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Abstract—In this paper, we present a GPU-accelerated RTL simu-
lator addressing critical challenges in high-speed circuit verification.
Traditional CPU-based RTL simulators struggle with scalability and
performance, and while FPGA-based emulators offer acceleration, they
are costly and less accessible. Previous GPU-based attempts have failed
to speed up RTL simulation due to the heterogeneous nature of circuit
partitions, which conflicts with the SIMT (Single Instruction, Multiple
Thread) paradigm of GPUs. Inspired by the design of emulators,
our approach introduces a novel virtual Very Long Instruction Word
(VLIW) architecture, designed for efficient CUDA execution. We also
design a flow that maps circuit logic to the architecture in a process
analogous to the FPGA CAD flow. This architecture mitigates issues
of irregular memory access and thread divergence, unlocking GPU
potential for RTL simulation. Our solution achieves up to 64× speed-up
over the best CPU simulators, democratizing high-speed RTL simulation
with accessible hardware and establishing a new frontier for GPU-
accelerated circuit verification.

I. INTRODUCTION

As design complexity of VLSI circuits scale aggressively, the
complexity of verifying their functionality at the Register Tranfer
Level (RTL) also rockets up. However, traditional CPU-based RTL
simulators face scalability bottlenecks due to limited computation
power, caches, and parallelism inside multi-core execution [1]. For
large-scale designs, even high-performance CPU simulators struggle
to deliver the speed necessary for rapid and iterative verification.

Field Programmable Gate Array (FPGA)- and custom-processor-
based emulation has emerged as a powerful solution to accelerate
logic verification, achieving orders-of-magnitude speedup over CPU
simulation [2], [3]. By leveraging parallelism inherent in hard-
ware, emulators can validate large designs more efficiently than
software-based simulators. Despite their advantages, FPGA- and
custom-processor-based emulators [4], [5] are costly in terms of
both financial costs and setup time, limiting their accessibility and
adaptability. With these barriers, GPU-accelerated simulation has the
potential to offer a compelling alternative, given GPUs’ high degree
of parallelism, availability, and versatility. Yet, despite the evident
advantages, GPUs are rarely used for simulation due to specific
architectural challenges.

The barriers to GPU-based simulation arise from fundamental
differences between circuit characteristics and GPU architectures.
First, GPUs operate under a Single Instruction, Multiple Thread
(SIMT) model where threads execute the same instructions in
lockstep, which is optimal for workloads with homogeneous paral-
lelism. In contrast, digital circuits are inherently heterogeneous; each
circuit partition can have a unique graph structure and functional
requirements that challenge SIMT compatibility [6]. Although prior
work has sought to make circuits GPU-compatible by mapping them
into LUT-based gate level structures [7], [8], [9], [10], [11], [12], this
approach falls short in performance compared with highly optimized
CPU simulators. Additionally, some GPU-based methods simulate
multiple independent testbenches in parallel [13]. While this strategy
improves simulation throughput, it cannot help in reducing latency
which is critical for rapid turnaround in iterative design cycles.
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Fig. 1: GEM is a new, emulator-inspired methodology for flexible,
fast, and low setup cost RTL simulation.

Another challenge lies in the irregular nature of circuit graphs,
which complicates efficient data access on GPUs. GPU memory
systems are optimized for throughput, relying on coalesced and
regular memory accesses to achieve peak efficiency. However, circuit
graphs are sparse and irregular, causing frequent irregular memory
accesses that degrade GPU performance. These factors have, until
now, prevented GPUs from being viable platforms for efficient, low-
latency circuit simulation.

In this work, we propose a GPU-accelerated RTL simulator,
GEM, that overcomes these challenges and redefines the potential
of GPU-based circuit verification. The major contributions are
summarized as follows.
1) Rather than simulating circuits using LUT-based methods, we

introduce a technique that maps circuit logic into a special-
ized virtual Boolean processor with a Very Long Instruction
Word (VLIW) architecture, optimized for execution on CUDA-
compatible GPUs. This innovative architecture allows us to fully
utilize the GPU threads even for irregular circuit structures and
enabling coalesced memory accesses that are critical to high-
performance GPU operation.

2) We design a mapping flow from RTL to our virtual VLIW
architecture that mimics the partitioning, synthesis, and physical
design flow of hardware, enabling us to interpret the circuit
functionality on GPU in a way similar to the computer-aided
design (CAD) flow for FPGAs.

3) In our mapping flow, we address various critical challenges on
simulation performance by designing a set of novel algorithms,
including (i) deep long-tailed logic mapping that minimizes
synchronization, (ii) RAM mapping and depth-optimized ex-
tended AIG synthesis, (iii) width-constrained replication-efficient
partitioning, and (iv) iterative timing-driven bit placement.

Our GPU-accelerated simulator achieves a remarkable 38× and



64× speed-up compared to a leading commercial tool and Verilator,
respectively. This substantial performance improvement validates
our approach, demonstrating a successful use of GPUs in delivering
RTL simulation speed-up. GEM offers a paradigm shift in GPU-
based circuit verification, with potential applications extending into
areas such as hardware-software co-design and rapid prototyping.
Furthermore, this software-based method democratizes high-speed
RTL simulation by making it accessible on readily available and
relatively inexpensive GPU hardware, bringing high-speed simula-
tion to a broader audience of designers and researchers. To this end,
we made GEM open source under a permissive Apache license1.

II. PRELIMINARY

In digital circuit design, simulation and emulation serve as crucial
processes for verifying and evaluating functionality before hardware
manufacturing. Both approaches typically work in two stages: com-
pilation and execution.
• In the compilation stage, the behavioral RTL netlist, represented

in languages such as Verilog or SystemVerilog, is processed and
transformed into an executable simulator. This simulator models
the circuit behavior, either in software or as a hardware-mapped
design, which will then be used to execute various test scenarios.

• The execution stage involves running the compiled simulator with
specific input stimuli, provided as waveforms or recorded signal
patterns (e.g., VCD or FSDB format). The simulator or emulator
responds to these stimuli, producing output that reveals the cir-
cuit’s expected behavior, helping designers validate functionality
across test cases.
One key performance metric for evaluating simulators and emula-

tors is the simulation speed, commonly measured in simulated cycles
per second or Hertz (Hz). Depending on the underlying method-
ology, simulators are typically categorized as either oblivious/full-
cycle simulators or event-based simulators [1].
• Full-cycle simulators process the entire circuit in each simulation

cycle, regardless of whether specific parts of the circuit experience
any activity. This approach is suitable for high-throughput FPGA-
based emulators because the process is consistent across cycles.

• Conversely, event-based simulators, typically CPU-based, are op-
timized for efficiency by selectively updating only the circuit
elements that are actively switching or affected by input changes
in each cycle. This selective processing can save significant
computation time when only parts of the circuit change, but it
is generally slower than hardware-accelerated full-cycle methods.
Previous work in logic emulation and simulation has explored

various hardware and software platforms, each with distinct advan-
tages and limitations. FPGA- or custom-processor-based emulation
is known for its impressive performance, often achieving emulation
speeds of 1 MHz or more [4], [5]. However, the significant cost of
dedicated FPGA hardware and the extensive compilation times make
this approach less accessible and time-efficient for iterative design
workflows. For example, it can take days to compile a design into
a FPGA-based emulator. In contrast, CPU-based simulators offer
flexibility and ease of setup but are generally slow, often failing to
scale well with increasing circuit complexity.

Efforts to parallelize CPU-based simulators, primarily through
circuit partitioning, the Chandy-Misra-Bryant (CMB) algorithm, and
dataflow optimization [14], [15], [16], [17], have met with only
moderate success. Although these approaches can exploit multicore

1https://github.com/NVlabs/GEM

CPUs, they face significant bottlenecks: the CPU frontend often
becomes overwhelmed by the sheer volume of compiled circuit code,
and parallelism is constrained by the limited memory bandwidth in
standard multicore CPUs, capping the potential performance gains.

Efforts to leverage GPU’s data parallelism for logic simulation
have aimed to address the performance gap but have generally
been confined to gate-level simulation using lookup-table-based
methods [7], [8], [9], [10], [11], [12]. This approach relies on GPU
threads querying precomputed truth tables, which align with the
SIMT architecture of GPUs. However, this method presents serious
limitations: gate-level simulations are typically much slower (10–
100×) than RTL-level simulations, as the latter operate on a higher
abstraction level. Consequently, while previous GPU-based methods
show promise at the gate level, they fail to match the performance
needed for practical RTL verification tasks.

Another line of GPU-accelerated simulation instead transpiles
RTL directly to CUDA code. As this results in SIMT-incompatible
GPU kernels, they either choose to forfeit data parallelism com-
pletely [6] or use independent workloads to fill the data parallelism
dimension [13]. These methods require special inputs such as
independent stimulis or simple blocking RTL code and are thus not
good at reducing simulation latency which is critical in verification
turnaround.

III. ALGORITHM

We present a novel GPU-accelerated RTL simulator, GEM, that
addresses the fundamental mismatch between circuit simulation and
GPU architecture. Our core idea is a virtual Boolean processor that
acts as a reconfigurable and highly-parallel container of Boolean
logic. This virtual Boolean processor is programmed with a VLIW
instruction set, and is designed to fit GPU parallelism. Specifi-
cally, its bitstream can be interpreted using high performance GPU
kernels on a CUDA-compatible GPU. Section III-A describes the
key motivation behind the design of this architecture and how it
solves the SIMT and memory access challenges. To map any input
RTL design to the virtual Boolean processor, we design a process
containing synthesis (Section III-B), partitioning (Section III-C),
physical design (Section III-D), and finally bitstream generation and
interpretation (Section III-E). This flow has a beautiful analogy to
the CAD flow of FPGAs.

A. A Virtual Boolean Machine

GEM introduces a GPU-friendly virtual Boolean machine that is
critical in bridging the gap between circuit functionality and GPU
execution. Following are our key observations that lead to its design.

Observation 1. Every Boolean function can be implemented using
only a fixed set of operators. Such an operator set is called functional
complete. For example, {AND, INVERT} is a functional complete
operator set. By compiling the logic into an intentionally limited set
of operators, we can use GPU’s built-in logic instructions to execute
them, instead of having to query look-up tables from memory.

Observation 2. Irregular memory access is inherently unavoidable
due to the heterogeneous nature of general circuit graph. However,
irregular access inside GPU shared memory (only accessible by
a local thread block) is much less costly than irregular global
memory access. Rearranging the simulation so that most irregular
accesses happen locally inside a thread block will thus help greatly
in reducing memory overhead.

Based on Observations 1–2, our modeling of simulation is shown
in Figure 2. We regard the general simulation task as a set of logic
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partitions, each in a reasonable size that can be handled with one
Boolean processor core (i.e., one GPU thread block). Inside each
partition there is an extended and-inverter graph (E-AIG) with AND
gates, INVERT gates, D flip-flops (FFs), and RAM blocks. E-AIG
can efficiently represent any synthesizable circuit with combinational
and synchronous sequential logic. We note that although RAM
blocks can be polyfilled using only FFs and decoder logic, this
process is extremely costly for large RAMs and thus we introduce
native support to RAM blocks in E-AIG.

always @(posedge clk) begin
  if(en) begin a<=b+c[3:0]; end
end
assign out = sel?a:c;
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Fig. 2: GEM regards every RTL design as a set of partitions. Each
partition is an extended and-inverter graph (E-AIG).

Inside the E-AIG, most of the computation lies in the combina-
tional logic AIG. Our Boolean processor should support efficient
execution of AIGs by exploiting the simplicity of gate choices and
the common AIG properties.

Observation 3. In addition to thread-level parallelism, word-level
parallelism can provide orders-of-magnitude more logic processing
power. For example, suppose a,b,c are three 32-bit unsigned in-
tegers, calculating r=(a AND b) XOR c is performing 32 And-
then-Invert instructions in parallel using a,b as inputs and c as a
constant that encodes whether to flip each resulting bit.

Observation 4. The logic depth of an AIG can be 50–100 for
common circuits. However, the gate distribution among the logic
levels is extremely imbalanced. A large portion of the gates reside
in a few frontier levels whereas only a few gates are accountable for
the rest of the levels. We call this the long-tailed nature of circuit
graphs.

Levelization-based GPU algorithms are frequently used to process
circuit graph. They divide the circuit into a series of logic levels each
containing a batch of independent calculations. Between two con-
secutive logic levels, there needs to be a bulk synchronization and a
permutation to align the level outputs with the next-level’s inputs. As
a result, Observation 4 turns out to be very harmful because it leaves
most of the levels underutilized and incurs large synchronization
overhead. In light of Observations 3–4, we propose a boomerang-
shaped executor layer as shown in Figure 3. It is the central
reconfigurable logic executor in each virtual Boolean processor core,
consisting of interleaved bit permutations and boomerang layers. The
virtual Boolean processor core maintains up to 8,192 bits of circuit
states. Inside each boomerang layer, the 8,192 bits are recursively

folded using bitwise AND and then bitwise XOR with an external
constant. The fold is repeated by 14 times until we get a single bit.
It can be observed that even a single boomerang layer is able to
simulate up to 14 levels of logic. Their shape also fits nicely with
the long-tailed nature of circuit graph. Experimentally, boomerang
layer reduces the number of bit permutations and synchronizations
inside a GPU thread block by more than 5×.
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read constant & bitwise XOR 
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Fig. 3: The boomerang-shaped executor layer in GEM can greatly
reduce the number of bit permutations and synchronizations for deep
and long-tailed logic.

B. Synthesis

To compile an RTL design for GEM execution, our first step is
to map it to the E-AIG format. While AIG is a widely used format
in logic synthesis research, there is no existing flow that synthesizes
RTL to extended AIG with clocked FFs and RAM blocks. The main
challenges are two fold: (1) The behavioral RAM constructs in RTL
netlist need to be identified and mapped to our fixed RAM block
type (13 bits address and 32 bits data) to minimize thread divergence.
For a general RAM in RTL, multiple such RAM blocks need to be
instantiated and adapter logics need to be introduced automatically.
(2) As we will show in later sections, our simulator requires high-
quality synthesis results in order to execute efficiently. Specifically,
we require the depth of AIG to be as low as possible.

To meet the above requirements, we develop a synthesis flow
that exploits two existing synthesis flows for FPGA and ASIC, as
shown in Figure 4. We use open-source Yosys synthesizer [18] to
deal with RAM mapping. We create a fake FPGA target platform and
define our available RAM block. Yosys will take the definition and
handle the RAM mapping. Then without further LUT mapping, we
can write out the intermediate RTL netlist that only has the RAMs
mapped. Next, we handle the RAM-mapped RTL with another ASIC
synthesis flow. This time we give the synthesizer a fake ASIC library
that only contains AND, OR, INV, and FF gates. This fake library
has a simple timing model that defines AND and OR gate delays as
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1ps and INV gates as 0ps. Timing-driven synthesis is thus equivalent
to depth optimization. In our experiments, we found commercial
ASIC synthesizers outperform Yosys in this second step.

Yosys
Fake FPGA target:

one sync RAM block w/
13 bits addr, 32 bits data

always @(posedge clk) begin
  rd <= mem[rd_addr];
  if(wr_en1 & wr_en2) begin mem[wr_addr] 
<= wr; end
end

$__RAMGEM_SYNC ramblock1(
  .clk(clk), .rdout(rd), .wraddr(…),
  .wr_en(wr_en) …
);
assign wr_en = wr_en1 & wr_en2;

Yosys, DC,
or any other ASIC synthesizer

Fake ASIC target:
only AND, OR, INV,
DFF, DFFSR gates

Gate-level Verilog represented E-AIG
Fig. 4: We exploit existing FPGA and ASIC synthesis flows to
efficiently transform RTL design into E-AIG.

C. Partitioning

Partitioning the hardware to multiple Boolean processor cores is
a crucial step in our simulator because it ensures locality for data
movement. As GPUs do not have efficient inter-block communica-
tion, we should ideally make partitions independent of each other
and only communicate once per simulated cycle. The goal is made
possible with a recent CPU-based parallel simulator RepCut [17],
whose basic idea is to allow some duplicated logic in order to
remove inter-partition dependency. To adapt the idea to a GPU
simulator, we face two new challenges.

Firstly, the number of GPU thread blocks is much larger than
the number of CPU cores. However, the replication cost (i.e., the
relative size of duplicated logic over the original circuit size) grows
quickly with the increased granularity of partitions. For example,
RepCut [17] reports that only 1.30% cost is needed to partition a
design into 8 threads, but the cost rises to 10.95% when 48 threads
are used. In our experiments, we found this cost quickly surges to
over 200% when we have to partition a design into 216 blocks,
which is a minimal requirement to fully utilize a modern GPU.

To scale RepCut to over 200 partitions, our solution is to extend
it to multiple stages as shown in Figure 5. We cut the circuit graph
at one or more levels in the middle. We treat the nodes at the cut
level as endpoints and run RepCut separately for each stage. We
found that with the cost of 1 additional synchronization, we reduce
the replication cost from 200% to less than 3% when partitioning a
500K gates design into 216 blocks. For even larger designs, more
stages might be needed but it is easy to strike a balance between
synchronization and replication costs with heuristics.

Secondly, the goal of partitioning to Boolean processors is dif-
ferent from the original RepCut, which aims at balancing the size
of partitions. Instead, we require that all partitions are mappable to
the boomerang-shaped executor layer. This effectively constrains the
width (8192 bits, see Figure 3) instead of total size of partitions. It
is difficult to modify a hypergraph partitioner’s objective to logic
widths as this metric does not have nice additive property. Instead,
we make no change to the partitioner itself and keep the original size

Replicated nodes

Intermediate
Stage

Fig. 5: By introducing one additional stage, the logic duplication of
RepCut can be remarkably reduced, unlocking enough parallelism
for GPU utilization.

objective. We run an additional postprocessing algorithm after the
partitioner to align the objectives to our logic width need. We show
our idea in Algorithm 1, which is based on empirically trying to
merge the resulting partitions after a round of excessive partitioning.
After running the algorithm, it is easy to guarantee that each partition
has at least 50% effective bit utilization.

Algorithm 1: Partition merging

1 Partition the design excessively so that each partition is
mappable;

2 for each partition p do
3 Sort other unvisited partitions by overlap size with p;
4 for partition q with large-to-small overlap do
5 Try merging q with p, if the result is mappable,

commit the merge;

D. Logic Placement

Given an E-AIG partition, our logic placement algorithm imple-
ments the logic onto a series of reconfigurable boomerang layers
(Figure 3). Our objective is to map all AIG nodes while reducing
the total number of boomerang layers required. In this section, we
present an iterative timing-driven placement algorithm in GEM to
map AIG to boomerang layers.

We show our basic idea of bit mapping in Figure 6 using a 4-
level small boomerang layer as an example. We start with an empty
boomerang layer as Figure 6 (1). Then, we choose a bit from E-
AIG at logic level 4 and map it to the empty slot in boomerang
executor at level 4. To do so, we recursively map the inputs of the
being-mapped bit to upper levels of the executor. In the worst case,
the fan-in cone of the being-mapped bit forms a perfectly balanced
binary tree, thus occupying all bits of a boomerang layer. However,
such worst case never happens in practice, as most bits in AIG have
a pair of inputs that reside in different logic levels (i.e., imbalanced).
As a result, there leaves a lot of free space after mapping one bit,
and such vacant bits can be used to map other bits as shown in
Figure 6 (2)–(4).

Based on the above bit mapping primitive, we use Algorithm 2 to
map a whole AIG partition into a series of boomerang layers. We
iteratively try to map the fan-in frontier of current AIG subgraph
into a new empty layer. After the layer is full, we remove the
nodes that are already realized by current layers, create a new AIG
subgraph of remaining nodes, and repeat the process until all nodes
are mapped. We define timing criticality of a node as its logic depth
on the reversed AIG subgraph. To reduce the number of layers, we
prioritize the mapping of nodes on timing-critical paths (Figure 6 (5)
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Fig. 6: Example of a placement iteration (1)–(4) and illustration of
timing-driven bit placement (5).

and Algorithm 2 lines 7–8) according to the constantly updated
timing criticality of nodes.

Algorithm 2: Iterative multi-boomerang-layers mapping

1 Input AIG;
2 Initialize node set frontier as input ports of the AIG;
3 while AIG not all mapped do
4 Make a new empty boomerang layer;
5 for Level i in boomerang layer from bottom to top do
6 while Level i is not full do
7 Update timing criticality (reverse logic depth) of

the remaining AIG;
8 Choose the most timing-critical unmapped node

in AIG with logic level i, and map it to the
boomerang layer;

9 Add the boomerang layer to the list of layers;
10 Update frontier to the input ports of the current

unrealized AIG subgraph;

E. Bitstream Generation and CUDA Interpretation

The synthesized and placed circuit from previous sections are then
transformed into a binary format that will be loaded and interpreted
by our GEM CUDA kernel. In one way, this process is analogous to
the bitstream generation of FPGA designs as we are encoding and
serializing the wiring (boomerang layer setups) of a reconfigurable
hardware. In another way, this process might also be called a binary
assembler of software programs, as the resulting bitstream will be
interpreted on a GPU by a software-only approach like inside a
virtual machine.

We design a domain-specific instruction set architecture (ISA)
for GEM to assemble the Boolean processor programs. This is a
VLIW ISA that has 3 instruction length variations: 8192, 16384,
and 32768 bit. It is designed for a GPU thread block with fixed 256
threads to load and interpret with high throughput. A 8192-bit GEM
ISA instruction is loaded by 256 threads in lockstep by performing
one coalesced 32-bit global memory read. For 16384- or 32768-bit
instructions, 256 threads similarly perform a coalesced 64- or 128-
bit global memory read, respectively. All these memory loads are
fully coalesced and natively supported in CUDA.

#boomerang
layers

#write 
outs

#RAM 
blocks

GEM.core.initialize.8192
First RAM 

offset
Global RD 

rounds

Writeout 
LOC 0

0 32 64 96 128 160

[..Pad 0..]
Writeout 
LOC 1 … Writeout 

LOC 255

4096 4112 8176 8192

GEM.global.state.read.16384
Global 
read

offset 0

Bit valid 
mask 0

0 32 64 96 128

Global 
read

offset 1

Bit valid 
mask 1 …

Global 
read

offset 255

Bit valid 
mask 255

16320 16352 16384

GEM.local.bit.permute.8bit.32768
Bit 0-7 

for thread 0
Bit 0-7

for thread 1

0 128

… Bit 0-7
for thread 255

32640 32768

Bit 0’s index Bit 1’s index

0 16 32
… Bit 7’s index

112 128

GEM.boomerang.fold.32768
XOR.A XOR.B OR.B 0 [Pad]

0 128

✖

256
32768

result = (A^XOR.A) & ((B^XOR.B) | OR.B)

Fig. 7: Instruction bit layout: initialization, global state reading, local
bit permutation, and boomerang folding.

TABLE I: Design statistics and GEM mapping results.

Design #E-AIG Gates #Levels #Stages #Layers #Parts Bitstream

NVDLA 668,746 62 1 9 52 11.2 MB
RocketChip 346,687 82 1 13 39 9.2 MB
Gemmini 1,831,381 148 1 19 143 44.4 MB
OpenPiton1 682,646 66 2 10 119 18.4 MB
OpenPiton8 5,479,795 66 2 13 947 162.4 MB

Due to page limit, we cannot include a complete ISA docu-
mentation. Figure 7 shows some examples of instruction bit lay-
out. 8192-bit instruction is used to initialize a thread block with
necessary information, including the number of boomerang layers,
RAMs, and state size of a partition. This is followed by a few
16384-bit instructions to read the input ports of the E-AIG from
global memory, only once per cycle. Then, bit permutations and
boomerang folding constants are provided with interleaved 32768-
bit instructions. The bit permutations are encoded as a compressed
form of source bit locations indexed within 8192 thread-local bits in
GPU shared memory. The boomerang folding provides 3 constants,
XOR.A, XOR.B, OR.B for each thread, controlling the behavior of
the word-parallel AND gates. The OR.B is used to bypass operand
B to implement dashed lines in Figure 6 (4).

In the CUDA kernel implementation, we note two important
optimizations. The first is the use of wide global read instructions
and aligned structs that allow coalescing to work correctly. The
second is the use of cooperative groups [19] to implement device-
level synchronization in cycle and stage boundaries in order to
bypass kernel launching overhead.

IV. EXPERIMENTAL RESULTS

We implement GEM from scratch in Rust (for the mapping flow)
and CUDA (for the VLIW interpreter kernel). We evaluate GEM’s
performance on a variety of open-source RTL benchmarks listed
in Table I, including NVDLA [20] (a deep learning accelerator),
RocketChip [21] (a RISC-V CPU), Gemmini [22] (another deep
learning accelerator), and an internal multi-core CPU design derived
from OpenPiton [23]. For Chisel designs like RocketChip and
Gemmini, we generate RTL using Chipyard [24]. We use official
benchmark workloads provided by these designs for evaluation.

Table I lists the size of the designs. To estimate the actual RTL
circuit footprint, we show the number of logic gates and logic
levels after our GEM synthesis (Section III-B). Table I also lists
the statistics after finishing the GEM mapping flow, including the
number of RepCut stages, boomerang layers, partitions, and the size
of the bitstream. The number of boomerang layers is 6–8× smaller
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TABLE II: Simulation speed (Hz) and speed-up (compared to GEM-A100) comparison between GEM, a commercial tool (Comm.), Verilator,
and GL0AM. NVDLA only simulates correctly with an old 3.912 version of Verilator without multi-threading [20].

Design Test Name Comm.
Verilator GL0AM GEM

Comm./GEM
Verilator/GEM

GL0AM/GEM8 Threads 1 Thread A100 A100 3090 8 Threads 1 Thread

NVDLA

dc ...6x3x76x270 int8 0 2,956 N/A 1,010 2,175 65,385 55,716 22.12 N/A 64.76 30.06
dc ...6x3x76x16 int8 0 4,712 N/A 1,060 3,534 65,385 55,716 13.88 N/A 61.69 18.50
img 51x96x4... int8 0 7,848 N/A 1,169 8,213 65,385 55,716 8.33 N/A 55.93 7.96
cdp 8x8x32 lrn3 int8 2 1,683 N/A 1,512 7,443 65,385 55,716 38.85 N/A 43.24 8.79
pdp ...max int8 0 3,391 N/A 1,555 8,353 65,385 55,716 19.28 N/A 42.04 7.83

RocketChip

dhrystone 7,262 9,517 4,639 7,275 52,403 51,695 7.22 5.51 11.30 7.20
mt-memcpy 11,672 8,845 4,790 6,584 52,403 51,695 4.49 5.92 10.94 7.96
pmp 4,955 8,220 4,529 6,034 52,403 51,695 10.58 6.38 11.57 8.68
qsort 6,764 8,342 4,657 7,142 52,403 51,695 7.75 6.28 11.25 7.34
spmv 11,305 7,534 4,719 7,420 52,403 51,695 4.64 6.96 11.10 7.06

Gemmini
tiled matmul ws full C 5,188 9,638 2,460 11,618 25,608 17,889 4.94 2.66 10.41 2.20
tiled matmul ws perf 13,205 10,554 2,537 13,227 25,608 17,889 1.94 2.43 10.09 1.94

OpenPiton1

ldst quad2 13,871 5,355 3,415 8,400 36,583 31,339 2.64 6.83 10.71 4.36
fp mt combo0 10,569 5,402 3,358 7,303 36,583 31,339 3.46 6.77 10.90 5.01
asi notused priv 5,167 5,025 3,157 4,624 36,583 31,339 7.08 7.28 11.59 7.91

OpenPiton8

ldst quad2 4,820 1,078 315 5,172 7,285 4,694 1.51 6.76 23.14 1.41
fp mt combo0 7,666 1,080 316 7,203 7,285 4,694 0.95 6.74 23.06 1.01
asi notused priv 1,441 1,004 306 1,920 7,285 4,694 5.05 7.25 23.85 3.79

Average Speed-up - 9.15 5.98 24.87 7.72

than the logic depth (e.g., reduced from 148 to 19 for Gemmini).
We note that the GEM bitstream is a very concise format for circuit
logic. It takes only 162.4 MB of GPU memory to store the whole
assembled GEM bitstream (Section III-E) even for our largest design
OpenPiton8 which has over 5 million logic gates and is over 800 MB
in flattened gate-level Verilog. As a result, even lowest-end GPUs
have enough GPU memory to simulate large designs with GEM.

We compare the performance of GEM against a set of strong
baselines, including a leading commercial tool2, Verilator latest
5.028 [14], and the current state-of-the-art GPU-accelerated gate-
level logic simulator GL0AM [12]. All experiments are run on 48
cores of Intel Xeon Gold 6136 CPU. We run Verilator with up to 8
threads as we observe that 16-threaded Verilator is only 80%–95%
the speed of 8 threads. This performance degradation highlights
the inherent scalability bottleneck of CPU parallelism on highly-
complex real designs as also identified by prior works. We run
the commercial tool with default single core similar to the settings
in [12], [11] as multi-threaded version is unstable and crashes during
some simulations. We evaluate GEM on both one NVIDIA A100
and one NVIDIA RTX 3090. A100 demonstrates GEM’s current
peak performance and 3090 shows its performance with a more
accessible GPU alternative.

Table II gives a comprehensive performance comparison. We are
on average 9.15×, 5.98×, and 24.87× faster than the leading com-
mercial tool, 8-threaded Verilator and 1-threaded Verilator respec-
tively. The peak speed-ups happen on the deep-learning accelerator
NVDLA where we are 64.76× and 38.85× faster than Verilator
1 thread and the commercial tool. GEM on 3090 has comparable
performance with A100 except on the largest design, OpenPiton8,
with the highest resource pressure on GPU.

The current version of GEM has limitations which we plan to
address in the future. For example, we found that the speed-up
ratio of OpenPiton8 is inferior to OpenPiton1. This is because the
workload of OpenPiton8 does not keep all 8 cores busy. Reported by
the commercial tool, we observe 8,612 signal events per cycle for 1

2We do not disclose the name of the commercial tool due to license
agreements.

core but only 28,789 events (3.3×) for 8 cores. As an oblivious
full-cycle simulator, GEM has a consistent simulation speed for
any stimuli, whereas our baselines are event-based simulators that
run faster if the design is not actively switching. In the future,
we plan to explore event-based pruning in GEM. NVDLA shows
the best speed-up GEM can achieve because all RAMs inside it
are mapped to E-AIG RAM blocks, but the other 4 designs have
RAMs with asynchronous read ports that can only be implemented
inefficiently with FFs and decoder logic. As asynchronous RAMs are
not available in ASIC or FPGA deployment, we regard NVDLA’s
performance as representative for real-world designs.

V. CONCLUSION

This paper presents GEM, a novel emulator-inspired methodology
for GPU-accelerated RTL simulation. GEM bridges the fundamental
discrepancy between GPU’s SIMT data parallelism and the het-
erogeneous and irregular circuit logics, by designing a CUDA-
interpretable virtual VLIW logic processor and a mapping flow
analogous to the CAD flow of FPGAs, with novel algorithms
addressing deep long-tailed logic, RAM mapping, width-constrained
partitioning, timing-driven bit placement, etc. GEM achieves supe-
rior performance compared to cutting-edge commercial and open-
source simulators.

The framework of GEM is extensible and many improvements
are possible as future works, including native arithmetic operations,
multi-GPU support, CUDA software pipelining, 4-state simulation,
etc. We will open-source GEM for democratizing high-performance
RTL verification as well as fostering further research.
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