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Abstract
Full-chip transient thermal simulation, which is essential for solving
pressing thermal issues, is time-consuming and resource-intensive,
especially when nonlinear effects including temperature-dependent
leakage power and thermal conductivity are considered. While many
deep learning models have been proposed recently to accelerate tran-
sient thermal prediction, their long-term stability remains far from
satisfactory due to severe error accumulation. In this paper, we focus
on the long-term stability of efficient full-chip transient thermal predic-
tion. We propose FaStTherm, a deep-learning-based full-chip transient
thermal predictor, which learns low-dimensional linear dynamics in
the latent space and enables 10,000× speedup compared with commer-
cial simulator COMSOL. We further propose a novel combination of
local and global stabilizing techniques to mitigate the error accumula-
tion. Experimental results on a commercial chip design and real-world
workloads demonstrate that the prediction error of FaStTherm is less
than 5% of the full temperature range (5 Kelvin) for more than 15,000
consecutive time steps, which is 42-73× longer than previous studies,
showing the excellent long-term stability of our method.

1 Introduction
With the increasing density of transistors in advanced technology nodes,
modern integrated circuits are suffering from pressing thermal issues
[1, 2]. The recent introduction of advanced packaging technologies,
such as 3D stacking, further complicates the circumstances because
of the increased thermal resistance [3, 4]. To tackle the increasingly
serious thermal issues, thermal-aware design and dynamic thermal
management (DTM) are of the essence, both in need of fast and ac-
curate transient thermal simulation of the chip systems, as shown in
Fig. 1(a). Transient thermal information will provide an essential guide
for package design, thermal-aware sensor placement, testing, and so
on [5], While common DTM techniques, such as dynamic voltage and
frequency scaling and task mapping, require a fast transient thermal
model to estimate the temperature online and perform control ahead of
time [6–8]. While conventional finite element method (FEM) or finite
difference method (FDM) based numerical simulators can offer accurate
transient temperature results, they require long simulation time and a
lot of computational resources even for small time horizons because of
the large mesh quantities after discretization. To worsen the situation,
higher chip temperature in advanced technology nodes and packages
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Figure 1: (a) Fast and accurate full-chip transient thermal simu-
lations are needed to solve the pressing thermal issues. While
traditional numerical simulators are time-consuming, DL-based
predictors are widely studied to accelerate this process. (b) Illus-
tration of error accumulation for DL-based full-chip transient
thermal predictors. 𝑇0 is the initial temperature. 𝑃𝑑𝑦𝑛s and 𝑇 s
are the input dynamic powers and the predicted temperatures
for each time step, respectively. Prediction results will quickly
deviate from ground truth because of the vicious circle of error
accumulation. (c) Diagram of two typical error plots which show
severe (red) and mild (green) error accumulation, respectively.

results in greater influence of on-chip nonlinear thermal effects, includ-
ing temperature-dependent leakage power and thermal conductivity.
For example, leakage power can account for over 50% of the total power
in some designs [9, 10], while temperature dependence of thermal con-
ductivity can lead to an increase of 5 K in peak temperature [11, 12].
These nonlinear effects cannot be neglected during accurate transient
thermal simulations [13], which can further increase the simulation
time of numerical simulators. Meanwhile, these nonlinear effects hinder
the direct utilization of fast analytical methods, such as model order
reduction [14], Green’s function [4], and separation of variables [15],
because they are only applicable for linear systems theoretically.

To accelerate full-chip transient thermal prediction, a number of
deep learning (DL) based methods have been proposed recently, with
a variety of core models ranging from LSTM [16] to autoencoder [17].
These models achieve great speedup compared with traditional nu-
merical simulators in various scenarios. However, DL-based methods
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encounter long-term instability issues, especially when taking nonlin-
ear effects into consideration. Existing methods are only able to output
accurate prediction results for a small number of time steps due to
severe error accumulation [16–18]. The concept of error accumulation
is depicted in Fig. 1(b) and 1(c). For a black box DL model, every push-
forward of one single time step brings a small error to the prediction
result, which results in a distribution shift of the input for the next
step, while the shifted input further incurs a larger error during the
next pushforward. This vicious cycle will cause the prediction results
to deviate from the ground truth quickly and even become thoroughly
distorted. This fatal instability is one of the greatest impediments that
keep existing DL-based full-chip transient thermal predictors from real
applications.

Recently, some methods to improve the long-term stability of DL
-based PDE predictors have been proposed [19–23]. Unfortunately, ex-
isting tricks are not enough for the task of full-chip transient thermal
prediction. Firstly, these techniques can usually ensure stability for hun-
dreds of time steps. However, for full-chip transient thermal prediction,
we expect tasks with much longer traces in practical scenarios, such
as real workloads running on a chip. Secondly, previous works mainly
focus on general PDEs with no sources or fixed sources, while time-
varying power inputs during transient thermal prediction are common
in practice. Despite these difficulties, the governing PDE of the heat
transfer system is relatively simple, which offers us opportunities to
guarantee stability for a longer duration with more dedicated methods.

In this work, we propose a novel deep-learning model for full-
chip transient thermal prediction with nonlinear effects including
temperature-dependent leakage power and thermal conductivity. The
new model, called FaStTherm, simultaneously achieves huge speedup
compared with the commercial numerical simulator and unprecedented
long-term stability compared with existing DL-based transient thermal
predictors. The key contributions of this work are as follows:

• We develop a novel deep learning model inspired by Koopman
theory, which is forced to learn low-dimensional linear dynamics
of the original nonlinear systems in the latent space to realize
fast thermal prediction.

• We further propose a novel combination of local and global
techniques based on the linear latent space to stabilize the push-
forward of our transient thermal predictor and ease the accu-
mulation of error. An ablation study is carried out to verify the
effectiveness of the proposed techniques.

• We test our model on a commercial chip design and real-world
workloads. Experimental results demonstrate that 1) our model
is 10,000× faster than commercial software COMSOL and 2)
the prediction error of our model is less than 5% of the full
temperature range (5 Kelvin) for more than 15,000 consecutive
time steps, which is 42-73× longer than previous studies [16, 24].

The rest of this paper is organized as follows. Section 2 provides
a review of relevant work. Section 3 formulates the studied problem.
Section 4 elaborates on the whole framework of our model with the
proposed techniques for increasing its stability during long-term predic-
tion. Section 5 provides the experimental setup and the data generation
flow. Section 6 presents the experimental results and comparisons with
other methods, together with the ablation study. Section 7 concludes
this paper.

2 Related Work
2.1 Numerical Methods
Traditionally, full-chip transient thermal simulations are performed by
numerical solvers. Finite element method (FEM) based general-purpose
commercial software, such as COMSOL [25] and Ansys [26], can offer

ground truth transient temperature results and support arbitrary non-
linear effects. Meanwhile, some numerical solvers specially designed
for IC thermal simulation are based on finite difference method (FDM),
such as HotSpot [27] and PACT [28]. These customized solvers usu-
ally have limited support for nonlinear effects including temperature-
dependent leakage power and thermal conductivity. All of these numer-
ical methods require discretization of the systems and are very time-
and resource-consuming because of the large quantities of meshes af-
ter discretization. Some fast analytical methods have been proposed
to accelerate transient thermal simulation, including model order re-
duction [14], separation of variables [3], and Green’s function [29].
However, these methods are only suitable for linear systems theoreti-
cally and require a large number of approximations when dealing with
temperature-dependent leakage power and thermal conductivity [13].
Meanwhile, most of them have only been tested for simple scenarios
such as constant dynamic powers.

2.2 Deep-Learning-based Methods
Deep-learning-based methods have recently been widely studied to per-
form fast full-chip transient thermal predictions and they achieve huge
speedup compared with traditional numerical simulators. Chhabria et
al. [16] regard transient thermal prediction as a sequence-to-sequence
translation task and use convolutional encoder-decoder networks with
LSTM to convert time-varying power maps into transient temperature
maps. Ranade et al. [17] have proposed a FEM-like discretization-based
method together with iteration techniques to improve stability and
astringency. Echo state network (ESN) has been used to substitute
the thermal model during DTM with consideration of nonlinear leak-
age power [24]. Besides, Kumar et al. [4] combine traditional Green’s
function method with DeepONet to achieve ultra-high resolution. A
different technical route is featured by utilizing performance metrics of
processors read from commercial software together with temperature
information measured by IR camera to realize transient thermal map
estimation [30–32]. This group of techniques can only transform real-
time performance information into thermal maps, without the ability to
perform thermal prediction into the future, which is outside the scope
of this paper.

2.3 Long-Term Stability and Error Accumulation
Although current deep learning models achieve unprecedented speed
up for full-chip transient thermal prediction compared with numerical
simulators, they are fatally limited by the rapid deviation of the pre-
diction results from the ground truth because of the vicious circle of
error accumulation. While the method utilizing Green’s function with
DeepONet [4] suffers less from this issue because of linear error accu-
mulation, it can only be applied to linear systems as well because of the
utilization of Green’s function. The lack of long-term stability prevents
existing DL-based fast thermal predictors from practical applications
and remains a crucial problem.

In the community of DL-based PDE predictors, error accumulation
is a common issue for transient PDE prediction and some methods
have been proposed recently to alleviate this effect. [33] proposes to
train the prediction model with multiple steps instead of a single step
to strengthen the robustness of the model during multiple-step pre-
diction. Noise injection to training data and adversarial training are
used in [19] and [21] to improve the model’s resistivity against small
disturbance, while [20] automates this process through a special push-
forward training trick. Authors in [22] propose to focus more on the
high spatial frequency components in PDE solutions to ease the effect
of error accumulation. [23] identifies the intrinsic dimensions of the
observed systems with geometric manifold learning algorithms and
achieves robust prediction of the underlying dynamics.



Networks enhanced by these methods are usually able to guarantee
stability for hundreds of time steps as shown by their results. However,
the traces for predicting can be much longer in the context of full-
chip transient thermal prediction, for example, when simulating the
thermal behavior of real workloads running on the chip. Besides, these
methods are usually tested on classical problems such as Navier-Stokes
equations and mainly focus on the PDEs themselves with no source
term or a fixed source term. Nevertheless, time-varying power inputs as
source terms are important in IC thermal prediction. So a new network
architecture together with novel techniques to improve its long-term
stability is under exploration for the task of full-chip transient thermal
prediction.

3 Problem Formulation
3.1 Governing Equation and Nonlinear Effects
The transient temperature distribution of the full chip is governed by
the following heat equation [13]:

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
− ∇ · (𝜅∇𝑇 (𝒓)) = 𝑞𝑣 , (1)

where 𝑇 and 𝑞𝑣 denote the temperature and the power dissipation per
unit volume, and 𝑘 , 𝜌 , 𝑐𝑝 are material-specific properties representing
heat conductivity, mass density, and heat capacity.

In the context of integrated circuits, several parameters are tem-
perature dependent, which makes Eq. 1 a nonlinear PDE. Firstly, the
total power dissipation 𝑞𝑣 in Eq. 1 consists of dynamic power 𝑃𝑑𝑦𝑛
and leakage power 𝑃𝑙𝑒𝑎𝑘 . Dynamic power is contributed by logic gate
switching, whose value doesn’t depend on temperature, while leakage
power increases exponentially with temperature. The relation can be
written as [34]:

𝑃𝑙𝑒𝑎𝑘 (𝑇 ) = 𝑃0 · 𝑒𝛽 (𝑇−𝑇0 ) , (2)
where P0, 𝛽 and 𝑇0 are process-related parameters. Secondly, the ther-
mal conductivity 𝜅 in Eq. 1 is also a function of temperature, which is
given by [11]:

𝜅 (𝑇 ) = 𝜅0 (
𝑇

300 )
−𝜂 , (3)

where 𝜅0 is the thermal conductivity at 300K and 𝜂 is a material-specific
constant.

The existence of these complex nonlinear (temperature-dependent)
effects renders methods such as variable separation unsuitable because
they are designed for linear systems.

3.2 Full-Chip Transient Thermal Prediction
Considering Nonlinear Effects

Suppose there is an initial temperature distribution of the chip 𝑇0 and
a series of time-varying dynamic powers 𝑃𝑑𝑦𝑛, 0, 𝑃𝑑𝑦𝑛, 1, 𝑃𝑑𝑦𝑛, 2, · · · ,
𝑃𝑑𝑦𝑛,𝑛 generated by the active layer of the chip at each time step. Taking
temperature-dependent leakage power and thermal conductivity into
consideration, the task is to make a fast prediction on subsequent
temperatures of the chip and we hope that the prediction results can
be accurate enough for as many time steps as possible. The universal
form of a full-chip transient thermal predictor can be written as:

𝑇𝑡+1 = 𝑓 (𝑇𝑡 , 𝑃𝑑𝑦𝑛, 𝑡 ) , 𝑡 ∈ {0} ∪ N , (4)
where 𝑡 denotes the discrete time step,𝑇 is the temperature of the chip,
which is specifically the 2-D temperature map of the interested active
layer following the convention [35], and 𝑃𝑑𝑦𝑛 is the dynamic power. The
predictor 𝑓 takes the temperature and the dynamic power at time step 𝑡
as inputs and outputs the temperature at time step 𝑡+1. The temperature-
dependent leakage power 𝑃𝑙𝑒𝑎𝑘 (𝑇 ) and thermal conductivity 𝜅 (𝑇 ) are
encoded in the mapping 𝑓 , which can be learned by a deep neural
network to perform fast thermal prediction.

However, inference error is inevitable for a neural network. During
prediction, every pushforward of time step 𝑡 brings some error to
the predicted temperature, which serves as an input for the next step.
Because the neural predictor is trained under a certain distribution of
data, the input corrupted by error is outside the training distribution and
will bring more substantial error to its next step, forming a vicious circle
of error accumulation and rendering the prediction results inaccurate
after only a few time steps. This is one of the main obstacles that keeps
DL-based full-chip transient thermal predictors from practical use.

4 The FaStTherm Framework
In this section, we illuminate the framework of the proposed FaSt-
Therm for full-chip transient thermal prediction, together with the
local and global techniques proposed to improve its stability. After that,
we introduce our automatic training data generation framework.
4.1 Learning Low-Dimensional Linear Dynamics

in Latent Space
To achieve fast transient thermal prediction, it is natural to turn to
model order reduction of the original system [36, 37]. Different from
conventional numerical or statistical methods, a deep autoencoder can
realize automatic dimension reduction in its latent space and benefits
from the strong representation and generalization ability of deep neu-
ral networks, which is selected as the core of our transient thermal
predictor, as shown in Fig. 2. Because the input and output temperature
are in the form of 2-D maps in the context of IC thermal prediction,
we use the popular CNN-based architecture ResNet-18 [38] to build
our encoder and decoder. In practice, we substitute the downsampling
layers of ResNet-18 with upsampling layers in the decoder and make
small adjustments to match the shape of the chip temperature map.

Transient prediction is performed in the low-dimensional latent
space of the autoencoder, and the predicted latent vectors, denoted as
𝑧𝑡 , will be decoded into temperature maps 𝑇𝑡 using the decoder part to
get the final results. This process can be presented as:

𝑧𝑡+1 = 𝑞(𝑧𝑡 , 𝑃𝑑𝑦𝑛, 𝑡 ) , 𝑇𝑡+1 = 𝑔(𝑧𝑡+1) ,
𝑧𝑡+2 = 𝑞(𝑧𝑡+1, 𝑃𝑑𝑦𝑛, 𝑡+1) , 𝑇𝑡+2 = 𝑔(𝑧𝑡+2) ,

. . . . . .

(5)

where 𝑔 denotes the decoder and 𝑞 denotes the dynamics of 𝑧 in the
latent space, and the dimension of 𝑧 is far less than the dimension of
𝑇 , enabling fast thermal prediction. However, as discussed before, the
pushforward of 𝑧 in the latent space suffers from error accumulation
because the mapping 𝑞 is not error-free, which will lead to a rapid
deviation of the latent vectors and then corrupt the prediction results.

Compared with nonlinear systems, linear systems enjoy mature
theories of stability and error control, which will bring us the potential
for mitigating the accumulation of error [39, 40]. According to Koopman
theory [41], a nonlinear system can be mapped into a linear system
under a certain set of transformation functions, which can be learned
by the encoder ℎ. This means we can force the autoencoder to learn a
linear 𝑞 in the latent space. Eq. 5 can now be rewritten as:

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵𝑃𝑑𝑦𝑛, 𝑡 , 𝑇𝑡+1 = 𝑔(𝑧𝑡+1) ,
𝑧𝑡+2 = 𝐴𝑧𝑡+1 + 𝐵𝑃𝑑𝑦𝑛, 𝑡+1 , 𝑇𝑡+2 = 𝑔(𝑧𝑡+2) ,

. . . . . .

(6)

where 𝐴 and 𝐵 are linear matrices and can be represented by a train-
able fully connected layer without bias and activation function. The
inference process of the proposed model is concluded in Fig. 3.

During training, the ground truth temperature maps at time step 𝑡 ,
𝑡 + 1 and the input dynamic power at time step 𝑡 are combined as tuples
(𝑇𝑡 ,𝑇𝑡+1, 𝑃𝑑𝑦𝑛, 𝑡 ). Three types of loss functions are included. Firstly, the
reconstruction loss 𝐿𝑟𝑒 guarantees the reconstruction ability of the
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Figure 2: Diagram of the proposed FaStTherm for full-chip transient thermal prediction. The model is based on a ResNet-18-based
deep autoencoder, which is forced to learn low-dimensional linear dynamics in the latent space. We show the calculation of (a)
reconstruction loss, (b) prediction loss in the linear latent space, and (c) prediction loss of the temperature. The techniques for
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Figure 3: The inference process of the proposed model. The initial temperature map is first encoded into a latent vector by the encoder.
Transient prediction is then performed in the latent space step by step and the predicted latent vectors are finally decoded into
temperature maps by the decoder. The linear matrix 𝐴 is spectral normalized as introduced in Section 4.3.

autoencoder. Secondly, the prediction loss in the latent space 𝐿𝑙𝑖𝑛 forces
the model to learn the linear dynamics of the latent vectors. Thirdly,
the prediction loss of the temperature 𝐿𝑝𝑟𝑒𝑑 is added to improve the
final prediction performance. We use mean square error (MSE) as the
loss function. These losses are concluded below:

𝐿𝑟𝑒 = 𝑀𝑆𝐸 (𝑇𝑡 , 𝑔(ℎ(𝑇𝑡 ))) , (7)
𝐿𝑙𝑖𝑛 = 𝑀𝑆𝐸 ((𝐴𝑧𝑡 + 𝐵𝑃𝑑𝑦𝑛, 𝑡 ), 𝑧𝑡+1) , (8)
𝐿𝑝𝑟𝑒𝑑 = 𝑀𝑆𝐸 (𝑔(𝐴𝑧𝑡 + 𝐵𝑃𝑑𝑦𝑛, 𝑡 ), 𝑇𝑡+1) , (9)

where

𝑧𝑡 = ℎ(𝑇𝑡 ) , 𝑧𝑡+1 = ℎ(𝑇𝑡+1) , (10)

are latent vectors converted from temperature maps by encoder ℎ.
The final training loss is the combination of the three types of losses
described above:

𝐿 = 𝛼1𝐿𝑟𝑒 + 𝛼2𝐿𝑙𝑖𝑛 + 𝛼3𝐿𝑝𝑟𝑒𝑑 , (11)

where 𝛼1, 𝛼2 and 𝛼3 are hyperparameters.
The schematic diagrams of the three types of losses depicted above

are presented in Fig. 2(a)(b)(c), respectively. In the next two subsections,
we will elaborate on the novel techniques we propose to stabilize the
pushforward of our transient thermal predictor.

4.2 Unrolled Training and Noise Injection for
Local Stability

As discussed above, one of the main reasons for rapid error accumu-
lation is that the previous predicted result corrupted with error and
serving as the next input is outside the training distribution and will
bring more substantial error to its next step. Then a natural way to
increase the stability of the predictor is to train the model with scenar-
ios possibly encountered during the test. We adopt unrolled training
and noise injection to imitate the test scenarios to increase the local
stability of our predictor, as shown in Fig. 2(d).

For unrolled training, we enforce prediction over 𝑚 consecutive
steps rather than one single step by modifying the training losses 𝐿𝑙𝑖𝑛
and 𝐿𝑝𝑟𝑒𝑑 in Eq. 8 and 9 as follows:

𝐿𝑙𝑖𝑛 =

𝑚−1∑︁
𝑖=0

𝑀𝑆𝐸 ((𝐴𝑧𝑡+𝑖 + 𝐵𝑃𝑑𝑦𝑛, 𝑡+𝑖 ), 𝑧𝑡+𝑖+1) , (12)

𝐿𝑝𝑟𝑒𝑑 =

𝑚−1∑︁
𝑖=0

𝑀𝑆𝐸 (𝑔(𝐴𝑧𝑡+𝑖 + 𝐵𝑃𝑑𝑦𝑛, 𝑡+𝑖 ), 𝑇𝑡+𝑖+1) . (13)

where𝑚 is a hyperparameter decided by experiments. Specifically, we
choose𝑚 = 4 for our model to balance the one-step error and multi-step
stability.
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For noise injection, we corrupt each 𝑧𝑡 with random-walk noise
N(0, 𝜎) during the above-mentioned unrolled training, where the stan-
dard deviation 𝜎 is a constant hyperparameter decided by experiments
[19]. This process can be simply fulfilled by replacing 𝑧𝑡+𝑖 with 𝑧𝑡+𝑖 + 𝜀𝑖
in Eq. 12 and 13, where 𝜀𝑖 is a series of random-walk noise following
normal distribution. Specifically, we choose 𝜎 = 0.001 in our model to
make the noise account for a reasonable part of 𝑧𝑡 .

4.3 Spectral Normalization for Global Stability
While manyworks in the community of neural transient PDE predictors
adopt similar local techniques discussed above and successfully ensure
stability for hundreds of time steps, they are not enough for the practical
use of a full-chip transient thermal predictor because it is likely to
encounter much longer power and temperature traces when dealing
with real-world workloads. For traces in the order of tens of thousands
of time steps or more, methods to reduce one-step or multi-step errors
are powerless to guarantee global stability. Under this consideration, we
propose a novel method to realize the damping of previously introduced
errors to increase the global stability of ultra-long traces, utilizing the
linear dynamics learned in the latent space.

Consider an arbitrary transient linear system:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 , 𝑡 ∈ {0} ∪ N , (14)

where 𝑥 is the state variable and𝑢 is the source input (𝑧 and 𝑃𝑑𝑦𝑛 in our
model, respectively). If at some certain step𝑚, a noise 𝜀 is introduced
to the state variable, that is:

𝑥𝑚 −→ 𝑥𝑚 + 𝜀 , (15)

then at time step 𝑛 > 𝑚 the state variable corrupted by the noise will
be:

𝑥𝑛 = 𝐴𝑥𝑛−1 + 𝐵𝑢𝑛−1 +𝐴𝑛−𝑚𝜀 . (16)
According to linear algebra [42], only if the maximum singularity (or
the spectral norm) of the dynamics matrix𝐴 is less than unity, the term
𝐴𝑛−𝑚𝜀 in Eq. 14 will not diverge but damp to zero as 𝑛 → ∞, which
means error generated at some step will have no influence on the global
stability, but only affect its neighbors.

According to the above analysis, we propose to apply spectral nor-
malization to the linear layer in the latent space to restrict its max
singularity to less than unity and guarantee the global stability of our
predictor, as shown in Fig. 2(e). Specifically, we will rewrite Eq. 6 as:

𝑧𝑡+1 =
𝐴

𝑎 ∗ 𝜎𝑚𝑎𝑥 (𝐴)
𝑧𝑡 + 𝐵𝑃𝑑𝑦𝑛, 𝑡 , 𝑇𝑡+1 = 𝑔(𝑧𝑡+1) , (17)

where 𝑎 is a hyperparameter more than unity and 𝜎𝑚𝑎𝑥 (𝐴) is the max
singularity of matrix 𝐴. Spectral normalization is a common technique
used in generative adversarial networks (GAN) to constrain the Lip-
schitz continuity of the discriminator [43, 44]. For the first time, we
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Figure 5: The schematic diagram of the processor’s floorplan
used for thermal simulation. Dynamic powers simulated by
Sniper and McPAT are assigned to corresponding components
and locations (eg: Core0-FPU) during thermal simulation.

Training swaptions, blackscholes, water.sp, fluidanimate,
ocean.cont, fft

Testing
bodytrack, canneal, dedup, streamcluster, x264
barnes, cholesky, fmm, lu.cont, lu.ncont, radix,
radiosity, ocean.ncont, raytrace, water.nsq

Table 1: Applications selected for generating training and testing
data [46, 47].
apply it to neural PDE predictors to realize error damping against error
accumulation, utilizing the linearity of the dynamics learned in the
latent space.

With the combination of local and global stabilizing techniques, our
transient thermal predictor is able to generate prediction results with
sufficiently small errors for much more time steps.

4.4 Automatic Training Data Generation
A diversified training set is essential for the generalization performance
of a deep learning model. Previous studies use synthetic dynamic pow-
ers [16, 45] or dynamic powers of realistic workloads [24, 32] as training
data. The former lacks in practical significance for real applications,
while the latter is restricted by the regular and limited patterns of real
workloads [48]. We avoid these shortcomings by designing a generic
algorithm (GA) based flow [48, 49] to generate the diversified training
set automatically, as shown in Fig. 4.

To beginwith, we choose a set of real-world benchmarks and perform
micro-architecture simulations to get their dynamic power traces as the
initial popularization. Then we calculate the adjacent differences of the
power traces and select the ones with the highest adjacent differences as
“parents”, which are then crossed over and mutated to create “children”.
This process is looped until the population size is reached.We then tailor
and concatenate the dynamic power traces generated in this process
into ones of equal length, and perform thermal simulations to get the
corresponding temperature traces. Within the above framework, the
training set is automatically generated and the dynamic power traces
are diversified in both variational and absolute amplitude.

5 Experimental Setup
In this section, we first present the experimental setup and the data
generation flow. After that, we introduce the baselines for comparison
and the setup of the ablation study.

5.1 Simulated System and Data Generation Flow
To validate our model for practical applications, we use a commercial
Intel quad-core microprocessor with Gainestown architecture as the
simulated system. Each core has a 16 KB private L1 instruction cache
and a 16 KB private L1 data cache, alongside a 512 KB private L2 cache.
All the cores share an 8 MB L3 cache. The diagram of the processor’s
floorplan used for thermal simulations is shown in Fig. 5, which is
extracted from the documents of HotSniper [51], an open-source EDA
toolchain integrating Sniper [52] and HotSpot [27] for performance
and thermal simulation.



Table 2: Performance comparison between ourmodel and the baselines for the prediction of 15,000 consecutive time steps. Ourmodel is
FaStTherm. ESN [24, 50], LSTM [16], and U-Net [16, 22] are for comparison study, while FaStTherm-w/o-global and FaStTherm-w/o-local
are for ablation study. "K" refers to "Kelvin".

Average MAE Survival time steps Average
total 15,000 time steps the first 500 time steps the last 500 time steps (error below 5 K) prediction time

ESN [24, 50] 8.134 K 5.201 K 8.206 K 243 0.546 ms/step
LSTM [16] 8.366 K 4.796 K 8.036 K 351 0.723 ms/step

U-Net [16, 22] 12.168 K 7.717 K 12.337 K 205 1.108 ms/step
FaStTherm-w/o-global 7.320 K 5.705 K 7.332 K 152 0.387 ms/step
FaStTherm-w/o-local 3.513 K 2.719 K 3.993 K 472 0.392 ms/step
FaStTherm (Ours) 2.244 K 2.008 K 2.520 K > 15,000 0.390 ms/step

SinceHotSpot does not support nonlinear leakage power and thermal
conductivity for transient thermal simulation, we cannot use HotSniper
directly to fulfill the full-chain data generation. Instead, we use Sniper
[52] and McPAT [53] to generate dynamic power traces from the sim-
ulation of real-world workloads. Then we feed the dynamic power
traces into the COMSOL model we build to perform transient thermal
simulation with nonlinear leakage power and thermal conductivity.
The geometric dimensions of the heat sink and heat spreader, chip
thickness, convection coefficient, and other related parameters in the
COMSOL model are copied from the HotSpot configuration file in pre-
vious work [51] to guarantee the authenticity of the simulation results.
Temperature-dependent leakage power and thermal conductivity are
set in the COMSOL model, with parameters in Eq. 2 and 3 referring to
previous works as well [24, 37, 54]. The ambient temperature is set to
318.15 K. The dimensions of the 2-D temperature maps in our exper-
iments are 88 × 64, with one pixel being 0.049𝑚𝑚 × 0.049𝑚𝑚 in size.
The complete flow for data generation is shown in Fig. 4.

The interval of time step for transient thermal prediction is another
parameter to be decided. Short intervals will result in an excess of time
steps while long ones will lead to the omission of details in power traces
and then temperature traces. We choose 10ms as the interval of time
step in our work according to simulation results, which also serves as
the common operating granularity for Linux scheduler and dynamic
thermal management [55].

For workloads, we employ 21 applications from PARSEC [46] and
SPLASH -2 [47] benchmark suites. These open-source benchmark suites
have realistic multithreaded applications, designed to cover a wide
range of different domains such as scientific computation, financial
analysis, and video encoding. To test the generalization ability of our
predictor for practical use, applications used for generating the training
set and those for generating the testing set are kept strictly different and
separate, as listed in Table 1. For some applications with asymmetrical
master and slave threads, we map their master threads to different cores
during thermal simulation to generate various temperature maps.

The training set is generated by the GA-based framework introduced
in Section 4.4 and composed of 10 pairs of dynamic power traces and
the corresponding temperature traces, each with 300 consecutive time
steps (30s). The testing set comprises one dynamic power trace and the
corresponding temperature trace with 15,000 consecutive time steps
(150s), generated by running the testing applications in random order
and with random core mappings to simulate a practical scenario. This
trace is much longer than the training traces and serves as an arduous
trial for the stability of the predictors under test.

5.2 Baselines for Comparison and Ablation Study
We choose three recently proposed full-chip thermal predictors, i.e.,
ESN -based [24, 50], LSTM-based [16] and U-Net-based [16, 22], as base-
lines for comparison. For the sake of fairness, we enhance the original
ESN and LSTM with our ResNet-18-based decoder described in Section

4.1 to adapt to the high resolution of temperature maps. The U-Net
based predictor is originally used for static thermal prediction and is
adjusted to be fit for transient thermal prediction by fusing the dynamic
power to the deepest features. We adopt this model as one of the base-
lines because our model, ESN and LSTM all make predictions in the
latent space and then decode the latent vectors into temperature maps.
The U-Net based predictor directly takes the present temperature map
and dynamic power as inputs and predicts the temperature map at the
next step, serving as a contrast with other models.

For the ablation study, we test two variants of our model to verify
the techniques proposed to increase stability. One is the original model
without adopting the global technique and the other without adopting
the local technique. We denote the variants as FaStTherm-w/o-global
and FaStTherm-w/o-local, respectively.

6 Experimental Results and Discussions
In this section, we will present and discuss the experimental results.
Thermal simulations are performed on a cloud server with an Intel
Xeon Platinum 8350C 2.60GHz processor (64 virtual cores). The thermal
simulation of the training dataset costs about 4 hours, while that of the
testing dataset with 15,000 time steps costs 16 hours and 27 minutes.
All of the deep learning models are implemented within a Pytorch
1.12.1 framework, and their training and testing are performed on a
single NVIDIA GeForce RTX2080Ti GPU. The training run-times are
not exceeding 3 hours for each of the models.

6.1 Main Comparison
We perform the comparison study of our model with the baselines ESN,
LSTM, and U-Net on the test trace of 15,000 consecutive time steps in
this subsection. Firstly, we inspect the average prediction time per step
for each model, as listed in Table 2. Our model shows an outstanding
prediction speed among the baselines because transient prediction is
performed in the low-dimensional linear latent space in our model.
Since the average simulation time using COMSOL is 3.948 s/step for
the test trace, the speedup of our model compared with COMSOL is
about 10,000×. We also run the simulation with the widely used open-
source numerical thermal simulator HotSpot, which does not support
nonlinear effects for transient thermal simulations. For the same system
without nonlinear effects, the average prediction time of HotSpot is
about 500 ms/step, and the average deviation from COMSOL is about 8
K. Special iteration methods have been proposed to include nonlinear
effects in the framework of HotSpot, which will lead to substantial extra
simulation time [13, 56]. The result shows that our DL-based predictor
can realize great speedup compared with HotSpot as well.

The long-term stability of the baselines and the proposed FaStTherm
is then thoroughly studied. We calculate the Mean Average Error (MAE)
of the predicted temperature map 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 against the ground truth
temperature map 𝑇𝑡𝑟𝑢𝑡ℎ at each time step 𝑡 , that is:
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(c) U-Net [16, 22]
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(d) FaStTherm-w/o-global
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(e) FaStTherm-w/o-local
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Figure 6: (a), (b), and (c) show results of the baselines for comparison study while (d) and (e) are for ablation study. (f) shows the result
of our model. The horizontal axis stands for time steps and the vertical axis stands for the Mean Absolute Error (MAE) between the
predicted temperature map and the ground truth for each time step. For each model, the first and the last 500 time steps are zoomed in
to show the effect of error accumulation at the initial stage and the final stage.

MAE𝑡 =
1

𝑚 × 𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

��𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑖 𝑗𝑡 −𝑇𝑡𝑟𝑢𝑡ℎ, 𝑖 𝑗𝑡
�� , (18)

where𝑚 and 𝑛 are the dimensions of the temperature map (88 × 64
in this work). To study the influence of error accumulation on the
predictors’ accuracy, the average values of the MAEs across the total
15,000 time steps, the first 500 time steps, and the last 500 time steps are
calculated and concluded in Table 2, respectively. It is clearly shown
that not only the average MAE of our model is the smallest among the
baselines, but also the increase of error from the first 500 time steps
to the last 500 time steps is the smallest, indicating the hint of milder

error accumulation. To quantify the long-term stability of the transient
thermal predictors, we define the survival time steps of a predictor as
the time step until which the prediction error exceeds a pre-defined
threshold for the first time [20, 22]. In our experiment, the minimum
temperature in the test trace is 318.15 K and the maximum temperature
is 418.32 K, so the full range of temperature is about 100 K. Regarding
5% of the full temperature range (5 K) as the threshold between small
and large errors [32], the survival time steps of the baseline predictors
are in the order of hundreds as shown in Table 2. In contrast, the MAEs
of the prediction results of our model keep below the 5% threshold until
15,000 time steps, which is 42-73× longer than previous studies.
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time step 10, 100, 1000, and 10000 for each predictor. (Unit: Kelvin)

To further investigate the behavior of the baseline predictors and
the proposed FaStTherm, we plot the calculated MAEs in Fig. 6, where
the first 500 time steps and the last 500 time steps are zoomed in for
more intuitive visualization of the error accumulation effect. As clearly
shown in Fig. 6(a), 6(b), and 6(c), there exists a sharp increase in error
(MAE) at the initial stage for ESN, and the same goes for LSTM and
U-Net. After that sharp increase, the error remains at a high level until
the end. Conversely, our model displays excellent long-term stability
during prediction, with no sharp increase at the initial stage and the
error remains at a low level for the whole horizon, as shown in Fig. 6(f).
As indicated by a detailed inspection of the first 500 time steps, the error
of our model goes down when reaching a local maximum, exhibiting
a behavior similar to oscillation instead of increasing monotonically.
We attribute this behavior mainly to the introduction of the global
stabilizing technique, that is, spectral normalization. The spectral nor-
malization of the dynamics matrix prevents the error in the predicted
latent vectors from divergence, thus restraining the trend of monotone
increase in the final error.

For better visualization of the above results, the ground truth tem-
perature maps, the predicted temperature maps, and the absolute error
maps at time steps 10, 100, 1000, and 10000 for each predictor are pre-
sented in Fig. 7. While the errors of the baseline predictors show an
obvious growth over time, our model remains accurate and only shows
a slight trend of increase in error.

6.2 Ablation Study
To verify the effectiveness of the proposed techniques for improving
local and global stability, we perform an ablation study and test two
variants of our model, FaStTherm-w/o-global and FaStTherm-w/o-local,
as introduced in Section 5.2. The calculated MAEs are plotted in Fig.
6(d) and 6(e) with the first and the last 500 time steps zoomed in as well.
The predicted temperature and absolute error maps are also displayed
in Fig. 7. For the variant only with the local technique and without the
global technique, FaStTherm-w/o-global, it is evident from the first 500
time steps in Fig. 6(d) that a sharp increase in the error reappears, which
is similar to the behavior of the baseline predictors studied in Section
6.1. This further verifies that the mitigation of error accumulation of

our transient thermal predictor mainly benefits from the novel spectral
normalization technique for global stabilization.

On the other hand, for the variant with only global technique and
without local techniques, FaStTherm-w/o-local, there does not exist a
sharp increase in the error at the initial stage as expected. However,
the local oscillation of the MAEs for FaStTherm-w/o-local significantly
increases in amplitude due to the lack of local stabilizing techniques,
resulting in a decrease in accuracy as indicated by the average values
of the MAEs concluded in Table 2 and occasional violations of the 5%
threshold as shown in Fig. 6(e). The results manifest that none of the
local and global stabilization techniques is dispensable to guarantee
the long-term stability of our full-chip transient thermal predictor.

7 Conclusion
In this work, we propose a novel deep learning model, called FaStTherm,
for fast and stable full-chip transient thermal prediction considering
nonlinear effects including temperature-dependent leakage power and
thermal conductivity. We focus on the long-term stability of the pro-
posed model and put forward a set of techniques to mitigate the effect
of error accumulation. Our model learns low-dimensional linear dy-
namics in the latent space, which enables 10,000× speedup for transient
thermal prediction compared with commercial simulator COMSOL. On
this basis, we further propose to use unrolled training and noise injec-
tion to enhance local stability and spectral normalization to enhance
global stability. Experimental results on a commercial chip design and
real-world workloads show that our model exhibits excellent long-term
stability. The prediction error (in MAE) of FaStTherm stays below 5% of
the full temperature range (5 K) for more than 15,000 consecutive time
steps, which is 42-73× longer than previous studies. In the future, we
will investigate how to further enhance the long-term stability of our
full-chip transient thermal predictor, and extend it to more complicated
and diversified scenarios.
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