Scalability

ours
PrimeTime
OpenSTA

[4]

Fig. 7: Runtime scalability of four timers on design case4 (a)
under varying CPU threads, reporting k = 1000 paths, (b) with
different numbers of paths k reported, using 16 CPU threads.

C. Runtime Scalability Analysis

We further analyzed the runtime scalability of HeteroLatch
and baseline methods under varying CPU thread counts (Fig-
ure 7(a)) and path numbers (Figure 7(b)).

Regarding CPU thread scalability, OpenSTA saturates near
4 threads, while PrimeTime scales rapidly from 1 to 8 threads
but plateaus between 8 and 32, peaking at 24. Work [4] shows
limited scalability, with 43% runtime reduction from 1 to 8
threads. In contrast, HeteroLatch achieves 53% reduction to
16 threads, reaching minimum at 32. Ultimately, all methods
face limits due to inherent CPU parallelism constraints.

For top-k critical path generation, HeteroLatch maintains
low runtime to k=10,000 with lower incremental cost than
baselines. This efficient scaling mirrors prior GPU-accelerated
timers [16, 18] using parallel prefix-suffix expansion.

D. Ablation Study and Runtime Breakdown

We investigated the performance of HeteroLatch via an abla-
tion study on the part of hybrid CPU-GPU preliminary timing
analysis (Section III A) and analyzing the runtime breakdown.
As shown in Figure 8, we decompose the total analysis runtime
for the design case3 into its constituent steps. The results
demonstrate that CPU-GPU parallel collaboration reduces the

0 200 400 600 800 1000 1200 1400

Non-Hyrbid

Hybrid
Hybrid Pre.

Graph De. AT Pre Prop.

ms

SCC Leveli. Path Gen.

976.77ms (25.53% reduction)

1311.55ms

SCC Binning+Subgraph Marking+AT Re Prop.

2.8 How to change the document language and spell check settings

Overleaf supports many different languages, including multiple different languages within one docu-
ment.

To configure the document language, simply edit the option provided to the babel package in the
preamble at the top of this example project. To learn more about the different options, please visit
this help article on international language support.

To change the spell check language, simply open the Overleaf menu at the top left of the editor
window, scroll down to the spell check setting, and adjust accordingly.

2.9 How to add Citations and a References List

You can simply upload a .bib file containing your BibTeX entries, created with a tool such as JabRef.
You can then cite entries from it, like this: [Gre93]. Just remember to specify a bibliography style, as
well as the filename of the .bib. You can find a video tutorial here to learn more about BibTeX.

If you have an upgraded account, you can also import your Mendeley or Zotero library directly as
a .bib file, via the upload menu in the file-tree.

2.10 Good luck!

We hope you find Overleaf useful, and do take a look at our help library for more tutorials and user
guides! Please also let us know if you have any feedback using the Contact Us link at the bottom of
the Overleaf menu — or use the contact form at https://www.overleaf.com/contact.

Hybrid Pre.

Path Gen.

SCC Leveli.

AT Re Prop.

Subgraph Marking

SCC Binning

Table 2:
Prefix Sum Prop

Prop 1 Rerun Prop 2 Prop 3

Conservative 200 400 600 800
1126 ms

Speculative 470 ms (2.4× speed-up)
0 200 400 600 800 1000

1200 ms

References

[Gre93] George D. Greenwade. The Comprehensive Tex Archive Network (CTAN). TUGBoat,
14(3):342–351, 1993.

3

5.01%

18.41%

74.26%

<3%

Fig. 8: Ablation study on design case3 for CPU-GPU Prelim-
inary Timing Analysis and the runtime breakdown.

total runtime by 25.53% compared to the non-hybrid approach,
with CPU execution time fully masked by overlapping GPU
computations. Notably, the subgraph search, SCC binning, and
AT re-propagation procedures account for a negligible fraction
of the runtime (0.57%, 0.24%, and 1.51%, respectively). This
minimal overhead confirms the runtime efficiency of our work.

V. CONCLUSION

This paper presents HeteroLatch, a CPU-GPU heteroge-
neous STA engine addressing latch-induced timing challenges,
time borrowing and latch loops, while enabling GPU accelera-
tion. By harmonizing adaptive SCC-based analysis and hierar-
chical timing propagation, our framework masks the overhead
of graph decomposition through CPU-GPU task overlap and
early termination, and balances GPU workloads. Experimental
results show average speedups of 12.64× over PrimeTime,
9.45× over OpenSTA, and 1.96× over SOTA method [4], with
full accuracy. HeteroLatch bridges the gap between latch-
specific timing complexities and GPU-native parallelism. This
work unlocks efficient verification for advanced-node circuits
with dense latch clusters, supporting broader adoption of latch-
centric methods for high-frequency, low-power designs.

REFERENCES

[1] J. Bhasker and R. Chadha, Static timing analysis for
nanometer designs: A practical approach. Springer
Science & Business Media, 2009.

[2] Synopsys, PrimeTime, version: S-2021.06-SP1,
Synopsys, Inc., Mountain View, Califor-
nia, USA, 2021, synopsys, Inc. Soft-
ware. [Online]. Available: https://www.synopsys.com/
implementation-and-signoff/signoff/primetime.html

[3] “OpenSTA, version: 2.5.0,” https://github.com/
abk-openroad/OpenSTA.

[4] X. Shi, Z. Guo, Y. Lin, R. Wang, and R. Huang, “Han-
dling latch loops in timing analysis with improved com-
plexity and divergent loop detection,” in 2025 IEEE/ACM
Design, Automation and Test in Europe (DATE), 2025.

[5] S. Hassoun, C. Cromer, and E. Calvillo-Gámez, “Static
timing analysis for level-clocked circuits in the presence
of crosstalk,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 9,
pp. 1270–1277, 2003.

[6] B. Li, N. Chen, Y. Xu, and U. Schlichtmann, “On
timing model extraction and hierarchical statistical timing
analysis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 32, no. 3, pp.
367–380, 2013.

[7] X. Yuan and J. Wang, “Statistical timing verification
for transparently latched circuits through structural graph
traversal,” in 2010 15th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2010, pp.
663–668.

[8] B. Li, N. Chen, and U. Schlichtmann, “Statistical timing
analysis for latch-controlled circuits with reduced iter-
ations and graph transformations,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 11, pp. 1670–1683, 2012.

[9] H. H.-W. Wang, L. Y.-Z. Lin, R. H.-M. Huang, and C. H.-
P. Wen, “Casta: Cuda-accelerated static timing analysis
for VLSI designs,” in Proc. ICPP. IEEE, 2014, pp.
192–200.

[10] Z. Guo, T.-W. Huang, Z. Jin, C. Zhuo, Y. Lin, R. Wang,
and R. Huang, “Heterogeneous static timing analysis
with advanced delay calculator,” in 2024 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2024, pp. 1–6.

[11] S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. Young, and
M. Wong, “Gcs-timer: Gpu-accelerated current source
model based static timing analysis,” in Proceedings of the
61st ACM/IEEE Design Automation Conference, 2024,
pp. 1–6.

[12] K. Gulati and S. P. Khatri, “Accelerating statistical
static timing analysis using graphics processing units,”
in Proc. ASPDAC. IEEE, 2009, pp. 260–265.

[13] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static
timing analysis,” in Proceedings of the 39th international
conference on computer-aided design, 2020, pp. 1–9.

[14] ——, “Accelerating static timing analysis using cpu–
gpu heterogeneous parallelism,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 42, no. 12, pp. 4973–4984, 2023.

[15] B. Zhang, D.-L. Lin, C. Chang, C.-H. Chiu, B. Wang,
W.-L. Lee, C.-C. Chang, D. Fang, and T.-W. Huang, “G-
pasta: Gpu-accelerated partitioning algorithm for static
timing analysis,” in Proceedings of the 61st ACM/IEEE
Design Automation Conference, 2024, pp. 1–6.

[16] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-
accelerated path-based timing analysis,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC).
IEEE, 2021, pp. 721–726.

[17] Z. Guo, T.-W. Huang, and Y. Lin, “Heterocppr: Ac-
celerating common path pessimism removal with het-
erogeneous cpu-gpu parallelism,” in 2021 IEEE/ACM
International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[18] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-
accelerated critical path generation with path con-
straints,” in 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE, 2021, pp.
1–9.

[19] G. Guo, T.-W. Huang, and M. Wong, “Fast sta graph
partitioning framework for multi-gpu acceleration,” in
2023 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2023, pp. 1–6.

[20] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada,
and M. D. Wong, “A gpu-accelerated framework for path-
based timing analysis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 42,
no. 11, pp. 4219–4232, 2023.

[21] Z. Guo, Z. Zhang, W. Li, T.-W. Huang, X. Shi, Y. Du,
Y. Lin, R. Wang, and R. Huang, “Heteroexcept: A cpu-
gpu heterogeneous algorithm to accelerate exception-
aware static timing analysis,” in Proc. ICCAD, 2024.

[22] T.-W. Huang and M. D. Wong, “OpenTimer: A high-
performance timing analysis tool,” in Proc. ICCAD.
IEEE, 2015, pp. 895–902.

[23] R. Chen and H. Zhou, “Statistical timing verification
for transparently latched circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 9, pp. 1847–1855, 2006.

[24] K. Zhu, X. Di, W.-S. Luk, L. Wang, and J. Tao, “A fast
timing analysis and optimization for latch-based circuits,”
in 2022 China Semiconductor Technology International
Conference (CSTIC). IEEE, 2022, pp. 1–3.

[25] R. Tarjan, “Depth-first search and linear graph algo-
rithms,” SIAM journal on computing, vol. 1, no. 2, pp.
146–160, 1972.

[26] J. L. Bentley, Programming Pearls, 2nd ed. Addison-
Wesley, 2000.

