
Orthrus: Dual-Loop Automated Framework for
System-Technology Co-Optimization

Yi Ren1,2,†, Baokang Peng3,†, Chenhao Xue1, Kairong Guo1, Yukun Wang4, Guoyao Cheng3,
Yibo Lin1,5,6, Lining Zhang3,5,*, Guangyu Sun1,5,6,*

1School of Integrated Circuits, 2School of Software and Microelectronics, Peking University, Beijing, China
3School of Electronic and Computer Engineering, Peking University, Shenzhen, China

4School of Electronics Engineering and Computer Science, Peking University, Beijing, China
5Institute of Electronic Design Automation, Peking University, Wuxi, China

6Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
{yiren20, baokangpeng}@stu.pku.edu.cn, {eelnzhang, gsun}@pku.edu.cn

Abstract—With the diminishing return from Moore’s Law, system-
technology co-optimization (STCO) has emerged as a promising approach
to sustain the scaling trends in the VLSI industry. By bridging the gap
between system requirements and technology innovations, STCO enables
customized optimizations for application-driven system architectures.
However, existing research lacks sufficient discussion on efficient STCO
methodologies, particularly in addressing the information gap across
design hierarchies and navigating the expansive cross-layer design space.
To address these challenges, this paper presents Orthrus, a dual-loop
automated framework that synergizes system-level and technology-level
optimizations. At the system level, Orthrus employs a novel mech-
anism to prioritize the optimization of critical standard cells using
system-level statistics. It also guides technology-level optimization via
the normal directions of the Pareto frontier efficiently explored by
Bayesian optimization. At the technology level, Orthrus leverages system-
aware insights to optimize standard cell libraries. It employs a neural
network-assisted enhanced differential evolution algorithm to efficiently
optimize technology parameters. Experimental results on 7nm technology
demonstrate that Orthrus achieves 12.5% delay reduction at iso-power
and 61.4% power savings at iso-delay over the baseline approaches,
establishing new Pareto frontiers in STCO.

Index Terms—system-technology co-optimization, standard cell library,
circuit analysis

I. INTRODUCTION

Fabless-foundry business model serves as a cornerstone of modern
VLSI industry, where fabless companies specialize in circuit design
while foundries focus on manufacturing. The division of labor
narrows the optimization objectives to specific domains, thereby fa-
cilitating decades of rapid industrial advancement. Unfortunately, the
fabless-foundry model is now facing fundamental limitations. With
design methodologies and associated automation tools reaching high
maturity, further gains from design-level optimizations alone yield
diminishing returns. Additionally, manufacturing process scaling is
approaching its physical limits. To sustain the continued growth of the
VLSI industry, deeper collaboration between fabless companies and
foundries is becoming imperative, requiring a shift towards system-
technology co-optimization (STCO) to unlock new performance and
efficiency gains. According to Imec’s roadmap [1], STCO is expected
to play an increasingly vital role, particularly for application-driven
system architectures.

Conceptually, STCO aims to integrate multiple design hierar-
chies listed in Fig. 1(a), encompassing architecture design, logic

This work is supported in part by Beijing Natural Science Foundation
(Grant No. L243001), National Natural Science Foundation of China (Grant
No. 62032001, 62034007), National Key Research and Development Program
of China (Grant No. 2023YFB4402204, 2021ZD0114702), and 111 Project
(B18001).

†Co-first authors. *Corresponding authors.

Architecture Design

Logic Synthesis

Physical Design

PDK Development

Technology Development

Architecture Design
Logic Synthesis
Physical Design

PDK Development
Technology Development

(a) (b)

Fig. 1. (a) Full-stack VLSI flow. (b) Our dual-loop STCO.

synthesis, physical design, process design kit (PDK) development,
and technology development. Each individual optimization level has
been extensively investigated in prior research. At the architectural
level, design space exploration (DSE) has been studied on various
computing platforms, including CPU [2], [3], AI accelerators [4],
[5], high-level synthesis [6], [7], and beyond. Similarly, numerous
algorithms have been proposed to optimize the tunable parameters
of logic synthesis tools and physical design tools [8]–[10]. At the
technology level, considerable research has focused on optimizing
process parameters to enhance intrinsic device performance [11]–
[13] and standard cell performance [14], [15]. In parallel, numerous
studies have concentrated on improving the efficiency of standard
cell characterization [16], [17] and the generation of standard cell
layouts [18], [19].

Unfortunately, despite extensive research on optimizations at in-
dividual design levels, the academic community lacks a systematic
discussion of holistic optimization across the entire design hierarchy.
This gap limits the translation of STCO’s theoretical benefits to
practical performance improvements.

On the one hand, a straightforward approach involves integrating
multiple design hierarchies into a unified design space, where all
relevant parameters are jointly optimized to maximize end-to-end
quality-of-results (QoR). Although this methodology shows promise
for joint optimization of adjacent design levels, such as system
level DSE [20]–[22] and design and technology co-optimization
(DTCO) [23], [24], it suffers from fundamental scalability limitations
when extended to the full STCO optimization chains: Firstly, a full-
system evaluation using the complete design flow may take hours
to days, rendering iterative optimization impractical; Secondly, the
resulting high-dimensional design space exceeds the capabilities of
existing DSE algorithms and cannot be efficiently navigated.

On the other hand, we can retain the original design hierarchy
and carefully coordinate their interactions to achieve overall benefits.
However, establishing effective synergy across design levels remains
a fundamental challenge. In the context of STCO, the primary
challenge lies in bridging the gap between system-level performance,
power, and area (PPA) metrics and technology innovations. Without

TABLE I
CROSS-LAYER DESIGN SPACE OF ORTHRUS.

ID Level Parameter Description Candidate Values Default Value

1 Architecture ct_type compressor tree type WT,DT WT
2 cpa_type carry-propagate adder type SK,KS,BK SK

3
Logic

Synthesis

clock_period_ns target clock period range(0.4,1.0) 0.5
4 syn_generic_effort generic synthesis effort low,medium,high medium
5 syn_map_effort technology mapping effort low,medium,high high
6 syn_opt_effort post-mapping optimization effort none,low,medium,high none

7

Physical
Design

place_utilization floorplan utilization ratio range(0.5,0.9) 0.8
8 place_glb_cong_effort effort for relieving congestion in global placement auto,low,medium,high auto
9 place_glb_timing_effort effort for timing-driven global placement medium,high medium
10 place_glb_clk_power_driven enable clock tree power optimization in global placement true,false true

11

Technology

phig_n nmos gate workfunction range(4.302,4.312) 4.307
12 phig_p pmos gate workfunction range(4.8631,4.8731) 4.8681
13 hfin_nm height of fin range(28,36) 32
14 tfin_nm thickness of fin range(5.8,7.2) 6.5
15 lg_nm horizontal length of the GATE layer range(17,23) 20
16 lext_nm horizontal distance between the gate and the SDT layer 4,5,6 5
17 lct_nm horizontal length of the SDT layer range(19,29) 24

visibility into standard cell criticality or well-defined guidance, op-
timization at the technology level cannot effectively mitigate system
performance bottlenecks. While prior work has explored area reduc-
tion through merging common standard cell combinations [25], [26],
it remains an open problem to jointly address timing optimization,
power reduction, and achieving intricate trade-offs among competing
PPA objectives.

To address the above challenges, this paper introduces Orthrus, an
automated framework to enable system-technology co-optimization,
as shown in Fig. 1(b). Orthrus employs two synergistic optimization
loops: The system loop identifies Pareto-optimal parameters and
collects data for directing technology optimization. The technology
loop leverages system-level guidance to selectively optimize process
parameters and standard cell layouts. The inter-loop direction ana-
lyzes data from the system loop and guides the technology loop.

The main contributions of this paper are as follows:
• We propose Orthrus, an automated STCO framework equipped

with synergetic optimization loops.
• We propose a novel coordination mechanism that synergizes the

system loop and technology loop by analyzing cell contributions,
subcircuit frequencies, and PPA optimization directions.

• We propose a system optimization loop that leverages multi-
objectives Bayesian optimization to efficiently identify the Pareto
frontier while collecting data.

• We propose a technology optimization loop that leverages system-
level guidance and employs a neural networks-assisted differential
evolution algorithm to efficiently optimize technology parameters.

• Orthrus achieves a 33.2% PPA hypervolume improvement under
advanced 7nm technology, delivering 12.5% delay reduction at
iso-power and 61.4% power savings at iso-delay.
The remainder of this paper is organized as follows: Section II

provides preliminaries on graph matching and problem formulation.
Section III details the Orthrus framework. Section IV presents the
evaluation results. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Graph Matching

Graph matching is a fundamental problem concerned with estab-
lishing correspondences or identifying structural similarities between
graphs. It finds broad application in domains such as computer
vision, pattern recognition, and circuit design. Classical approaches

OD
Gate
GCut
LISD
LIG
V0

M1
V1
M2
V2
M3
BOUNDARY

(a)

(b) (c)

Fig. 2. Layout of fused full-adder circuit (38 transistors): (a) Single-row
configuration (num_rows = 1) with 31 CPP width; (b) Two-row folded layout
(num_rows = 2) with 16 CPP width; (c) Three-row folded arrangement
(num_rows = 3) with 12 CPP width.

to graph matching include backtracking, depth-first search (DFS),
and constraint-based pruning [27]. In Electronic Design Automation
(EDA), standard cell netlists are commonly represented as graphs,
making graph matching techniques highly relevant. Subgraph iso-
morphism detection, a key aspect of graph matching, plays a crucial
role in tasks such as Layout vs Schematic (LVS) verification and
positioning of Integrated Clock Gating (ICG) cells [28]. Specifically,
a standard cell netlist G is isomorphic to netlist H if there exists a
bijection mapping between their standard cell sets that preserves cell
interconnections. Subgraph isomorphism detection aims to find all
subgraphs within netlist G that are isomorphic to an arbitrary query
subgraph H ⊆ G.

The discovery of isomorphic subgraphs enables various optimiza-
tion opportunities, including standard cell merging. Prior works such
as AutoCellLibX [25] and TeMACLE [26] propose to merge frequent
subcircuits for area reduction, utilizing the blank space within simple
cells. However, these approaches focus solely on area reduction,
neglecting cell delay and power consumption. As shown in Fig. 2,
Orthrus overcomes this limitation by incorporating multirow standard
cell layout synthesis, which shortens the critical net length for
improved delay and lower power dissipation [29].

B. Problem Formulation

Orthrus employs a fully automated design flow that integrates EDA
tools across multiple design levels. These tools offer a wide range of
tunable parameters, creating an enormous cross-layer design space.
TABLE I summarizes the target design hierarchy and its associated
parameters, detailed as follows:
• Architecture: In Orthrus, we validate the efficacy of STCO method-

ology on application-driven system architectures, as customized

TABLE II
ADOPTED STANDARD CELLS FROM ASAP7 6T LIBRARY

Category Standard Cells Row Count

Basic Cell

AND2x2, AND2x4, AND3x1, NAND2x1, NAND2x2, NAND3x1,

1OR2x2, OR2x4, OR3x1, NOR2x1, XNOR2x2, XOR2x2
INVx1, INVx2, INVx4, INVx8, BUFx2, BUFx4, BUFx8

MAJx1, MAJx2, AOI21x1, AO21x1, AO22x1, OA21x1, OA22x1

Fused Cell Extracted from frequent subcircuit patterns {1,2,3}

design optimization for these architectures is expected to yield
substantial practical benefits. Specifically, Orthrus targets the
multiply-accumulator (MAC) arrays, a key component in AI
accelerators that play a crucial role in determining the PPA of
the entire system [30]. We employ an 8 × 8 systolic array with
MAC units interconnected via pipeline registers. Each MAC unit
incorporates a parallel multiplier architecture, comprising a partial
product generator, a compressor tree, and a carry-propagate adder.
We select compressor tree from Wallace Tree (WT) and Dadda
Tree (DT), and carry-propagate adder from Sklansky adder (SK),
Kogge-Stone adder (KS), and Brent-Kung adder (BK). An in-
house RTL generator is developed to translate the MAC array
configuration into Verilog HDL codes.

• Logic Synthesis: The logic synthesis tool converts RTL imple-
mentations into standard cell netlists. Orthrus employs Cadence
Genus for logic synthesis and adjusts the target frequency as well
as synthesis efforts.

• Physical Design: The physical design tool places and routes the
standard cell netlists into a manufacturable circuit layout. In
Orthrus, we employ Cadence Innovus for physical implementation.
We mainly consider the design options at the global placement
stage, since these options demonstrate a significant impact on PPA
outcomes [10].

• Technology: To explore the parameters involved in technology
optimization, Orthrus utilizes a customized ASAP7 open-source
PDK [31] as an exemplary demonstration platform. We employ
the calibrated model card from ASAP7 as the baseline model and
adjust several model instance parameters. Besides, we adjusted
the layout-related parameters of the standard cell and ensured
that these adjustments satisfied the constant CPP requirement, as
defined by the following equation:

CPP = Lg + 2 ∗ Lext + Lct (1)

For the cell layout, M1 and M3 are configured with 1D horizontal
routing, while LISD and M2 use 1D vertical routing. For each stan-
dard cell, we validate the layout using Mentor Calibre to perform
Design Rule Check (DRC), LVS, and Parasitic Extraction (PEX)
checks, and extract the corresponding parasitics. Additionally, we
use Cadence Liberate for delay and power characterization of
the standard cells, generating the timing library (.lib). Cadence
Abstract is employed to generate the physical library (.lef).
Definition 1 (Tunable Parameter Design Space) A tunable param-

eter configuration p is defined as a combination of candidate values
given in TABLE I. The feature vector p = (parch,pls,ppd,ptech)
can be decomposed into multiple segments, each corresponds to the
tunable parameters of a specific design level. The complete parameter
design space Dparam constitutes the set of all feasible parameter
configurations.

In addition to adjusting the tunable parameters of EDA tools,
Orthrus investigates the layout customization of individual standard
cells. As illustrated in TABLE II, Orthrus selects several fundamental
standard cells from ASAP7 to establish the initial standard cell

library, and extend the library by fusing subcircuits into new standard
cells. We develop a C++ program for the automatic generation
of multi-row standard cell layouts following [29], abbreviated as
StdGen. In a nutshell, given the SPICE netlist of specific standard
cells and target number of rows, StdGen systematically explores
transistor placement while considering intra-cell routability, followed
by SAT-based routing to ensure compliance with design rules. The
generated layouts undergo DRC, LVS, PEX, and characterization,
yielding optimized standard cells that replace the original ones in the
subsequent design stages.

Definition 2 (Cell Layout Design Space) Given standard cell c,
let L(c,Rc) denote the set of c’s feasible layouts whose row count
falls in set Rc. For a standard cell library C given in TABLE II, the
cell layout design space Dcell =

∏
c∈C L(c,Rc) is defined as the

Cartesian product of feasible layout sets for all standard cells in C.
Through joint optimization of the tunable parameters and standard

cell layouts, Orthrus targets system-level improvements in PPA.
Typically, these objectives are conflicting, where advancing one may
degrade others. At the cell level, reducing the threshold voltage
improves latency while increasing leakage power, and transistor width
expansion enhances drive strength at the expense of a larger area.
These trade-offs propagate to the system level, where performance
gains incur either increased power dissipation or area overhead. In this
context of multi-objective optimization, the optimal solutions form a
Pareto frontier, where no PPA metrics can be further improved with-
out deteriorating others. Since the true Pareto set cannot be obtained
within limited trials in practical STCO scenarios, our objective is to
advance the explored Pareto frontier, which is quantitatively measured
by hypervolume improvement w.r.t. a reference point. Formally, our
problem formulation and the related terminologies are defined as
follows:

Definition 3 (Performance) The performance is defined as the
maximum attainable frequency of the MAC array, which is determined
by the maximum delay of all timing paths.

Definition 4 (Power) The power is defined as the average power
dissipation when the MAC array operates at the maximum attainable
frequency.

Definition 5 (Area) The area is defined as the size of the floorplan
in which the MAC array is placed and routed.

Definition 6 (Pareto Frontier) Let objective vector y denote the
PPA metrics. y is said to be Pareto-dominated by y′ (denoted as
y ⪯ y′) if the following condition satisfies:

∀i ∈ [1, 3], y′[i] ≤ y[i];

∃j ∈ [1, 3], y′[j] < y[j].
(2)

Given a set of objective vectors Y , its Pareto frontier is defined as a
subset Y∗ = {y|y ̸⪯ y′, ∀y′ ∈ Y}.

Definition 7 (Hypervolume) Given a set of objective vectors Y
and a reference point yref that is strictly dominated by all y ∈ Y ,
the hypervolume (HV) is calculated as the Lebesgue measure of the
dominated space:

HV (Y∗,yref) =

∫
R3

1[∃y′ ∈ Y∗,y′ ⪯ y ⪯ yref] dy (3)

Problem 1 (System-Technology Co-Optimization) For subset X ⊂
Dparam × Dcell sampled from the joint design space of tunable
parameters and standard cell layouts, its corresponding set of PPA
metric Y can be obtained through the VLSI flow. Given limited
invocation of the VLSI evaluation flow, the objective of Orthrus is to
obtain X such that the hypervolume HV (Y,yref) can be maximized.

Inter-Loop
Direction

System
Loop Design

System
Tools

System
Optimizer

Base PDK

System
Parameters

Base PDK

PPAs Cell PPAs

Technology
Tools

Technology
Parameters

Technology
Optimizer

Cell Weight

PPA Weight
Optimal Tech.

Parameters
Optimal Sys.
Parameters

Cell Data

Subcircuit
Weight

Analyzer

Optimal Sys.
Parameters

Optimal Tech.
Parameters

Design System
Tools

Technology
Tools

Optimial
PDK

Base PDK

Optimal PPA

End-to-End
Evaluation

Technology
Loop

Fig. 3. Overview of Orthrus. The system loop and technology loop search for optimal parameters at their respective levels. The inter-loop direction analyzes
system loop data to guide technology loop optimization. End-to-end evaluation provides the PPA of optimal parameters.

Algorithm 1: Bayesian Optimization
Input : Parameter Space D, Maximum Iteration tmax

Output: Pareto frontier Y∗ and corresponding Parero set X ∗

1 Initialize X0 via random sampling from D;
2 Evaluate Y0 via toolchain;
3 for t← 1 to tmax do
4 Train surrogate model M on (Xt−1,Yt−1);
5 Select xt = argmaxα(x);
6 Evaluate yt via toolchain;
7 Update Xt = Xt−1 ∪ {xt}, Yt = Yt−1 ∪ {yt};
8 return Pareto frontier Y∗ and corresponding Parero set X ∗

III. METHODOLOGY

A. Framework Overview

The overview of the Orthrus framework is shown in Fig. 3. First,
the system loop explores the system design space using Bayesian
optimization, identifies Pareto-optimal parameters, and collects cell
data (Section III-B). Next, the inter-loop direction analyzes this
data through a novel mechanism to prioritize critical cells, suggest
fusion candidates, and guide technology optimization (Section III-C).
Then, the technology loop optimizes technology parameters based on
these system-aware insights via a neural network-assisted heuristic
algorithm (Section III-D). Finally, end-to-end evaluation provides the
final PPA results of these optimal parameters.

B. System Loop

The proposed system loop framework, as shown in Fig. 4, aims
to identify Pareto-optimal parameters and collect cell data for di-
recting technology optimization. Bayesian Optimization (BO) [32]
is adopted to navigate high-dimensional parameter spaces efficiently,
overcoming the computational infeasibility of brute-force sampling in
multi-objective optimization. By synergizing surrogate modeling with
automated design toolchains, the framework balances exploration of
under-sampled regions and exploitation of known high-performance
solutions, while efficiently correlating system parameters with PPA.

Bayesian Optimization. The BO algorithm iteratively refines
parameter selections using a surrogate model M and an acquisition
function α(·). Let Xt = {xi}ti=1 and Yt = {yi}ti=1 denote the
evaluated parameters xi and their objective vectors yi. At each
iteration, the surrogate model approximates the posterior distribution
of y, and the acquisition function α(x) prioritizes candidate points.
The pseudocode is shown in Algorithm 1.

Initialization and Acquisition Function. The framework initial-
izes with random sampling to ensure spatial coverage of the pa-

Baysian Optimization

Design RTL
Generator

Synthesis
Tool

Place & Route
Tool

PPAs

Cell Data

Optimal
Parameters

Sampled
Parameters

Parameter
Space

PRFEHVI
Power

HVI

Delay

Fig. 4. System loop uses EHVI and PRF for Bayesian optimization, along
with an EDA toolchain to extract PPA metrics and cell data.

rameter space. Subsequent iterations employ Expected Hypervolume
Improvement (EHVI) [33] as the acquisition function to maximize
hypervolume gains on the Pareto frontier. For a candidate x, EHVI
quantifies the expected improvement over the current Pareto frontier
Y∗:

EHVI(x) = E [max (0, HV (Y∗ ∪ y(x))−HV (Y∗))] , (4)

where HV (·) is the simplified notion for HV (·,yref), and the ex-
pectation integrates over the surrogate model’s predictive distribution.

Surrogate Model. To avoid incompatibility or high compu-
tational complexity in Bayesian optimization, Probabilistic Ran-
dom Forest (PRF) [34] serves as the surrogate model, extending
standard random forests by outputting Gaussian distributions for
each objective. For an ensemble of B regression trees, PRF pre-
dicts the mean µ(x) = 1

B

∑B
b=1 µb(x) and variance σ2(x) =

1
B

∑B
b=1(µb(x) − µ(x))2 for each objective. This probabilistic for-

mulation enables uncertainty-aware EHVI computation, crucial for
balancing exploration-exploitation trade-offs.

EDA toolchain. The toolchain integrates three stages: RTL Gen-
erator synthesizes parameterized hardware descriptions, Synthesis
Tool maps RTL to gate-level netlists, and Place & Route Tool
generates physical layouts and reports the PPA y for BO. Cell
data—extracted from the final netlist—includes the timing of critical
paths and power/area of each cell, forming the database for inter-
loop analysis. This closed-loop system automates parameter-to-PPA
translation, enabling system-aware technology optimization.

C. Inter-Loop Direction

This section presents the coordination mechanism that synergizes
system loop and technology loop. As shown in Fig. 3, Orthrus
analyzes the post-routing netlists alongside corresponding system-
level PPA metrics to guide technology optimization. The resulting

Delay

Power

Direction

Pareto Frontier

MAJ

XOR

XOR

Path 1

Path 2

(b)

(c)

B

A

C

Cell

Delay/Power(a)

MAJ XOR BUF

A

A

A

Y

A

A

Y

A

A

Y

n0
n1
n2

n3

n4

n5

n0

n1

n2
n3

n5

n4

A/MAJ/Y

A/XOR/Y

A/MAJ/Y

A/XOR/Y

A/MAJ/Y

A/XOR/Y

A/XOR/Y

(d) input internaloutput

Fig. 5. Inter-loop analysis. (a) Per-cell delay/power contributions. (b) PPA
directions on Pareto frontier. (c) Per-cell critial timing path. (d) Standard cell
netlists modeled with net-centric directed acyclic graph (DAG).

inter-loop direction consists of three key components: (1) the PPA
contribution of each standard cell type; (2) the occurrence frequency
of cell combinations; (3) the optimization direction for specific
system-level parameter configurations.

In the following subsections, we will introduce the details of each
type of inter-loop direction.

Cell Contribution Analysis. As shown in Fig. 5(a), we quantify
the contribution of each cell to system performance and power
consumption, which enables prioritized optimization on critical cells.
Our study focuses on power and timing impact, considering that
cell area remains unchanged after process parameter tuning and cell
layout exploration.

The power contribution of standard cell c can be derived from
its aggregate power consumption divided by the total system power.
Formally, given a post-routing standard cell netlist G, the power
contribution of c is calculated by:

wpower
c =

∑
g∈G power(g) · 1[Type(g) = c]

power(G) (5)

The timing contribution of standard cell c is determined through
path-based analysis, where cells appearing more frequently on critical
timing paths are considered to have a greater impact on system-level
timing performance. The rationale stems from the observation that
such cells are either essential components of timing-critical functional
modules or favored by synthesis tools to mitigate timing violations.
In either case, optimizing these standard cells can effectively enhance
overall performance. To quantify the timing contribution of cell type
c, we first compute the timing contribution of each individual cell
instance g (Equation (6)), then derive the aggregated contribution
for c by averaging the score across all corresponding instances
(Equation (7)).

wdelay
g = exp(λ ·max{delay(p) | g ∈ p, p ∈ P}) (6)

wdelay
c =

∑
g∈G wdelay

g · 1[Type(g) = c]∑
g∈G wdelay

g

(7)

In Equation (6), a timing path p is a signal route across the cell netlist,
as illustrated in Fig. 5(c). The set of all timing paths is denoted as P .
The timing path delays are obtained using the static timing analysis
engine within Innovus. Conceptually, the contribution of standard
cell instance g diminishes exponentially with larger quantity and
greater criticality of competing timing paths. The hyperparameter λ

Algorithm 2: Frequent Subcircuit Mining
Input : Netlist G = (VG, EG), max depth dmax, max output

number omax, max input number imax

Output: Subgraph occurence count M : Σ∗ 7→ N
1 M ← {s 7→ 0 | ∀s ∈ Σ∗};
2 forall VH ⊆ VG, |VH | ≤ omax do

/* Explore subcircuits using DFS. */
3 VP ← {v ∈ VG | ∃u ∈ H, v can reach u in G};
4 P ← G[VP] // Induced subgraph
5 SH ← DFS(P, dmax, imax);

/* Count subcircuit patterns. */
6 forall S ∈ SH do
7 s← CanonicalRepr(S);
8 M [s]←M [s] + 1;

9 return M ;

is introduced to modulate the weighting mechanism’s sensitivity to
competitive effects.

Subcircuit Analysis. In Orthrus, we propose to synthesize multi-
row standard cells for frequently occurring cell combinations, aiming
to improve system-level PPA. A customized subgraph isomorphism
detection algorithm is employed to identify these common cell
combinations.

Before diving into algorithmic details, we first describe the graph
construction process. As illustrated in Fig. 5(d), we employ a net-
centric representation to model the standard cell netlists. Specifically,
a combinatorial standard cell netlist can be represented as a directed
acyclic graph (DAG). The vertices correspond to inter-cell nets and
are categorized into three types (Input/Output/Internal).
Edges represent intra-cell connections and are annotated with the
cell type and associated I/O pins. For netlists that contain sequential
elements (e.g. registers and latches), we partition the design into
multiple combinatorial subcircuits and apply the graph matching
algorithm independently.

Algorithm 2 outlines the frequent subcircuit mining process. In a
nutshell, for netlist G = (VG, EG) represented with net-centric DAG,
the algorithm systematically explores all connected subcircuits within
a bounded size and records the occurrence frequency of subcircuit
patterns. To ensure tractability, we impose the constraints that candi-
date subcircuit S ⊆ G must have input net count NumIn(S) ≤ imax,
output net count NumOut(S) ≤ omax, and logic depth Depth(S) ≤
dmax. In practice, we set imax = 4, omax = 2, dmax = 3,
respectively. Each traversed subcircuit S is hashed into a unique
key using an established colored DAG hashing method [35]. We
record the frequency of its corresponding subcircuit pattern via bucket
counting.

PPA Direction Analysis. As illustrated in Fig. 5(b), the direction
of technology optimization is derived from the geometric properties
of the Pareto frontier identified in the system loop. Given the compu-
tational overhead of iteratively evaluating the technology toolchain,
we formulate a single-objective optimization for the technology loop
by weighting the PPA metrics. Specifically, for each Pareto-optimal
point, we calculate the normal vector to the local Pareto frontier using
Singular Value Decomposition (SVD) on its k-nearest neighbors Nk.
This vector defines the trade-off sensitivity between delay and power,
expressed as v⊤

2 = [−Wdelay,−Wpower], the last row of V ⊤:

V ⊤ =

[
v⊤
1

v⊤
2

]
, Nk = UΣV ⊤. (8)

Additionally, we flip the direction if it is far from the origin. As shown

Cell
Weight

PPA
Weight

Subcircuit
Weight

Optimizer
(NN + EnhancedDE)

Optimal
Parameters

CDL

Calibre
DRC/LVS/PEX Layout (GDS2)

AbstractLiberate

Modelcard RC Netlist

StdGen

Physical Library
(.lef)

Timing Library
(.lib)

Cell PPAs

NN Surrogate Model
Params

…

…

…

Obj

EnhancedDE

+

Initialization Evaluation

New
Population

Crossover

MutationAdd

Technology
Parameters

Fig. 6. Technology loop diagram, utilizing an EDA toolchain to extract PPA
metrics for each standard cell, accepting weight inputs, employing neural
network as a surrogate model, and using EnhancedDE as the optimizer to
output the optimal parameters.

Technology

Parameters Objective

Input

Layer

Output

Layer

Hidden

Layer1

Hidden

Layer2

0 500 1000 1500 2000

-0.6

-0.2

0.2

0.6

1.0

R
2
 S

co
re

Epoch

 Train Score

 Validation Score

(a) (b)

lg

tfin

hfin

lext

Fig. 7. (a) Schematic diagram of the neural network surrogate model;
(b) R2 scores for the training and validation sets as a function of epochs
during the neural network training process.

in Fig. 5(c), with this direction, the optimization balances power and
delay at the balanced point A, while pushing the delay to the limit
at the low-delay point B.

D. Technology Loop

The proposed technology loop framework, as illustrated in
Fig. 6, aims to optimize technology parameters for system-level
performance. The framework consists of three primary steps:
CellSimulate, PPADirected, and Optimizer. These steps
enable efficient simulation and optimization of technology parameters
for system-level design.

The CellSimulate function takes as input the parameters at
the Technology level from TABLE I and outputs the PPA of each
standard cell. The simulation process can be broken down into the
following stages:
• Parameter Adjustment: The input parameters are used to adjust

the circuit netlist, model card, and StdGen configuration. This
ensures that the simulation aligns with the target technology
parameters.

• Layout Generation: The StdGen function takes the configuration
parameters and generates the corresponding standard cell layouts.
The generated layouts are then validated through DRC, LVS, and
PEX to verify the correctness of the layout and extract the parasitic
netlists.

• Library Generation: Using the validated layouts, the physical li-
brary (.lef) is created. Additionally, the extracted parasitic netlists,
along with the model card, are used to generate the timing library
(.lib), which contains the necessary delay and power characteriza-
tions for each standard cell. This results in the power, delay, and
area information for each standard cell, which corresponds to the
output of the CellSimulate function.

Algorithm 3: Neural Network-Assisted EnhancedDE for
Technology Optimization.

Input : Initial samples N , NN model training epochs E,
maximum iteration for enhancedDE Imax, DE
generation ngen, population size spop, top size stop,
mutation factor MF , penalty factor PF , penalty
threshold PT , crossover probability CR, historical data
Xhis, Chis

Output: Optimal parameters x∗

/* Phase 1: Initial Sampling */
1 Xinit ← LHS(N) // Latin Hypercube Sampling
2 Cinit ← CellSimulate(Pinit) // standard cell

simulation
3 (Yinit,Yhis)← PPACalculation(Cinit,Chis);
4 D← (Xinit,Cinit,Yinit) // Initial dataset
5 D← (D.X ∪Xhis,D.C ∪Chis,D.Y ∪Yhis);
6 for i = 1→ Imax do

/* Phase 2: Surrogate Model Construction */
7 NNSurrogate(·)← TrainMLP(D, epochs = E);

/* Phase 3: EnhancedDE Optimization */
8 P← InitPopulation(spop,D.X);
9 T← ∅ // Elite solution archive

10 for j = 1→ ngen do
11 forall x ∈ P do
12 if rand() < 0.2 and |T| < 2 then
13 a← RandomSelect(P \ {x});
14 b, c← RandomSelect(T, 2);

15 else
16 a, b, c← RandomSelect(P \ {x}, 3);
17 m← a+MF × (b− c) // mutant
18 t← CrossOver(x,m,CR) // trial
19 fbase ← NNSurrogate(t);
20 dmin ← MinDistance(t,T ∪P);
21 fpenalized ← fbase + PF × max(0, PT − dmin);
22 if fpenalized < fitness(x) then
23 P.update(x, t, fpenalized);

24 T← UpdateElites(T ∪ {t}, PT)

/* Phase 4: Design Verification & Update */
25 Xcandidates ← SelectDiverse(T, stop);
26 Ctrue ← CellSimulate(Xcandidates);
27 Ytrue ← PPACalculation(Ctrue);
28 D← (D.X ∪Xcandidates,D.C ∪Ctrue,D.Y ∪Ytrue);

/* Phase 5: Final Parameter Extraction */
29 k∗ ← argmin(D.Y);
30 x∗ ← D.X[k∗];
31 return x∗;

The PPACalculation function uses PPA weights along with the
delay and power of each cell and returns the corresponding weighted
PPA objective y for the technology loop. y is computed according
to the formula in Equations (9)-(11). First, the normalized cell
delay and power are weighted by their respective contribution (see
cell contribution analysis in Section III-C). Normalization references
original ASAP7 cells for those from the initial library, and the
initial single-row version for the fused cells. Next, system-level
direction weights aggregate delay and power metrics to evaluate the
optimization objective (see PPA direction analysis in Section III-C).

Delay(C) =
∑
c∈C

wdelay
c × normdelay(c) (9)

Power(C) =
∑
c∈C

wpower
c × normpower(c) (10)

P
re

d
ic

te
d

 V
a
lu

e
(N

o
rm

a
li

ze
d

)

True Value (Normalized)

Train set R2：0.9988

P
re

d
ic

te
d

 V
a
lu

e
(N

o
rm

a
li

ze
d

)

True Value (Normalized)

Validation set R2：0.9953

(a) (b)

Fig. 8. Comparison between surrogate model predictions and ground truth
values: (a) Training set performance showing strong agreement (R2 =
99.88%), with data points closely distributed along the diagonal trend line;
(b) Test set performance (20% holdout) demonstrating model generalizability,
maintaining good correlation (R2 = 99.53%). Dashed lines represent perfect
prediction (y = x).

y = Wdelay ×Delay(C) +Wpower × Power(C) (11)

The Optimizer step, detailed in Algorithm 3, involves lever-
aging a neural network as a surrogate model to reduce reliance on
the time-consuming CellSimulate function, while employing an
Enhanced Differential Evolution (EnhancedDE) algorithm to opti-
mize the technology parameters. The specific process is outlined as
follows:
• Initialization Sampling: The initialization sampling employs Latin

Hypercube Sampling (LHS) for broad parameter space coverage,
with historical values from the previous technology loop integrated
to expand the neural network’s training dataset. This helps avoid
the selection of optimal solutions that overlap with historical
solutions, improving the diversity of the sampling process.

• Neural Network Surrogate Model: We employ a fully connected
neural network (as shown in Fig. 7(a)) to predict the objective
y based on normalized input parameters, as listed in TABLE I.
The model’s output is the predicted objective value ŷ. The loss
function is defined as follows:

Loss = MSE(ŷ − y) =
1

n

n∑
i=1

(ŷi − y)2 (12)

To prevent overfitting, we use batch processing for the training set
and incorporate L2 regularization. The training and testing dataset
variations with respect to the number of epochs are shown in
Fig. 7(b), and the validation results for the training and testing
datasets are shown in Fig. 8. The R2 value for the training
dataset is 99.88%, for the testing dataset is 99.53%. The results
demonstrate that the model effectively predicts the target values
with a high degree of accuracy.

• Differential Evolution Optimization: The Optimizer uses an
EnhancedDE algorithm, which builds on traditional differential
evolution and adds a distance penalty to improve the diversity of
the solution. While the neural network surrogate model accelerates
the evaluation process, the EnhancedDE algorithm utilizes the
population search strategy to perform extensive exploration of
the parameter space, ultimately identifying the optimal set of
solutions. To further ensure solution diversity, a distance penalty is
introduced. This penalty evaluates the Euclidean distance between
candidate solutions and existing solutions, checking if the distance
exceeds a predefined penalty threshold (PT). If the candidate
solution fails to meet the distance requirement, a penalty is applied,
discouraging the selection of similar solutions and promoting
diversity in the final batch of optimal solutions. Upon completion
of one iteration, the optimal solutions returned are evaluated using
the CellSimulate and PPADirected functions to obtain the

true target value, Ytrue, which then updates the dataset D. Once
the iteration reaches the predefined Imax, the optimal parameter
vector x∗ corresponding to the best target value is returned.
The Optimizer is responsible for adjusting both technology

parameters ptech and cell-specific hyperparameters num_rows.
Since the latter presents more complexity, we hereby make further
elaborations on this process. Given a base standard cell library derived
from the original ASAP7 library, Orthrus selects the Next most
frequent subcircuit patterns for cell fusion (detailed in subcircuit
analysis from Section III-C). The selected subcircuits are assigned to
an initial cell row count num_rows = 1 and are incorporated into
the library extension. Whereas the hyperparameter of the remaining
subcircuit patterns is permanently assigned to 0, meaning that these
subcircuits will not be fused and added to the library. As discussed in
Section II-A, num_rows serves as a key hyperparameter for fused
cells with numerous transistors, which balances area compactness and
critical path length. In the subsequent invocation of technology loop,
we adjust num_rows of the selected fused cells between 1 and 3 to
explore this trade-off. For all standard cells adopted from the initial
ASAP7 library, num_rows is fixed to 1 to reduce the complexity of
the surrogate model.

IV. EVALUATION

A. Setup

Platform. The automated STCO framework runs on a Linux-
based platform with an Intel(R) Xeon(R) Gold 6342 CPU @
2.80GHz and 1536 GiB of memory. Cadence Genus 19.12-s121 1
and Cadence Innovus v21.14-s109 1 are used to synthesize, place,
and route every sampled design. Cadence Liberate 19.2.1.215, Ca-
dence Abstract 6.1.8, Cadence Spectre 18.1.0, and Mentor Calibre
v2019.3 15.11 are used for characterizing the timing library, physical
library, circuit simulation, layout verification, and parasitic extraction.
The Bayesian Optimization in the system loop is implemented via
ParallelOptimizer in OpenBox 0.8.4 [36] with default settings.

Hyperparameters. We set the sensitivity parameter λ = 10 in
Equation (6) for computing cell timing contribution. We choose
k = 2 neighbors in Equation (8) for finding the normal vector. The
neural network surrogate model in the technology loop adopts an
architecture with two hidden layers (16 and 8 neurons respectively)
utilizing sigmoid activation functions. An initial learning rate of 0.02
is configured with the Adam optimizer for parameter updates. The
training epoch E for the neural network is set to 1500 epochs to
ensure convergence. In the optimization algorithm, the parameters
are set as follows: PT = 0.1, PF = 1e3, MF = 0.8, CR = 0.9, spop
= 100, ngen = 20, stop = 5, and Imax = 2.

Baseline. To demonstrate the efficacy of technology optimiza-
tion, the baseline approach only adjusts system-level parameters
(parch,pls,ppd). We use the default technology parameters from
TABLE I and the basic standard cells from TABLE II.

B. Result Analysis

Pareto frontier and Hypervolume. We identify two key tech-
niques for significant PPA improvement: (1) Standard cell recharac-
terization (Rechar), which adjusts technology parameters ptech and
StdGen hyperparameter num_rows; (2) Subcircuit fusion (Fusion),
which merges common subcircuit patterns into new standard cells. We
ablate their individual and combined contributions to expanding PPA
Pareto frontiers, as demonstrated in Fig. 9 and TABLE III. Without
Fusion, adjusting only ptech achieves a 6.5% hypervolume improve-
ment over the baseline. Without Rechar, fusing subcircuits into single-
row standard cells yields a 7.7% hypervolume improvement over the

0.6 0.7 0.8 0.9
Delay

0.2

0.4

0.6

0.8
Po

w
er

Delay vs Power

Non-Pareto
Baseline
Orthrus w/o Fusion
Orthrus w/o Rechar
Orthrus

0.6 0.7 0.8 0.9
Delay

0.8

0.9

1.0

1.1

1.2

A
re

a

Delay vs Area

Non-Pareto
Baseline
Orthrus w/o Fusion
Orthrus w/o Rechar
Orthrus

0.2 0.4 0.6 0.8
Power

0.8

0.9

1.0

1.1

1.2

A
re

a

Power vs Area

Non-Pareto
Baseline
Orthrus w/o Fusion
Orthrus w/o Rechar
Orthrus

Fig. 9. Normalized Pareto frontier of baseline, Orthrus without subcircuit fusion, Orthrus without standard cell recharacterization, and Orthrus. The reference
point for computing hypervolume is (1, 1, 1).

Delay

Power
Category Power Delay phig n phig p hfin nm tfin nm lg nm lext nm lct nm num rows Cosine

Ao 0.313 0.622 4.307 4.8681 32 6.5 20 5 24 1
0.989

Ar 0.289 0.544 4.302 4.8683 36 7.1 17 6 25 3

Bo 0.145 0.605 4.307 4.8681 32 6.5 20 5 24 1
0.822

Br 0.131 0.614 4.312 4.8680 28 5.8 18 6 24 1

Fig. 10. Directional alignment between the optimized parameter vector D and the actual optimization trajectory ∆ (subfigure). The corresponding power and
delay metrics for each category, along with the technology level parameters and cosine similarity (subtable).

TABLE III
HYPERVOLUME OF EACH METHOD

Method Baseline Orthrus w/o Fusion Orthrus w/o Rechar Orthrus

HV (×10−2) 8.055 8.582 8.679 10.727
- +6.5% +7.7% +33.2%

baseline. When these techniques are combined, we observe significant
reductions in delay and power along with moderate area savings,
resulting in a substantial hypervolume improvement of 33.2%. We
further measured the optimization results of individual metrics while
maintaining others constant (allowing a tolerance of 1e-3). Due to
the observed power-area correlation (r = 0.88), we focus on delay-
power tradeoffs: achieving 61.4% power savings at iso-delay and
12.5% delay reduction at iso-power conditions.

Effectiveness of Inter-Loop Direction. To validate the effec-
tiveness of inter-loop direction, we quantify the cosine similarity
between the optimization direction and the actual Rechar path. As
depicted in Fig. 11, which plots the sorted cosine similarity across
all optimization points, the vast majority of values are positive
(clustering near or reaching 1.0). This strong alignment confirms
that the optimization path adheres closely to the inter-loop direction.
Additionally, we evaluated the optimization results using naive cell
weighting (i.e., treating all cells as equally important). The final
hypervolume of 9.443×10−2 represents a 12.0% reduction compared
to the results of Orthrus. This outcome demonstrates the effectiveness
of our prioritized cell weighting approach during optimization.

Subcircuit Fusion. Statistical analysis based on the methodology
introduced in Section III-C reveals that Full Adders (FAs) and Half
Adders (HAs) account for the majority of the delay (53.1%), power
(65.2%), and area (75.7%) overhead. Consequently, we specifically
optimize these two subcircuits through fusion techniques.

Case study. To further investigate the effectiveness of our proposed
method, we present two optimization examples shown in Fig. 10.
As seen, the optimized direction D closely aligns with the actual
optimization path ∆. From the table in Fig. 10, it can be observed
that the primary objective for the A parameter combination is to
optimize timing. The corresponding parameter set adjusts the work
function to reduce the threshold voltage, increases the drive current

0 20 40 60 80 100
Index

0.5

0.0

0.5

1.0
C

os
in

e
Si

m
ila

rit
y

Fig. 11. The sorted cosine similarity between the PPA optimization direction
and the actual recharacterization path.

by modifying hfin, tfin, and lg, and enhances both intra-cell
and inter-cell routability by increasing num_rows. These results
align with physical expectations. Additionally, from the B parameter
combination, it is clear that the main objective is to reduce power.
This leads to an opposite trend compared to the A combination,
where the work function is adjusted to increase the threshold voltage,
reduce the drive current, and reduce num_rows to minimize parasitic
capacitance, thereby decreasing dynamic power. This analysis further
validates the effectiveness of our proposed method.

V. CONCLUSION

This paper introduces Orthrus, a dual-loop automated framework
for system-technology co-optimization (STCO). Orthrus combines
system-level and technology-level optimizations through an interloop
coordination mechanism, bridging the gap between system require-
ments and technology innovations while optimizing both levels si-
multaneously. Evaluated on 7nm technology, Orthrus achieves 12.5%
delay reduction at iso-power and 61.4% power savings at iso-delay
compared to baseline approaches, complemented by a 33.2% PPA
hypervolume improvement that redefines Pareto optimality for cross-
layer design. Overall, Orthrus offers a promising solution to the
challenges of scaling in the VLSI industry, providing a comprehensive
and efficient methodology for STCO that can adapt to evolving
technological demands. In the future, we aim to expand Orthrus to
support a broader range of architectures and process technologies,
further enhancing its versatility and impact in optimizing future VLSI
designs.

REFERENCES

[1] D. Biswas, J. Myers, S. B. Samavedam, and J. Ryckaert, “Stco: driving
the more than moore era,” in 2024 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2024, pp. 7–8.

[2] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Boom-explorer:
Risc-v boom microarchitecture design space exploration framework,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[3] C. Bai, J. Huang, X. Wei, Y. Ma, S. Li, H. Zheng, B. Yu, and Y. Xie,
“Archexplorer: Microarchitecture exploration via bottleneck analysis,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture, 2023, pp. 268–282.

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, 2015, pp. 161–170.

[5] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang, “Hasco:
Towards agile hardware and software co-design for tensor computation,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 1055–1068.

[6] J. Wang, L. Guo, and J. Cong, “Autosa: A polyhedral compiler for
high-performance systolic arrays on fpga,” in The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2021,
pp. 93–104.

[7] L. Jia, Z. Luo, L. Lu, and Y. Liang, “Tensorlib: A spatial accelerator
generation framework for tensor algebra,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021, pp. 865–870.

[8] H. Geng, Q. Xu, T.-Y. Ho, and B. Yu, “Ppatuner: Pareto-driven tool
parameter auto-tuning in physical design via gaussian process transfer
learning,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 1237–1242.

[9] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y.
Fang, J. Hu, Y. Chen, and E. C. Barboza, “Fist: A feature-importance
sampling and tree-based method for automatic design flow parameter
tuning,” in 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC). IEEE, 2020, pp. 19–25.

[10] R. Liang, J. Jung, H. Xiang, L. Reddy, A. Lvov, J. Hu, and G.-J.
Nam, “Flowtuner: A multi-stage eda flow tuner exploiting parameter
knowledge transfer,” in 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 2021, pp. 1–9.

[11] C. Gilardi, G. Zeevi, S. Choi, S.-K. Su, T. Y. Hung, S. Li, N. Safron,
Q. Lin, T. Srimani, M. Passlack, G. Pitner, E. Chen, I. Radu, H.-S. P.
Wong, and S. Mitra, “Barrier booster for remote extension doping and its
dtco for 1d & 2d fets,” in 2023 International Electron Devices Meeting
(IEDM), 2023, pp. 1–4.

[12] S. Kim, S.-J. Min, S.-G. Jung, and H.-Y. Yu, “Multi-objective
optimization and inverse design of complementary field-effect transistor
using combined approach of machine learning and non-dominated
sorting genetic algorithms for next-generation semiconductor devices,”
Engineering Applications of Artificial Intelligence, vol. 137, p. 109064,
2024. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0952197624012223

[13] H. Zhang, Y. Jing, and P. Zhou, “Machine learning-based device mod-
eling and performance optimization for finfets,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1585–1589,
2023.

[14] U. Kwon, T. Okagaki, Y.-s. Song, S. Kim, Y. Kim, M. Kim, A.-y. Kim,
S. Ahn, J. Shin, Y. Park, J. Kim, D. S. Kim, W. Qi, Y. Lu, N. Xu, H.-H.
Park, J. Wang, and W. Choi, “Intelligent dtco (idtco) for next generation
logic path-finding,” in 2018 International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD), 2018, pp. 49–52.

[15] X. Wang, R. Kumar, S. B. Prakash, P. Zheng, T.-H. Wu, Q. Shi,
M. Nabors, S. C. Gadigatla, S. Realov, C.-H. Chen, Y. Zhang, M. Kaizad,
A. Yeoh, I. Post, C. Auth, and A. Madhavan, “Design-technology co-
optimization of standard cell libraries on intel 10nm process,” in 2018
IEEE International Electron Devices Meeting (IEDM). IEEE, 2018,
pp. 28–2.

[16] Z. Chen, C. Guo, Z. Song, G. Feng, S. Wang, L. Zhang, X. Yin, Z. Wu,
Z. Yan, and C. Zhuo, “Boosting standard cell library characterization
with machine learning,” in Proceedings of the 30th Asia and South
Pacific Design Automation Conference, 2025, pp. 385–391.

[17] T. Ma, Z. Deng, X. Sun, and L. Shao, “Fast cell library characterization
for design technology co-optimization based on graph neural networks,”

in 2024 29th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2024, pp. 472–477.

[18] H. Cho, H. Seo, S. Chung, K.-M. Choi, and T. Kim, “Standard cell
layout generator amenable to design technology co-optimization in
advanced process nodes,” in 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2024, pp. 1–6.

[19] S. Choi, J. Jung, A. B. Kahng, M. Kim, C.-H. Park, B. Pramanik, and
D. Yoon, “Probe3. 0: a systematic framework for design-technology
pathfinding with improved design enablement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 43,
no. 4, pp. 1218–1231, 2023.

[20] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization
for high speed adders: A pareto driven machine learning approach,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 12, pp. 2298–2311, 2018.

[21] Y.-F. Liu, C.-Y. Hsieh, and S.-Y. Kuo, “Boomerang: Physical-aware
design space exploration framework on risc-v sonicboom microarchi-
tecture,” in 2023 IEEE 34th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2023,
pp. 85–93.

[22] Y. Ren, C. Xue, J. Zhang, C. Zhang, Q. Xu, Y. Lin, L. Zhang, and G. Sun,
“Diffuse: Cross-layer design space exploration of dnn accelerator via
diffusion-driven optimization,” arXiv preprint arXiv:2503.23945, 2025.

[23] M. Liu, “1.1 unleashing the future of innovation,” in 2021 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 64, 2021,
pp. 9–16.

[24] K. Zhang, “1.1 semiconductor industry: Present & future,” in 2024 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 67, 2024, pp.
10–15.

[25] T. Liang, J. Chen, L. Li, and W. Zhang, “Autocelllibx: Automated
standard cell library extension based on pattern mining,” arXiv preprint
arXiv:2207.12314, 2022.

[26] R. Fu, C. Wang, B. Yu, and T.-Y. Ho, “Temacle: A technology mapping-
aware area-efficient standard cell library extension framework,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2025.

[27] J. Yan, X.-C. Yin, W. Lin, C. Deng, H. Zha, and X. Yang, “A short
survey of recent advances in graph matching,” in Proceedings of the
2016 ACM on international conference on multimedia retrieval, 2016,
pp. 167–174.

[28] Q. He and Y. Li, “An efficient circuit matching algorithm based on
hash extraction of features,” in 2024 2nd International Symposium of
Electronics Design Automation (ISEDA). IEEE, 2024, pp. 222–228.

[29] K. Guo and Y. Lin, “Multi-row standard cell layout synthesis with en-
hanced scalability,” in 2025 3nd International Symposium of Electronics
Design Automation (ISEDA), 2025, pp. 1–6.

[30] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[31] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S002626921630026X

[32] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[33] S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected hyper-
volume improvement for parallel multi-objective bayesian optimization,”
in Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[34] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proceedings of the
5th International Conference on Learning and Intelligent Optimization,
ser. LION’05. Berlin, Heidelberg: Springer-Verlag, 2011, p. 507–523.
[Online]. Available: https://doi.org/10.1007/978-3-642-25566-3 40

[35] C. Helbling, “Directed graph hashing,” arXiv preprint arXiv:2002.06653,
2020.

[36] Y. Li, Y. Shen, W. Zhang, Y. Chen, H. Jiang, M. Liu, J. Jiang, J. Gao,
W. Wu, Z. Yang, C. Zhang, and B. Cui, “Openbox: A generalized black-
box optimization service,” in Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, 2021, pp. 3209–
3219.

