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Abstract—The increasing complexity of high-frequency circuits
calls for efficient and accurate passive macromodeling techniques.
Existing passivity enforcement methods, including those in com-
mercial tools, often encounter convergence issues or compromise
accuracy. The Domain-Alternated Optimization (DAO) framework
seeks to restore accuracy through an additional optimization
step but is hampered by high memory consumption and slow
convergence, particularly for large-scale problems. This paper
presents G-SpNN, a novel GPU-accelerated framework that re-
casts the passivity-enforced macromodeling problem as a neural
network training task. This approach significantly enhances both
the speed and scalability of passivity enforcement. Experimental
results show that G-SpNN achieves an average speedup of 7.63× in
convergence compared to DAO, while reducing memory usage by
two orders of magnitude. This enables G-SpNN to handle complex,
high-port-count circuits with greater accuracy and efficiency,
paving the way for robust high-frequency circuit simulations.

Index Terms—S-Parameter Macromodeling, Passivity Enforce-
ment, Neural Network, GPU Acceleration

I. INTRODUCTION

S-parameters, and frequency-domain parameters in general,
pose significant challenges in circuit simulation. Running
time-domain analyses with them, which typically involves
frequency-domain interpolation and extrapolation, causality en-
forcement, impulse response computation and the convolution
analysis, is computationally intensive and often leads to conver-
gence issues. Macromodeling, also known as broadband SPICE
(bbspice) in the circuit design community, offers a preferred
alternative [1], but its effectiveness hinges on robust passivity
enforcement to guarantee accurate and stable high-frequency
simulations.

Early attempts to address passivity enforcement through
convex optimization faced limitations due to their high compu-
tational complexity, scaling with O(n6) [1], where n represents
the number of poles. This restricted their applicability to
small-scale problems (n < 100) [1]. Mainstream methods
typically adopt a two-step approach: first generating a macro-
model without considering passivity constraints, often using
techniques like Vector Fitting (VF) [2], and then applying
specialized algorithms to restore passivity, such as the Eigen-
value Perturbation (EPM) [3], Residue Perturbation (RPM) [4],
and Local Compensation (LC) [5]. However, these methods
frequently compromise model accuracy, significantly increase

computational costs, and are not robust in their performances,
making them challenging to implement in practice.

Despite these challenges, almost all commercial solutions
rely on these two-step methods. In practice, designers routinely
observe commercial broadband SPICE fitting tools struggling
to fit S-parameter data from Touchstone files, particularly for
the simulations of radio-frequency integrated circuits (RFICs)
and chip packaging. The iterative nature of these methods often
introduces cumulative fitting errors, leading to reduced accu-
racy. To mitigate this, commercial tools often relax passivity
constraints, either by internally setting a tolerance for violations
or enforcing passivity only within limited bandwidths. While
this approach may improve fitting success rates, it can hinder
simulation convergence later in the design process.

The Domain-Alternated Optimization (DAO) framework [6]
seeks to enhance accuracy by incorporating a third optimization
step after the conventional two-step approach. By transforming
the original modeling problem constrained by passivity criteria
into an unconstrained optimization problem, DAO enables
the use of unconstrained optimizers to improve macromodel
accuracy while maintaining passivity throughout the process.
However, DAO still suffers from high memory consumption
and slow convergence, particularly when dealing with large-
scale problems, limiting its practical adoption. For example,
using the DAO method on a 64-port system resulted in an
average memory usage of 22GB per iteration, while a 138-port
system exceeded 31.8GB.

Therefore, passivity enforcement is arguably still an unsolved
problem, especially for large-scale systems with many ports.
Today, the increasing prevalence of complex integrated circuits,
with a rising number of ports driven by trends like chiplets and
multi-core architectures, further exacerbates the challenges of
passivity enforcement [7]. This surge in complexity renders ex-
isting methods inadequate, necessitating new solutions capable
of efficiently and accurately enforcing passivity in large-scale
systems.

In the meanwhile, the development of neural networks,
combined with the emergence of large-scale optimizers and
optimization frameworks for training these networks, presents
new possibilities for addressing the challenge of passivity
enforcement [8]. These frameworks, which can be accelerated
using GPUs, provide a missing piece in the three-step DAO



framework. By drawing an analogy between passivity enforce-
ment and neural network training, specifically the process of
finding optimal weights [9] [10], it becomes possible to handle
large-scale problems more effectively.

This work proposes G-SpNN, a novel GPU-accelerated
framework that recasts passivity-enforced macromodeling as
a neural network training problem. This framework, built
upon the deep learning toolkit PyTorch, maps the constrained
optimization problem of passivity enforcement onto an uncon-
strained optimization objective within the neural network train-
ing process. By leveraging PyTorch’s automatic differentiation
mechanism, G-SpNN eliminates the need for manual gradient
derivation, simplifying the implementation and improving effi-
ciency. Moreover, G-SpNN employs vectorized representations
and QR decomposition to streamline error function calculations
and utilizes the LBFGS method to approximate the Hessian
inverse matrix, thereby accelerating convergence.

G-SpNN’s key contributions include:
1) Casting the passive macromodeling problem to neural

network training, thus leveraging GPU acceleration.
2) Using the LBFGS method to efficiently approximate

the Hessian inverse matrix, proven to work the best in
practice.

3) Keeping the memory usage almost constant with an
increasing number of ports. Experimental results show
that G-SpNN not only converges more stably and quickly
than DAO, with a average speedup of 7.63×, its memory
usage can be reduced by two orders of magnitude in test
cases.

From above, G-SpNN offers a robust passivity-enforced
macromodeling framework, presented in more detail in the
following sections.

II. PRELIMINARIES
A. Macromodel Generation of S-Parameters

S-parameters describe signal scattering in the frequency do-
main. Macromodeling fits a rational function to frequency data
sk (frequency points) and H(sk) ∈ Cm×m (system response):

f(sk) =

Nq∑
n=1

cn
sk − an

+ d+ skh (1)

where cn, an, d, h are fitting coefficients.
To improve stability and efficiency, Eq. (1) is often expressed

in a state-space form [11]:

G(sk) = C(sk · I −A)−1B +D (2)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, D ∈ Cm×m, and I
as the identity matrix.

For this system, G(sk) needs to satisfy two conditions [12]:
1) The error needs to be minimized.

Error = min

(∑
k

|G(sk)−H(sk)|

)
(3)

2) It needs to satisfy the passivity requirement [13].

G(sk) +GH(sk) ≥ 0 (4)

where GH represents the conjugate transpose of G.

B. Three-Step Modeling Framework
The first step in passivity macromodeling is to fit Eq. (1)

using methods such as VF [2] or Rational Fitting [14], and
then transform it into the state-space representation as shown
in Eq. (5), thereby obtaining the initial matrix.

G0(sk) = C0(sk · I −A0)
−1B0 +D0 (5)

Although this step can easily provide a locally optimal fit with
minimal error, the resulting matrix may not necessarily satisfy
the required passivity [15].

The second step involves passivity fixing on the initial
G0(sk) to construct G1(sk) by using EPM, RPM and LC, such
that G1(sk) satisfies the passivity [16].

The third step begins with G1(sk) and solves the optimiza-
tion model shown in Eq. (6) to find a system G2(sk) that
minimizes the error [17].min

C,D

∑
k

|G2(sk)−H(sk)|

subject to: G2(sk) is passive
(6)

C. Domain-Alternated Optimization
Actually, the third step of the Three-Step Modeling Frame-

work often faces challenges in enforcing passivity constraints.
Robust implementation of Eq. (6) is impractical [18] [19].
To address this problem, the DAO framework simplifies the
optimization process by introducing a system W (sk) as opti-
mization variables, thereby removing passivity constraints and
converting the problem into an unconstrained form [6].

Algorithm 1 DAO Algorithm

1: Step 1 : Perform SPF on the initial passive system G1(sk)
to obtain W (sk).

2: Step 2 : Use the matrices (L, Q) of W (sk) as parameters
and perform unconstrained optimization to minimize error.

3: Step 3 : Perform PFE to the optimized W (sk) to obtain
the final system G(sk).

The Spectral Factorization (SPF) operation in Algorithm 1 is
given by Eq. (7)-(10). Its essence lies in computing the matrices
L and Q in order to derive W (sk) as shown in Eq. (11) [20].

R = QTQ = D +DT (7)

Ã = BR−1C −A, B̃ = BQ−1, C̃ = CTR−1C (8)

KÃ+ ÃTK −KB̃B̃TK − C̃ = 0 (9)

L = Q−TC −Q−TBTK (10)

W (sk) = L(sk · I −A)−1B +Q (11)

The Partial Fractional Expansion (PFE) operation, defined
by Eq. (12)-(14), focuses on computing the matrices C and D
to transform W (sk) into G(sk) [21] [22] [23].

M = kron(AT , In) + kron(In, AT ) (12)

vec(K) = −M−1vec(LTL) (13)

C = BTK +QTL, D =
1

2
QTQ (14)



where kron(·) represents the Kronecker product, and vec(K)
represents the vectorized form of matrix K [24].

Based on the principles and theorems related to SPF and
PFE [21], the system G(sk) derived from W (sk) is guaranteed
to maintain passivity. Consequently, the original optimization
problem in Eq. (6) can be reformulated as an unconstrained
optimization problem in Eq. (15).

min
L,Q

∑
k

|G(sk)−H(sk)|

subject to:

W (sk) = L(sk · I −A)−1 +Q

G(sk) = pfe(W (sk))

(15)

III. G-SPNN

For the optimization problem defined in Eq. (15), it is feasi-
ble to directly compute the gradient vector and Hessian matrix
[25]. However, compared to Eq. (6), the larger computational
scale results in increased time costs and memory consumption,
brings significant challenges. To this end, we propose G-SpNN,
which achieves an optimal passive macromodel with faster con-
vergence and lower memory consumption. More importantly,
it exhibits excellent scalability, capable of handling ultra-large-
scale passive macromodeling problems.

The overall workflow of G-SpNN is shown in Figure 1.
Starting with a given passive system G1(sk), an unconstrained
system W (sk) is first derived by SPF transformation and
represented as a layer in the neural network. Next, the PFE
transformation is applied to generate a new network layer
G(sk), corresponding to a passive system. This reformulates
the problem as a neural network training task. During for-
ward propagation, the system, together with the tabulated data
H(sk), is used to compute the loss value. For efficient training,
the LBFGS method is futher incorporated with backpropagation
to compute gradients and update the network parameters. Once
the iteration stopping criteria are satisfied, the optimized passive
system is obtained. Details are in Algorithm 2.

Algorithm 2 Proposed G-SpNN Algorithm

1: Preprocess: Calculate RF , b, δ, M−1 from (20), (22) and
(12)

2: SPF Transformation: Apply SPF to matrices A,B,C,D
from (2) to obtain A,B,L,Q

3: Initialize: Set optimizer with parameters L,Q, define num-
ber of epochs

4: for i in {1, 2, ..., epoch} do
5: Apply PFE to transform L,Q into C,D
6: Vectorize C,D into y, and L,Q into x
7: Compute loss: f(x) from (21)
8: Backpropagate and using chain rule: ∂f

∂x = ∂f
∂y · ∂y

∂x
9: Approximate the Hessian inverse via k LBFGS iterations

10: Update L,Q
11: end for
12: Final Transformation: Convert L,Q to final C,D using

PFE to obtain final G(sk)

A. Analogy to Neural Network Training

Both solving Eq. (15) and training a neural network repre-
sent fundamentally nonlinear optimization challenges. In this
context, the error function in Eq. (15) can be viewed as
analogous to the prediction error encountered in neural network
training, highlighting a direct connection between the two
optimization frameworks. This analogy not only emphasizes the
shared nature of the problems but also suggests that leveraging
neural network techniques can facilitate faster optimization.
As illustrated in Figure 2, the comparison between the two
problem-solving approaches is visually clear. In neural network
training, each data instance consists of an input vector xi and
a corresponding label yi, and the predicted label ϕ(xi, w) is
obtained through the neural network. The training task is to
minimize an objective function, which primarily consists of
prediction errors.

By drawing an analogy between unconstrained optimization,
as expressed in Eq. (15), and neural network training, we
represent parameters L, Q in simplified form as w, and treat
parameters sk and H(sk) (derived from the simulation or
measurement process) as data instances. The neural network
processes these data instances and computes g(sk, w) (g(·, w)
represents G(s) in Eq. (15), where A and B are constants),
after which the corresponding objective function is calculated to
iteratively update the network, ultimately yielding the optimal
solution to Eq. (15). Through this construction, the uncon-
strained optimization problem can be seamlessly transformed
into the neural network training process, making it possible
to leverage advanced deep learning techniques to address the
issues in the DAO framework.

It is important to note that, as shown in Figure 1, during
the complete equivalent neural network training process, the
transformations between L, Q and C, D through PFE and
SPF do not affect the gradient computation. The gradient still
follows the chain rule and is automatically handled by PyTorch,
a feature that the DAO framework lacks.

B. Loss Function
During the forward propagation phase of neural network

training, the need to compute prediction errors N times, with
each error computed through matrix norm calculations, intro-
duces significant complexity throughout the training process. To
address this issue, this section will reformulate the objective
function from Eq. (15) to make the neural network training
process more computationally efficient.

For the objective function in Eq. (15):

Error = min
C,D

∑
k

|G(sk)−H(sk)| (16)

We can vectorize it as follows:

Error vec = |Fy − h| (17)

where:

y =

[
vec(C)
vec(D)

]
Fi =

[
kron([siI −A]−1, In) I2m

]
(18)
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a set of parameters for macromodel with w = (L,Q).

To further simplify the computation of the objective function,
a more detailed decomposition of Eq. (17) can be performed.
The specific decomposition process is as follows. Firstly, QR
factorization can be applied to F in Eq. (19):

h =



vec(Re(H(s1)))
...

vec(Re(H(sN )))
vec(Im(H(s1)))

...
vec(Im(H(sN )))


F =



Re(F1)
...

Re(FN )
Im(F1)

...
Im(FN )


(19)

F = QFRF (20)

Subsequently, Eq. (17) can be further transformed into the fol-
lowing form Eq. (21), which also represents the final definition
of the loss function:

loss = Error vec = (RF y − b)T (RF y − b) + δ2 (21)

where:

b = QT
Fh, δ2 = hTh− bT b (22)

By decomposing F into QF and RF , the quadratic term
(RF y− b)T (RF y− b) is simplified to a standard least-squares
problem, which is computationally more efficient. This sim-
plification reduces the need for repeated computation of matrix
norms, which would otherwise be required for every iteration in
the optimization process. Furthermore, the decomposition helps
in minimizing the number of operations required to update
gradients and compute the loss, thereby enhancing overall
computational efficiency.

C. Further Optimization for Memory and Time Consumption

Based on the new definition of the loss function, optimization
problem Eq. (15) can be further refined as follows:

variable: L,Q

min: f(y) = (RF y − b)T (RF y − b) + δ2

subject to:

x =

[
vec(L)
vec(Q)

]
y = pfe(x)

(23)

For nonlinear optimization problems like Eq.(23), traditional
methods such as DAO typically compute the gradient vector and
Hessian matrix to determine the search direction and step size,
thereby accelerating convergence. However, the full calculation
of the Hessian matrix imposes significant memory and time
overhead [26], especially for high-dimensional optimization
problems. Therefore, we employ the LBFGS method [27] to
approximate the inverse of the Hessian matrix, which reduces
memory usage while still accurately selecting the gradient de-
scent direction, thus accelerating neural network convergence.
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Fig. 3: Computational graph with LBFGS Method.

Figure 3 illustrates the computational graph. The input pa-
rameters are derived from Eq.(11) (the unconstrained system
W (s) in Figure 1), which include the parameter matrices L
and Q. These matrices are vectorized into x. The computational
graph includes five steps. Step 1, x undergoes the PFE operation
to generate parameters y (the passive system G(s)). Step 2, us-
ing y along with other matrices from Eq. (20) and Eq. (22), the
loss function is constructed. Step 3, automatic differentiation
is employed to compute the gradient information, applying the
chain rule to perform backpropagation and calculate the first-
order derivative of the loss function with respect to the network
weights x. Step 4, the LBFGS method is used to approximate
the inverse Hessian matrix. Step 5, the previously calculated



first-order derivative information and the approximated inverse
Hessian matrix are used to update the parameters L and Q
of the initial passive system. Above all, this completes one
optimization iteration.

In the approximation process of Step 4, it is important to note
that the LBFGS algorithm does not store the full Hessian matrix
directly [28]. Instead, it maintains a limited history of recent
iterations to perform the calculations. The update formula for
the Hessian inverse approximation in LBFGS is given by:

Hk+1 = Hk − Hk∆gk∆gTk Hk

∆gTk ∆xk
+

∆xk∆xT
k

∆xT
k∆gk

(24)

where:
1) Hk is the Hessian inverse approximation at iteration k.
2) ∆gk = (∂f∂x )k+1 − (∂f∂x )k is the change in the gradient.
3) ∆xk = xk+1 − xk is the change in the parameter.
The LBFGS is well-suited for this optimization problem due

to its efficiency in managing large-scale variables and its ability
to converge rapidly to a solution with a limited memory over-
head. As experiments have shown, this optimization method,
which combines efficient memory management and rapid con-
vergence speed, provides robust support for optimizing complex
circuit models.

IV. EXPERIMENTS

A. Experimental Setup

We implement and test the proposed G-SpNN on an i7-
14700KF @5.6GHz CPU with 32GB of memory, and a
GeForce RTX 4070 SUPER GPU with 12GB of VRAM.
G-SpNN is implemented based on PyTorch and compared
against the state-of-the-art (SOTA) framework DAO, which is
implemented in MATLAB and is open-sourced on GitHub1.

For the DAO, we utilize MATLAB’s built-in method
user.MemUsedMATLAB to record the memory consump-
tion. For the G-SpNN, we monitor the GPU memory usage by
calling PyTorch’s torch.cuda.memory allocated().

The input files used in the experiments are standard Touch-
stone format files, derived from actual real-world simulations.
After reading the files, the parameters sk and Hm×m(sk)
(1 ≤ k ≤ N ) can be obtained. Before conducting the
comparative experiments, the first two steps of macromodeling
(as outlined in the preliminaries section) need to be performed
on the raw data. Specifically, this involves applying the VF
and LC method to process the data and generate four matrices:
An×n, Bn×m, Cm×n, and Dm×m. The detailed information
about these matrices and the results of the VF and LC method
can be found in Tables I and II.

In this experiment, steady-state error (SS Error) is used as
the basis for comparison. According to the data in Table II, the
VF method initially produces a result with a very low steady-
state error for the test samples. However, this result does not
satisfy the passivity requirement. After applying the LC method
for passivity correction, the passivity condition is met, but the
steady-state error increases to some extent.

1https://www.github.com/yezuochang/pmm

TABLE I: Touchstone files.

Num Case Ports n m N
1 Telluride 11 56 11 258
2 test 5 30 199 30 2000
3 sp125 uniform 2 64 342 64 400
4 CKDIST TUNEDBUF 64 338 64 2000
5 pll testcase 138 727 138 300

TABLE II: Fitting results of VF and LC.

Num VF LC
SS Error Time(s) Passivity SS Error Time(s) Passivity

1 1.52e-4 0.8906 non-passive 5.91e-1 0.1875 passive
2 1.72e-7 17.78 non-passive 6.56e-5 7.64 passive
3 6.29e-4 25.59 non-passive 6.56e-4 6.906 passive
4 4.27e-3 96.89 non-passive 5.16e-3 17.21 passive
5 5.49e-4 75.23 non-passive 5.70e-4 91.79 passive

B. Passivity and Error

Table III presents the passivity results and steady-state errors
for the G-SpNN and DAO methods. It is important to note
that the steady-state error of the VF method represents the
theoretical lower bound of the errors for both the G-SpNN and
DAO methods. From the results, it is clear that both methods
maintain passivity and further reduce errors compared to the LC
method, with the G-SpNN error being closer to the VF error.
Figure 4 shows the fitting results and errors for two points (H11

and H14) in the H matrix of Case 1. It can be seen that G-
SpNN provides a better overall fit to the original data, with
errors lower than both the VF and LC method and the DAO
method.

Fig. 4: Fitting accuracy of LC, DAO and G-SpNN.

C. Convergence Speed and Memory Usage

In Table III, we present the runtime, iteration count, initial
loss, and final loss for both the G-SpNN and DAO methods.
The convergence criterion is defined as a change in the loss
function ∆Loss < 10−3. It is important to note that for Case
1, although the runtime of DAO appears shorter, the comparison
of the final loss and steady-state error shows that DAO actually
experiences pseudo-convergence and does not reach the optimal
solution. In contrast, G-SpNN demonstrates better convergence
performance. For Case 3 and Case 4, it should be noted that the
DAO method is forcibly terminated during the iteration process
due to memory overflow and does not reach the predefined
convergence criterion. For Case 5, DAO experiences a memory
overflow during the first iteration and could not complete the
iteration.



TABLE III: Comparison of G-SpNN and DAO. The “–” indicates memory overrun during execution.

Num Initial Loss DAO [6] G-SpNN
Time (s) #Iteration Final Loss SS Error Passivity Time (s) #Iteration Final Loss SS Error Passivity

1 6.17e12 17.47 93 4.8656 2.26e-3 passive 94.19 232 4.19e-2 2.46e-4 passive
2 6.50e8 104.65 7 3.86e-2 2.65e-5 passive 97.93 328 3.89e-2 2.65e-5 passive
3 17.36 2116.48 4 17.21 6.51e-4 passive 300.46 803 17.15 6.47e-4 passive
4 2.31e3 3923.14 9 2.24e3 4.97e-3 passive 176.56 469 2.14e3 4.69e-3 passive
5 78.32 – – – – – 403.35 456 77.62 5.58e-4 passive

Average 1540.44 28 565.53 1.98e-3 214.49 458 446.97 1.23e-3

Case1 Case2 Case3 Case4 Case5
0

1

2

3

4

Lo
g(

M
em

or
y(

M
B)

)

18.3

4542.0

64.5

7650.0

105.2

22649.2

202.0

20846.2

448.0

Ou
t o

f M
em

or
y

G-SpNN
DAO

Fig. 5: G-SpNN vs. DAO in memory consumption.

For the tested cases, G-SpNN achieves an average speedup
of 7.63× compared to DAO, and this speedup will increase
even further with larger test cases. Therefore, G-SpNN is highly
suitable for stable iterative convergence on large-scale cases.

We record the memory usage at each iteration to calculate
the average memory consumption, as shown in Figure 5. Due
to the high time and space complexity of the DAO method,
we limit the number of poles in the VF method for cases 3-5
to ensure computational feasibility (which leads to higher SS
Error and limits the reduction in loss). Nevertheless, it is still
evident that as the test scale increases, DAO’s memory usage
rises significantly, while G-SpNN’s memory usage remains
relatively stable. The test results show that DAO’s average
memory consumption is 171.3 times that of G-SpNN.

Fig. 6: G-SpNN vs. DAO in loss and memory over time (Case
3 and Case 4).

D. Detailed Analysis

To further compare the convergence efficiency of DAO and
G-SpNN, we use Case 3 and Case 4 as examples, taking DAO’s
runtime for these cases as the benchmark. Figure 6 shows the
loss and memory usage variations during iterations. It can be
observed that G-SpNN has a smoother convergence process
with better performance, achieving lower loss values per unit
time compared to DAO. In contrast, DAO experiences gradient
explosion, causing poor convergence and high memory usage,
with significant fluctuations leading to memory explosions and
premature termination. G-SpNN maintains significantly stable
and lower memory usage throughout.

E. Comparison with Adam

For neural network training, optimization algorithms can
leverage either first-order or higher-order gradient information.
A commonly used first-order method is Adam, which is less
sensitive to learning rate selection and performs well in many
scenarios. We conduct tests comparing G-SpNN + Adam and
G-SpNN + LBFGS on case 3 (using the same learning rate
and configurations, only substituting the gradient computation
method), with G-SpNN running for 80 seconds.

As shown in Figure 7, the Adam optimizer not only fails
to reach lower loss values but also demonstrates instability,
making its convergence behavior unpredictable. In contrast, the
LBFGS method enables G-SpNN to progress steadily toward
convergence, owing to second-order information guiding more
effective update directions.
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Fig. 7: Loss over time for G-SpNN with Adam and with
LBFGS (Case 3).

V. CONCLUSION

In this paper, we introduce a novel perspective by mapping
the passivity-enforced macromodeling problem into a neural
network training task. The proposed optimization framework,
G-SpNN, leverages advanced deep learning techniques as well
as the LBFGS method. Compared to the current SOTA frame-
work DAO, G-SpNN achieves significant improvements in both
convergence speed and memory efficiency, which showcases
exceptional capabilities to handle larger systems with a greater
number of ports effectively.
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