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Abstract—Sub-Resolution Assist Feature (SRAF) generation is
a very important resolution enhancement technique to improve
yield in modern semiconductor manufacturing process. Model-
based and rule-based approaches are widely adopted in the
semiconductor industry. The model-based SRAF generation can
achieve a high accuracy but it is known to be time-consuming
and it is hard to obtain consistent SRAFs on the same layout
pattern configurations. The rule-based SRAF generation is highly
technology dependent and it is becoming extremely difficult to
render high-quality results in advanced technology nodes. This
paper proposes supervised data learning techniques for fast yet
consistent SRAF generation with high-quality results. We first
propose the constrained concentric circle with area sampling
scheme for feature extraction. Illumination source symmetry-
based feature compaction technique is further invented to reduce
the training data set size and achieve consistent SRAF predictions.
Using accurate model-based SRAFs as training data, classification
models based on logistic regression and support vector machine
are calibrated for SRAF predictions. Moreover, the probability
maximum prediction is proposed to generate manufacturing-
friendly SRAFs with a greedy simplification scheme. We compare
support vector machine and logistic regression models by embed-
ding into an entire mask optimization flow, where the support
vector machine model obtains better lithographic performance.
Experimental results demonstrate that, compared with the com-
mercial Calibre tool, supervised data learning techniques for
SRAF generation obtain significant speed up (>3X for a 100um2

layout clip) and comparable lithographic performance in terms
of edge placement error and process variation band.
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I. INTRODUCTION

As the technology node continues scaling down, the 193nm
wavelength photolithography with low k1 value is the main-
stream technique to achieve smaller feature size. However,
low image contrast and complex target pattern shapes make it
extremely difficult for low-k1 lithography to obtain acceptable
lithographic process windows [2]. Besides the design for man-
ufacturability techniques, like multiple patterning and litho-
friendly layout design, mask optimization through resolution
enhancement techniques (RETs) remains as the key strategy
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Fig. 1: (a) An isolated contact, (b) printing with OPC, (c)
printing with SRAF generation and OPC.

to improve the lithographic process window and the yield
of the volume production in advanced technology nodes [3]–
[7]. Major RETs include source mask co-optimization, sub-
resolution assist feature (SRAF) generation and optical prox-
imity correction (OPC). Among them, the SRAF generation
is particularly important to improve the lithographic process
window of target patterns. The key physical mechanism behind
is that, without printing themselves, the small SRAF patterns
would deliver light to the positions of target patterns at proper
phase so that the printing of target patterns will be more
robust to the lithographic variations. The lithographic process
window is quantified with the process variation (PV) band
area, which should be minimized to obtain a robust mask
optimization solution. An example demonstrating the benefit of
SRAF generation is shown in Fig. 1. An isolated target contact
with the OPC pattern is shown in Fig. 1(a) and the target
pattern is optimized only with OPC in Fig. 1(b), while the
optimization in Fig. 1(c) is done with both SRAF generation
and OPC. It can be clearly observed that much smaller PV
band area is achieved in Fig. 1(c). Therefore, fast and high-
quality SRAF generation is of great importance for the mask
optimization.

Multiple SRAF generation approaches, including model-
based and rule-based approaches, have been developed and
widely used in standard mask optimization flows. The rule-
based approach is widely adopted due to its fast execution time
and acceptable performance for simple designs and regular
target patterns [2], [8], [9]. However, the rule-based SRAF is
hard to deal with complex two-dimension (2D) shapes as it
requires significant engineering efforts to setup and maintain
the rule table [8]. Model-based SRAF generation methods
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can be divided into two categories based on the lithographic
computations involved. One is to use simulated aerial images
to seed the SRAF generation [10]–[13]. The other is to apply
inverse lithography technology (ILT) and compute the image
contour to guide the SRAF generation [14], [15]. Despite better
lithographic performance and generalization capabilities com-
pared to the rule-based approach, the model-based SRAF is
known to be very time-consuming and it is difficult to achieve
the same SRAFs around the same layout configurations, i.e.
consistent SRAFs [2], [8].

Recently, supervised learning techniques have been intro-
duced to the computational lithography domain, with appli-
cations to lithographic hotspot detection [16]–[20] and OPC
[21]–[24]. The supervised data learning technique calibrates
a mathematical model with respect to an objective from the
training data set based on accurate lithographic computations.
Then, the calibrated model can predict the objective values,
like a hotspot or non-hotspot for the hotspot detection and
the shifting distance of an edge segment for the OPC, on
the testing data. The supervised learning technique usually
demonstrates a trade-off between computational efforts and
lithographic performance, which makes it particularly attrac-
tive for the SRAF generation problem. However, to the best of
our knowledge, there is no prior art in applying the supervised
learning techniques to the SRAF generation problem. In this
work, we propose novel supervised data learning techniques
for the SRAF generation. Our methodology can achieve fast
yet consistent SRAFs with high-quality results in a 2D grid
plane. Our main contributions are summarized as follows.
• Supervised data learning techniques are proposed for the

SRAF generation, where a classification model is cali-
brated for SRAF predictions using model-based SRAFs
as the training data.

• We propose a robust feature extraction scheme by adapt-
ing the concentric circle with area sampling considering
SRAF-specific constraints. We further propose a novel
feature compaction technique taking advantage of illumi-
nation source symmetry properties to reduce the training
data size and improve the SRAF consistency.

• Support vector machine and logistic regression are cal-
ibrated for fast SRAF predictions. Different from con-
ventional label predictions, we propose predictions with
probability maxima in the 2D grid plane to generate
manufacturing-friendly SRAFs.

• The supervised data learning-based framework for SRAF
generation achieves significant speedup (>3X for a
100um2 layout clip) with competitive lithographic per-
formance, compared with an industry strength model-
based approach.

The rest of this paper is organized as follows. Section II
introduces the standard mask optimization flow and related
evaluation metrics. Section III gives the basic definitions and
problem formulations. Section IV explains the details on
the feature extraction/compaction and model calibration for
logistic regression and support vector machine. Section V
demonstrates SRAF generation from the classification model
while accommodating the mask manufacturing rules. Section
VI demonstrates the effectiveness of the proposed supervised

data learning techniques with comprehensive results. Section
VII concludes the paper and discusses the future research
directions.

II. PRELIMINARIES

In this section, we introduce the standard mask optimization
flow and further embed the supervised data learning-based
SRAF generation into the flow. Related metrics are introduced
to evaluate the performance of the SRAF generation.

A. Mask Optimization Flow
A standard mask optimization flow consists of several

stages, including SRAF generation, OPC, mask manufacturing
rule check (MRC) and lithography compliance check (LCC)
as shown in Fig. 2(a) [2]. Depending on the outcome of
MRC and LCC, iterative optimizations may be applied to
achieve legal mask patterns. The MRC will check whether
mask patterns satisfy a set of mask manufacturing rules. The
LCC means lithography simulations are performed to check
whether lithographic constraints are satisfied. In the stage of
SRAF generation, small SRAFs will be added and isolated
patterns on the mask will become dense patterns as shown
in Fig. 1(b). During lithographic printing, SRAFs will not be
printed themselves but will deliver light to the target patterns
at a proper phase, which contributes to more robust printing
of target patterns.

Target Patterns
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fail
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Fig. 2: Mask optimization: (a) a standard mask optimization
flow, (b) lithography simulation contours under a set of {focus,
dose} conditions.

In the next stage, OPC will shift the edges of OPC pat-
terns to compensate for the optical proximity effects. Before
achieving mask patterns, the MRC and LCC are performed to
ensure that related lithographic constraints are satisfied. For the
MRC, we assume the target patterns are MRC-clean and some
typical mask manufacturing rules are applied to the SRAFs
since this work mainly focuses on the SRAF generation. Typ-
ical mask manufacturing rules for SRAFs include maximum
width (max width) rule, minimum space (min space) rule and
maximum length (max length) rule. The LCC will introduce a



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2748029, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 3

lithographic process window involving a set of {focus, dose}
conditions [25]. Lithography simulations at various conditions
are performed to check whether the metrics, such as PV band
and edge placement error (EPE), meet the criteria.

B. Evaluation Metrics
We introduce several metrics to evaluate the performance of

mask optimization results. An example of lithography simula-
tion results is shown in Fig. 2(b). Inner and outer contours are
explicitly drawn to demonstrate the lithographic printing vari-
ations due to the imposed {focus, dose} conditions. Nominal
contour represents the lithographic printing at the best {focus,
dose} condition. To quantify the lithographic variations, we
define PV band and EPE as follows.

Definition 1 (PV Band) Given the lithography simulation
contours at a set of {focus, dose} conditions, the process
variation (PV) band is defined as the area between the outer
contour and inner contour.

Definition 2 (EPE) Given the lithography simulation contour
at the best {focus, dose} condition, i.e. nominal contour and a
measurement point, the edge placement error (EPE) is defined
as the distance between the target pattern contour and nominal
contour.

Thus, in Fig. 2(b), the area between the outer contour and
inner contour is the PV band. A measurement point is drawn
with a dashed line orthogonal to the vertical edge of the
target pattern in Fig. 2(b) and the EPE can be explicitly
quantified. The SRAF consistency is an important issue since
it is closely related to the process variations on wafer [2].
Consistent SRAFs are preferred around the same target pattern
configurations because different SRAFs lead to different OPC
results, which potentially introduce extra process variations.
An example on consistent SRAFs is that axial symmetric
SRAFs should be generated for axial symmetric target patterns
if annular illumination source has been used. We define the
consistent SRAF generation as follows.

Definition 3 (Consistent SRAF generation) Consistent
SRAF generation means the same SRAF patterns should be
generated for the same target layout configurations.

III. PROBLEM FORMULATION

The supervised data learning-based SRAF generation works
on a 2D grid plane with a specific grid size. The training data
consists of a set of layout clips, where each layout clip includes
a set of target patterns and model-based SRAFs. With the 2D
grid plane and training layout patterns, training samples can
be extracted at each grid point. We first define the SRAF label
as follows.

Definition 4 (SRAF label) Given model-based SRAFs on the
2D grid plane, the SRAF label of a grid is 1 or 0, where 1
denotes an SRAF is inserted at that grid and 0 vice versa.

Specifically, a training data point includes a feature vector
and an SRAF label. The feature vector represents the optical
conditions of the grid point with respect to the target patterns.

After the training data preparation, we define the classification-
based SRAF as follows.

Problem 1 (Classification-based SRAF) Given the 2D grid
plane and training patterns with model-based SRAFs, feature
vectors and SRAF labels of all grid points are extracted and a
classification model is calibrated to predict the SRAF insertion
at each grid of testing patterns.

In the testing phase, the classification model can predict the
SRAF label at each grid point for testing patterns. Those grids
with SRAF labeled as 1 can not directly be treated as the final
SRAFs because further simplifications are needed to generate
SRAFs while accommodating mask manufacturing rules. Thus,
we define the SRAF generation as follows.

Problem 2 (SRAF Generation) Given the classification
model and test patterns, SRAFs are generated while
accommodating the mask manufacturing rules.

The supervised data-learning based framework for SRAF
generation is demonstrated in Fig. 3, where Problem 1 is
mainly related to the training phase and Problem 2 is asso-
ciated with the testing phase. In particular, this work aims
at supervised data learning-based techniques instead of tradi-
tional model-based or rule-based approaches. A complete mask
optimization flow is obtained by combining the supervised
data learning-based framework in Fig. 3 with other mask
optimization stages shown in Fig. 2.
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Fig. 3: Supervised data learning-based SRAF generation.

IV. CLASSIFICATION-BASED SRAF

A. Data Preparation

1) SRAF Label Extraction: Given training patterns with
model-based SRAFs on a 2D grid plane, we need to extract the
training data, including the SRAF label and feature vector for
each grid. As shown in Fig. 4(a), a 2D grid plane is imposed on
the target patterns and model-based SRAFs. The coordinates
of each grid are determined by the pre-set grid size. An SRAF
box is introduced at each grid to decide the SRAF label from
model-based SRAFs. Specifically, the SRAF box is a rectangle
and the size is a parameter, which could be different from the
grid size. The SRAF label of the grid is 0 if no model-based
SRAF covering the SRAF box on the grid. The SRAF label
is 1 when there is a model-based SRAF covering the entire
SRAF box area. Therefore, the grid size of the 2D grid plane
decides the granularity of the training data extraction while the
SRAF box provides an alternative control on the SRAF label
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extraction accuracy. The SRAF label extraction will give a set
of labels for all the grids, denoted as {y0}.

In addition, an OPC region and an SRAF region are
explicitly drawn in Fig. 4(a) to demonstrate SRAF-specific
constraints. SRAF generation is not allowed in the OPC
region since it is reserved for the OPC stage after the SRAF
generation. Since the optical interference happens within some
specific lithographic interaction window, the SRAF generation
outside of the pre-determined SRAF region can be ignored.
Both OPC region and SRAF region are created by expanding
the edges of the target patterns by some specific distance. We
define the distance of expansion for the OPC region and SRAF
region as dopc and dsraf , respectively.

SRAF%label:%0

SRAF%label:%1

(a)

0 1 2N%1
sub%sampling0point

(b)

Target pattern SRAF SRAF box OPC region SRAF region

Fig. 4: (a) SRAF label extraction and sampling constraints, (b)
CCCAS at one grid point.

2) Feature Extraction and Compaction: The layout feature
extraction plays an important role in the classification model
calibration and prediction. The SRAFs benefit the printing of
target patterns by delivering light to the positions of target
patterns at proper phase. Thus, we need a layout feature that
represents this physical phenomenon. The concentric circle
with area sampling is an ideal candidate since it represents the
information related to the concentric propagation of diffracted
light from mask patterns [23]. We adapt it to the constrained
concentric circle with area sampling (CCCAS) by incorporat-
ing the OPC region and SRAF region constraints discussed
in Section IV-A1. The CCCAS at one grid is illustrated
in Fig. 4(b), where each circle centers at the grid and the
minimum and maximum radius of the CCCAS are determined
by dopc and dsraf , respectively. After transforming target
patterns into the bitmap on the 2D plane, the CCCAS yields a
M×N matrix, denoted as X0, where M is the row number and
N is the column number. As shown in Fig. 4(b), the column
index of X0 starts at the positive Y-axis with 0 and increases
clockwise to N − 1. The sub-sampling points, denoted as the
black dots in Fig. 4(b), sharing the same angle to the origin
are in the same column of X0. The row index of X0 starts
with 0 at the circle with the smallest radius and increases to
M − 1 as the circle radius becomes larger. The sub-sampling
points on the same circle are on the same row of X0.

As discussed in Section II-B, the consistent SRAF genera-
tion is a very important issue, which means the same SRAFs
will be generated surrounding the same target pattern config-

urations, i.e., the same optical conditions [8]. For example,
in Fig. 5, the four grids are on axial symmetric positions
of the grid plane with respect to the target patterns. If we
assume the annular shape of the illumination source, the optical
conditions of these four grids are the same and consistent
SRAF generation scheme will give the same SRAF results.
However, since the CCCAS at these four grids are different,
denoted by different colors in Fig. 5, it is difficult for a
classification model to achieve the same SRAF predictions. To
achieve better SRAF consistency, we propose a novel feature
compaction technique taking advantage of the illumination
source symmetry. As shown in Fig. 5, this feature compaction
technique transforms the CCCAS of symmetric grids into the
CCCAS of the same grid, denoted as g, in the lower left of
the grid plane. The sampling region of the grid (g) can be
divided into four quadrants, i.e., I , II , III and IV . The target
patterns mainly locate at the quadrant I of the sampling region
of the grid (g), while target patterns mainly locate at different
quadrants for other symmetric grids. For clearer explanations,
we define the main quadrant as follows.

Definition 5 (Main Quadrant) The main quadrant for a grid
is defined as the quadrant of the CCCAS region where target
patterns mainly locate.

By flipping the CCCAS of other symmetric grids with X
or Y-axis as shown in Fig. 5, target patterns will always
locate at the quadrant I of the sampling regions for symmetric
grids, which leads to the same CCCAS results. Then, the
classification model will give consistent SRAF predictions for
axial symmetric grids.

g
I

Flip%with%
X*axis

Flip%with%Y*axis

Flip%with%X%and%Y*axis

IVIII

II

Fig. 5: Feature compaction based on symmetry.

The details of the feature compaction technique are ex-
plained in Algorithm 1. The 2D feature matrix from CCCAS
contains the bitmap value at each sub-sampling point. The
bitmap values of sub-sampling points within each quadrant
of the sampling region correspond to a set of columns in
the 2D feature matrix. Thus, the main quadrant should have
the maximum summation of bitmap values at the 2D feature
matrix. From lines 3 to 9, we scan through the four quadrants
of the CCCAS region and decide the main quadrant. The
flipping of 2D matrix is performed in line 10 to transform
the main quadrant to quadrant I as demonstrated in Fig. 5.
For practical implementation, the flipping of 2D matrix can
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Algorithm 1 Feature Compaction

Input: A M ×N feature matrix X0;
Output: Optimized feature vector x0x0x0;

1: Define main quadrant = 1 as the main quadrant;
2: Define max sum = 0 as the maximum summation;
3: for index = 0, index < 4, index++ do;
4: Define sum = summation of X0 from column index×
N/4 to column (index+ 1)×N/4;

5: if sum > max sum then;
6: max sum = sum;
7: main quadrant = index+ 1;
8: end if
9: end for

10: Flip X0 based on main quadrant;
11: Flatten X0 into a vector x0x0x0 and return x0x0x0;

be achieved with simple column index switching. In line 11,
the 2D feature matrix is flattened into a one-dimension (1D)
feature vector for the classification model calibration. It shall
be noted that, the illumination source symmetry-based feature
compaction scheme can be easily extended to other symmetric
scenarios, such as rotational symmetry. Overall, the feature
extraction and compaction will yield a set of 1D feature
vectors, e.g., {x0x0x0}, and each feature vector has an M × N
dimension.

B. Model Training
With the SRAF labels and feature vectors, a classification

model is calibrated for SRAF predictions. In particular, the
size of training data set and feature vector dimension can both
be very large because high sampling accuracy is needed for
classification-based SRAF. We adopt logistic regression (LGR)
and support vector classification with linear kernel (SVC)
models for SRAF predictions, which demonstrate a promising
trade-off between performance and runtime, compared to the
model-based approach. We introduce the basic formulations,
while detailed comparisons and analysis among different clas-
sification models are given in Section VI-A.

1) Logistic Regression: The LGR adopts the logistic func-
tion as the probabilistic estimation for each label of the training
or testing data. The model calibration is typically achieved with
the maximum likelihood method [26]. The detailed mathemat-
ical formulation is given as follows [27].

min
www

wwwT ∗www/2 + C ∗
∑
i

log(1 + exp(−yi ∗wwwT ∗ xixixi)) (1)

In Formulation (1), www is a vector of weight parameters
for the logistic regression model, xixixi and yi are the extracted
feature vector and SRAF label, respectively, for the ith training
data sample, and C is the cost penalty for L2 regularization
during an iterative optimization procedure. The LGR model is
particularly powerful for binary classification, which makes the
calibration and prediction scalable to large data sets. Due to the
large training data set in classification-based SRAF issue, L2
regularization is added to the LGR model to avoid overfitting.
The LGR model provides the direct probabilistic estimation of

labels for each data sample. For practical implementation, we
adopt the logistic regression model from LIBLINEAR (related
details can be found in [27]).

2) Support Vector Classification: Support vector classifica-
tion (SVC) is a popular learning technique, which first decides
a specified kernel, then maximizes the margin between the
training data and decision boundary [28]. As a maximum
margin classifier, SVC has been demonstrated to have several
advantages over those classifiers maximizing some average
quantity, such as LGR with maximum likelihood method [28].
In particular, SVC can better detect outliers (meaningless data),
which can be easily removed with or without supervision [28].
This further generates a classification model with better ac-
curacy for the SRAF generation problem. We adopt C-SVC
formulation [28] with a linear kernel, which will show better
learning accuracy and SRAF generation results than the simple
LGR model. The detailed mathematical formulation is given
as follows [29].

min
www,b,ξ

wwwT ∗www/2 + C ∗
∑
i

ξi (2)

s.t. yi ∗ (wwwT ∗ xixixi + b) ≥ 1− ξi (C1)
ξi ≥ 0, ∀i (C2)

In Formulation (2), www is a vector of weight parameters, xixixi
and yi are the extracted feature vector and SRAF label, respec-
tively, for the ith training data sample, C is the cost penalty
for regularization against overfitting, b is the bias parameter
for the linear hyperplane and ξi are a set of error parameters
during model calibration (minimized in the objective function).
For practical implementation, we adopt the SVC with linear
kernel from LIBSVM (related details can be found in [29])

V. SRAF GENERATION

A. Predictions with Probability Maxima

The typical prediction with a binary classification model
will be a label, i.e., 0 or 1, for each testing data. With the
label prediction for each grid, clusters of grids will be labeled
as 1, denoted as yellow grids, as shown in Fig. 6(a). After
the label prediction, clusters of grids in Fig. 6(a) cannot be
directly treated as SRAFs because they may violate the mask
manufacturing rules or be printed due to large critical dimen-
sions. Instead of using SRAF label for the grid prediction,
we propose predictions with probability maxima to simplify
the clusters of SRAF grids. When a classification model is
calibrated, the probability of the label to be 1, denoted as p1,
can be calculated for LGR and SVC as explained in Section
IV-B. With p1 calculation at each grid point, a probability
map on the 2D grid plane can be obtained as shown in Fig.
6(b). To simplify the clusters of grids for SRAF generation, we
only insert SRAFs at grids with probability maxima. A grid
with probability maximum means the probability (p1) at that
particular grid is larger than that at any other neighboring grids.
The idea of predictions with probability maxima originates
from the model-based SRAF approach. Model-based SRAFs
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are generated using the guidance map from lithographic com-
putations [10]–[13]. A guidance map is also grid based and
has intensity assigned to each grid, where SRAFs will only be
inserted at those intensity maxima. Thus, we adopt the similar
idea during predictions with probability maxima since model-
based SRAFs are used as the training data for the classification
model calibration.

horizontalver,cal

(a)

probability maximumnot probability maximum

(b)

Target pattern OPC pattern ML prediction SRAF

Fig. 6: SRAF predictions: (a) label predictions, (b) predictions
with probability maxima.

B. SRAF Simplification
Using predictions with probability maxima, clusters of grids

will be generated on the 2D grid plane but the mask manu-
facturing and SRAF printing issues are not fully resolved. The
SRAF simplification phase aims at simplifying these clusters of
grids into SRAFs satisfying the mask manufacturing rules, i.e.,
the max width, min space and max length rules as mentioned
in Section II-A. A greedy simplification scheme is proposed by
grid merging and shrinking the SRAFs into rectangular shapes
while accommodating mask manufacturing rules.

The overall algorithm of SRAF generation is shown in
Algorithm 2. In lines 1-2, we predict SRAFs at grids with
probability maxima from the classification model. In line 3,
the grids with probability maxima are merged into polygons,
which is followed by the spacing rule check and shrinking the
polygons to remove violations in line 4. From line 5 to 14,
each polygon is processed to generate a rectangular SRAF.
Particularly, in line 7, the main direction of SRAF is detected
based on the bounding box of target patterns. In line 8, the
bounding box of the polygon is shrunk to achieve a rectangular
SRAF parallel to that of target patterns. As illustrated in Fig.
6(a), the main direction of the polygon on the top is horizontal
while the main direction on the left is vertical, both of which
are parallel to the bounding box of target patterns. With the
SRAF simplification, the mask manufacturing-friendly SRAFs
can be generated for testing patterns.

VI. EXPERIMENTAL RESULTS

We have implemented the supervised data learning tech-
niques in C++ and all experiments are performed on an 8-
core Linux machine with 3.4GHz Intel(R) Core and 32GB
memory. The logistic regression (LGR) and support vector
classification (SVC) with linear kernel models are based on
LIBLINEAR [27] and LIBSVM [29], respectively. For the

Algorithm 2 SRAF generation

Input: A 2D grid plane, a classification models, a set of mask
manufacturing rules;

Output: The mask manufacturing friendly set SRAF ;
1: Compute the probability of label 1 for each grid;
2: SRAF predictions at grids with probability maxima;
3: Merge SRAF grids into a polygon set SRAFpg;
4: Spacing rule check and shrink polygons in SRAFpg to

remove violations;
5: for each polygon in SRAFpg do;
6: Define BBox as the bounding box of polygon;
7: Detect the main direction of polygon as direction;
8: Shrink BBox size based on direction;
9: end for

10: Rule check and shrink rectangles in SRAF to remove
violations;

11: Return SRAF ;

LGR model, C is set to 0.1 and the stopping accuracy is set to
10−9. For the SVC model, C is set to 0.02 and the stopping
accuracy is set to 10−9. The optical model, model-based
SRAF, MRC/LCC recipes and the SRAF simplification are
implemented using Calibre script language with the industry-
strength setup. The model-based SRAFs are computed from
coherence maps generated with inverse Lithography. For the
optical model, the wavelength (λ) and numerical aperture
(NA) are set as 193nm and 1.35, respectively. The annular
illumination source is used with outer sigma as 0.9 and inner
sigma as 0.6. Compact model 1 from Calibre is adopted as
the resist model. In the LCC, the outer/inner contours are
generated using lithographic process window conditions with
a focus variation of ±30nm and a dose variation of ±3.0%.
The nominal contours are generated at the best {focus, dose}
conditions. For model-based SRAF generation, process win-
dow conditions above are considered and SRAF manufacturing
rules are set as max width = 40nm, min space = 60nm,
max length = 90nm. For the SRAF label of each grid, it is
discretized into 0 or 1 based on the coverage of rectangular
SRAFs over that particular grid. The coverage threshold is set
to 25%, empirically.

We test the SRAF generation framework on two types of
contact patterns. One type is dense contact arrays with contact
width and space fixed as 70nm. We have dense contact patterns
because redundant vias are needed to improve yield during
layout design. The other type is sparse contact patterns, where
the contact width is 70nm but the space between contact holes
is random and the minimum space is 70nm. For CCCAS, the
grid size is set as 10nm, the SRAF box size is set as 40nm
and radius step size is sr =15nm. The grid size is chosen
empirically to balance the accuracy and runtime from SRAF
generation. For SRAF-specific constraints, dopc and dsraf are
set as 100nm and 600nm, respectively.

A. Training Data
A set of training patterns and model-based SRAFs are

needed to extract the training data and calibrate the clas-
sification model for SRAF predictions on both dense and
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sparse testing patterns. From the extensive experiments, the
training patterns in Fig. 7 yield the best training and testing
accuracy. For the dense contact arrays in Fig. 7(a), the width
and space are fixed as 70nm. For the random contact patterns
in Fig. 7(b), the width is 70nm, the space between contacts are
random and the minimum space is 70nm. The width of sparse
contact arrays in Fig. 7(c) is 70nm, while the space is 350nm.
In particular, since the training patterns are symmetric and
feature compaction scheme has been proposed, we only need
to sample the lower left part of the layout clip for symmetric
training data in Fig 7(a) and Fig 7(c). This is beneficial for
the classification model calibration since the training data
size can be reduced by 3/4 without losing the critical SRAF
information.

(a) (b)

(c)

Target pattern OPC pattern MB SRAF Sampling region

Fig. 7: Training layout: (a) dense contact arrays, (b) random
contact patterns, (c) sparse contact arrays.

We select two training data sets for model training and
validation. “Training set 1” consists of the extracted samples
from the layout in Fig. 7(a) and Fig. 7(c).1 “Training set 2”
includes the extracted samples from the layout in Fig. 7(a)
and Fig. 7(b). The training data set statistics are summarized
in Table I. For CCCAS, the number of circles is set as
M = b(dsraf − dopc)/src = 33. The number of sub-sampling
points in each circle is set as N = 32 to guarantee sampling
accuracy for sparse contact patterns. Then, the feature vector
dimension is M × N = 1056. In Table I, we have 13378
and 24298 samples for “Training set 1” and “Training set 2”,

1The conference version [1] only adopts “Training set 1” for experimental validations.

TABLE I: Data set statistics

Feature vector dimension 1056
# of samples from training set 1 13378
# of samples from training set 2 24298

# of testing samples from dense patterns 86000
# of testing samples from sparse patterns 873991

respectively. In addition, we have 86000 and 873991 testing
samples from dense and sparse patterns, respectively.

The data set statistics demonstrate the high feature vector
dimension and large training data size. The feature vector
dimension is difficult to be further reduced since each sub-
sampling point contains the information related to the target
patterns. Moreover, each training data sample within the litho-
graphic interaction window is considered valuable, so there is
little redundancy within the training data set.

B. Model Training

We compare different classification models, including LGR
and SVC, for the SRAF generation framework and data statis-
tics are shown in Table II. The runtime (“T(s)”) is evaluated in
seconds. The model accuracy (training and testing) is evaluated
using confusion matrix [30]. True positive (TP ) and false
negative (FN ) are defined as the number of correctly (1’s) and
incorrectly (0’s) predicted labels for real positive labels (1’s) in
the data. Similarly, true negative (TN ) and false positive (FP )
are defined as the number of correctly (0’s) and incorrectly
(1’s) predicted labels for real negative labels (0’s) in the data.
This further defines the following accuracy metrics for training
and testing:

TPR = TP/(TP + FN) TNR = TN/(TN + FP )

FNR = FN/(FN + TP ) FPR = FP/(FP + TN)

Accuracy = (TP + TN)/(TP + TN + FP + FN)

where “TPR”, “TNR” and “Accuracy” are best at 1.0 (worst
at 0.0), while “FNR” and “FPR” are best at 0.0 (worst at 1.0)
for comparisons.

Table II demonstrates that SVC model consistently obtains
much better “TNR” and “FPR” than the LGR model, across
training and testing with both “Training set 1” and “Training
set 2”. However, the LGR model can deliver better “TPR” and
“FNR” than the SVC model, except the training stage using
“Training set 1”. In general, for the SRAF generation problem,
the number of positive-labeled real data is much less than the
negative-labeled real data. This is because SRAFs are very
small features and can only be inserted at certain locations,
i.e., those grids benefiting the printing of target patterns. This
means “TNR” and “FPR” have much larger weight than the
“TPR” and “FNR” for the overall “Accuracy”. This further
explains the SVC model consistently achieves much better
overall “Accuracy” than the LGR model. Although the testing
runtime is similar, the SVC model introduces much larger
training runtime than the LGR model, especially for “Training
set 2”, but it is affordable for one-time computation.
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TABLE II: Comparisons on different classification models

Metric LGR SVC

Training set 1

Training

TPR 1.0000 1.0000
FNR 0.0000 0.0000
FPR 0.0542 0.0173
TNR 0.9458 0.9827

Accuracy 0.9495 0.9839
T(s) 0.82 48.7

Dense testing patterns

TPR 0.5057 0.3363
FNR 0.4943 0.6637
FPR 0.1581 0.0769
TNR 0.8419 0.9231

Accuracy 0.8256 0.8945
T(s) 0.09 0.05

Sparse testing patterns

TPR 0.3362 0.2379
FNR 0.6638 0.7621
FPR 0.1625 0.0923
TNR 0.8375 0.9077

Accuracy 0.7936 0.8490
T(s) 1.28 0.44

Training set 2

Training

TPR 0.9781 0.2337
FNR 0.0219 0.7663
FPR 0.1436 0.0068
TNR 0.8564 0.9932

Accuracy 0.8637 0.9476
T(s) 1.55 799.7

Dense testing patterns

TPR 0.5330 0.2261
FNR 0.4670 0.7739
FPR 0.1916 0.0489
TNR 0.8084 0.9511

Accuracy 0.7950 0.9158
T(s) 0.1 0.13

Sparse testing patterns

TPR 0.3354 0.1610
FNR 0.6646 0.8390
FPR 0.1487 0.0585
TNR 0.8513 0.9415

Accuracy 0.8061 0.8731
T(s) 1.19 1.29

C. SRAF Generation
1) SRAF Simplification: We demonstrate the strength of

predictions with probability maxima and SRAF simplification
schemes. As illustrated in Fig. 8, we compare the SRAFs
generated using different machine learning (ML) predictions,
i.e. label predictions and predictions with probability maxima,
followed by the SRAF simplification phase. Predictions with
probability maxima can simplify the clusters of grids labeled as
1, i.e. breaking large clusters into small clusters, which benefits
the SRAF simplification stage. Thus, the SRAFs generated
using predictions with probability maxima in Fig. 8(b) are
much better than those in Fig. 8(a) in terms of PV band from
the LCC.

2) SRAF Consistency: We further demonstrate the benefit of
SRAF consistency improvement from the feature compaction
technique in Section IV-A2. The SRAF generation from the
model-based method using Calibre [Calibre, v2015.2 36.27],
LGR without feature compaction and LGR with feature com-
paction are shown in Fig. 9(a), 9(b) and 9(c), respectively.
Since annular illumination source is used, axial symmetric
grids share the same optical environment and the consistent
SRAF generation should yield the same SRAFs at axial sym-
metric grids. The feature compaction scheme would transform
the feature matrices extracted from axial symmetric grids to

(a) (b)

Target pattern OPC pattern ML prediction SRAF

Fig. 8: SRAF generations: (a) label predictions, (b) predictions
with probability maxima.

the same feature vector. Therefore, the SRAFs in Fig. 9(c)
are more consistent than those in Fig. 9(b). Moreover, we
have even achieved SRAFs with better consistency than the
model-based method shown in Fig. 9(a). This is because
model-based method first generates a set of guidance maps
from lithographic calculations. The manufacturability of the
SRAFs is further considered with heuristic rectangle insertions,
where the consistency is very difficult to be addressed. For
the proposed ML-based approach, axial symmetric grids share
the same feature vectors, which further lead to symmetric,
i.e., consistent, ML predictions if we assume the grid error
is negligible.

(a) (b) (c)

Target pattern OPC pattern ML prediction SRAF

Fig. 9: SRAFs for the isolated contact pattern: (a) model-based,
(b) LGR without feature compaction, (c) LGR with feature
compaction.

We demonstrate the SRAFs from SVC-based predictions
on dense and sparse testing patterns as shown in Fig. 10.
The SRAF predictions using “Training set 1” and “Training
set 2” are shown in Fig. 10(a) and Fig. 10(b), respectively.
The left and middle patterns show two cases of redundant
vias in real designs. The SVC-based SRAF generation can
obtain acceptable SRAFs on these dense contact patterns but
the degradation of SRAF consistency is observed, especially
for “Training set 2”. The reasons are twofold. First, the training
data with model-based SRAFs are not perfectly consistent as
shown in Fig. 7. Then, it is difficult to guarantee the consistent
SRAF generation with the classification model calibrated with
these training data. In particular, “Training set 2” includes
random contact patterns in Fig. 7(b), where SRAF consistency
is not explicitly included. This further leads to degraded SRAF
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(a)

(b)

Target pattern OPC pattern ML prediction SRAF

Fig. 10: SVC with linear kernel model predictions on contact
patterns, including dense contact patterns (left and middle) and
sparse contact patterns(right): (a) using “Training set 1”, (b)
using “Training set 2”.

consistency for the contact patterns on the left of Fig. 10(b).
Second, the CCCAS results may be slightly different for axial
symmetric grids due to the grid error within the 2D grid plane.
The contact patterns on the right of Fig. 10(a) and Fig. 10(b)
illustrate a small layout clip of random contact patterns, which
proves the capability of the machine learning-based SRAF gen-
eration on random sparse contact patterns. However, the SRAF
generation results, i.e., shapes and locations of SRAFs, highly
depend on the training data. This means the performance of the
SRAF generation results needs to be evaluated in a complete
mask optimization flow.

D. Lithography Compliance Check

To evaluate the practical lithographic performance, we com-
bine the SRAF generation with a complete mask optimization
flow as shown in Fig. 2, where model-based OPC and LCC are
performed using Mentor Calibre tool. We compare the model-
based, LGR and SVC approach in terms of PV band and
EPE on both dense and sparse testing patterns. Specifically,
we collect the PV band value for each contact and the EPE
value at the center of the four edges of each contact at nominal
conditions. The mean values are summarized and compared in
Table III. We add the PV band without SRAFs to better demon-
strate the benefit from SRAF generation. The model-based
approach reduces the PV band from 3.3029 to 2.7685, which is
16.18% reduction compared to no SRAF insertion. Meanwhile,
for “Training set 1”, we obtain 13.72% and 14.08% PV band
reduction from LGR and SVC, respectively. For “Training set
2”, we achieve 13.97% and 14.87% PV band reduction from
LGR and SVC, respectively. Thus, the SVC model achieves
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Fig. 11: Comparison among different schemes in terms of
PV band distribution: (a) using “Training set 1”, (b) using
“Training set 2”.

better performance than the LGR model for SRAF generation,
especially when using “Training set 2”. In particular, there is
only 1.31% PV band degradation from model-based approach
to the SVC-based approach with “Training set 2”. We take the
absolute values when calculating the EPE mean to avoid the
cancellations between positive and negative values of EPE.
The LGR-based and SVC-based SRAF generation yield the
smallest EPE mean value with “Training set 1” and “Training
set 2”, respectively. They both outperform the model-based
approach in terms of the EPE mean value. This means there
is some trade-off between PV band and EPE because different
SRAF results lead to different OPC results. It is very difficult
to improve the PV band and EPE simultaneously with a robust
mask optimization flow.

We collect the PV band and EPE values for each contact
and further plot the data in histograms as shown in Fig. 11
and Fig. 12. Fig. 11 shows that SRAF insertion significantly
improves the PV band, compared to no SRAF insertion, and
model-based SRAF gives the best performance. The SVC-
based approach is slightly worse than model-based method
but performs better than LGR-based method, across different
training data sets. Fig. 12(a) and Fig. 12(b) show that LGR-
based and SVC-based SRAF generations achieve the best EPE
performance, using “Training set 1” and “Training set 2”,
respectively. This generates an important empirical observation
that training data selection is very important for the SRAF
generation with supervised data learning. Our extensive ex-
periments demonstrate much better accuracy and lithographic
performance from the SVC model, but it only happens when
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TABLE III: PV band and absolute of EPE

Training data set 1 Training data set 2
Mean value No SRAF Model-based LGR SVC LGR SVC

PV band (.001um2) 3.3029 2.7685 2.8496 2.8380 2.8416 2.8117
Absolute of EPE (nm) 3.6343 0.5427 0.4861 0.4938 0.4938 0.4692
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Fig. 12: Comparison among different schemes in terms of EPE
distribution at nominal conditions: (a) using “Training set 1”,
(b) using “Training set 2”.

combined with “Training set 2”. We treat advanced training
data selection as our important future work for the SRAF
generation problem.

E. Runtime

We compare the machine learning-based SRAF generation
with the commercial Calibre tool, i.e. model-based SRAFs.
The mask optimization techniques, including SRAF generation
and OPC, usually apply to small layout windows due to the
high computational cost [3]. To demonstrate the scalability
of the proposed approach, we choose layout clips as large
as 100um2 in area for runtime comparisons among different
SRAF generation approaches. In Fig. 13(a) and Fig. 13(b),
different contact patterns, denoted as m × n (width × height
of the layout clip), are used for runtime comparisons. The
areas of these layout windows considering SRAF regions
are in the range from 1um2 to 100um2. The runtime for
the machine learning-based approach includes runtime for
feature extraction and compaction, predictions with probability
maxima and SRAF simplification. The model calibration time
is not included since it is one-time computation.
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Fig. 13: Runtime comparison among different schemes on
different layout windows: (a) using “Training set 1”, (b) “using
training set 2”.

Although we are using a different database and algorithm
implementation from the commercial tool, in a lithographic
window (1-2um2), we obtain over 10X speed-up from the
machine learning-based SRAF generation, compared to the
model-based approach in Calibre [Calibre, v2014.4 18.13].
For the largest layout clip (100um2), we still achieve over
3X speed-up compared to the model-based approach. The
significant runtime speed-up aforementioned is consistent,
across different learning models (SVC and LGR) and training
data sets, as shown in Fig. 13(a) and Fig. 13(b). The SRAF
generation is combined with model-based OPC from Calibre
to achieve an entire mask optimization flow. Since different
SRAFs may lead to different model-based OPC behaviors,
we also check the runtime of the model-based OPC from
different SRAF generation approaches and ensure that they are
approximately the same. Since the lithographic performance of
the SVC model is better than the LGR model and they have
similar SRAF generation runtime, the SVC model proves to
be the better classification model for SRAF generation.
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VII. CONCLUSION

The SRAF generation with supervised data learning is
demonstrated for the first time. A robust feature extraction
scheme is proposed by adapting the concentric circle with area
sampling considering SRAF-specific constraints. We further
propose a novel feature compaction technique based on the
illumination source symmetry to reduce the training data size
and improve the SRAF consistency. The LGR and SVC models
are adopted for scalable model training and testing. Instead
of using conventional label predictions with a classification
model, predictions with probability maxima are proposed to
achieve mask manufacturing-friendly SRAFs. Compared to
the commercial Calibre tool, the SVC-based SRAF generation
obtains 10X speed-up in layout windows and over 3X speed-up
for a 100um2 layout clip. The SVC-based SRAF generation
also achieves much better EPE and affordable degradation
(1.31%) in PV band, compared to the commercial Calibre tool.

Our future work includes advanced training data selection
techniques and learning models for better SRAF generations.
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