
HeLEM-GR: Heterogeneous Global Routing with Linearized
Exponential Multiplier Method

Chunyuan Zhao
1
, Zizheng Guo

1,2
, Rui Wang

3
, Zaiwen Wen

4
, Yun Liang

1,2,5
, Yibo Lin

1,2,5

1
School of Integrated Circuits, Peking University

2
Institute of EDA, Peking University

3
School of Mathematics, Southwestern University of Finance and Economics

4
Beijing International Center for Mathematical Research, Peking University

5
Beijing Advanced Innovation Center for Integrated Circuits

zhaochunyuan@stu.pku.edu.cn, {gzz,wenzw,ericlyun,yibolin}@pku.edu.cn, wangr@swufe.edu.cn

ABSTRACT
Global routing (GR) plays an important role in the VLSI design

flow. It not only serves as guidance for the follow-up detailed

routing but also provides early design feedback for floorplanning

and placement. Global routing engines are desired to provide a

high-quality solution within a short time. With the design com-

plexity growing, it becomes increasingly challenging to resolve

routing overflow within affordable runtime. For example, ISPD

2024 GPU/ML-enhanced global routing contest has released large-

scale industrial cases, which contain up to 50 million cells and

60 million signal nets, causing huge challenges to existing rout-

ing algorithms. In this paper, we propose HeLEM-GR, based on

the linearized exponential multiplier method and heterogeneous

routing kernels to achieve high-quality and ultrafast routing solu-

tions. Our linearized exponential multiplier method can quickly

reduce routing overflow. The routing process is extremely fast

with GPU-enhanced massive parallelization. Experimental results

demonstrate that we can achieve 4.8%-5.8% better quality scores

and 1.62×-2.07× speedup compared with the top-3 winners in the

ISPD 2024 contest.

1 INTRODUCTION
Routing is critical to modern very-large-scale-integrated (VLSI)

design flow. It decides the wire and via connection between differ-

ent components in a circuit layout. As the design scale increases

rapidly, routing becomes extremely time-consuming and hard to

achieve design closure.

Routing is usually divided into global routing (GR) and detailed

routing (DR) [2]. Global routing serves as a fast routing planning

to generate guidance for detailed routing to reduce the search

space of each net. Detailed routing then takes the guidance as

input and finishes the physical wiring to connect pins in each

net. Global routing is also used for routability estimation at early

design stages like placement [3–9]. With growing design scales

and complexity, it becomes increasingly challenging for global

routing to resolve routing overflow within a short time. Therefore,

the quality and efficiency of global routing is critical to design

closure, as it impacts both its proceeding and succeeding design

stages.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1077-3/24/10. . . $15.00

https://doi.org/10.1145/3676536.3676650

Layer 2

Layer 1

(a) GCell grids for routing.

Unstacked via Stacked via

(b) Unstacked and stacked vias.

GCell Horizontal GCell edge (wire) Vertical wireVia

Figure 1: Illustration of the global routing problem [1].

The literature on global routing can be roughly categorized

into three perspectives: grid models, routing kernels, and routing

schemes. Mainly two types of grid models have been investigated,

i.e., 2D grids and 3D grids. The 2D grid model projects 3D rout-

ing grids into 2D space. Many routers such as FastRoute 4.0 [10],

BoxRouter 2.0 [11], NCTU-GR 2.0 [12], and SPRoute 2.0 [13] are

based on 2D grids (a.k.a 2D routers), which perform layer assign-

ment after routing all nets on the 2D space. Other routers such as

FGR [14] and CUGR [15] try to directly route on 3D grids to si-

multaneously determine the routing paths and layers for each net.

In general, 2D grids have much smaller search space to achieve

efficient routing, while 3D grids can have a better view of the con-

gestion at different layers. TritonRoute-WXL [16] uses a hybrid

model, which generates initial routing results on 2D grids and

then refines it on 3D grids.

Various studies have also explored techniques to speedup rout-

ing kernels for each net, including maze routing and pattern

routing. Lee’s algorithm [17] is the basic maze routing kernel in

many routers, but it is very time-consuming. Follow-up studies

try to prune the search space by limiting the bounding boxes [12],

coarse-fine grids [15], etc. Pattern routing [12, 13, 15, 18] directly

uses specific routing patterns like L shape and Z shape to quickly

route those ‘easy’ nets. EDGE [19] proposes a DAG-based routing

method to generalize different patterns by modifying the routing

graph. Some studies have explored different CPU multi-threading

strategies to perform the routing kernels for different nets con-

currently [13, 15, 20]. A few studies also propose to accelerate

routing kernels on heterogeneous computing resources like GPU

and FPGA, including maze routing [21–24], and L/Z shape pattern

routing [24, 25]. However, these pattern routing kernels cannot

generate a good enough solution, andmaze routing kernels are not

efficient enough when facing large-scale global routing problems.

Given the grid models and routing kernels, most routers adopt

the rip-up and reroute scheme to minimize overflow iteratively.

Studies like [10, 12, 13, 26] integrate a history cost into a heuris-

tic function to guide routing kernels to escape from congested

regions. Other work like [27] tries to explore good routing orders

to reduce overflow. As the heuristic cost function may not have

https://doi.org/10.1145/3676536.3676650

mathematical insights, recent studies such as [28–30] formulate

mathematical programming models to derive how to update the

cost function during the rip-up and reroute scheme. Some studies

such as [31] formulate the GR problem as a multicommodity flow

problem and get a routing solution by multicommodity flow al-

gorithm. However, the aforementioned methods still encounter

challenges like oscillation and slow convergence in resolving

overflow due to the increasing complexity of modern designs.

To stimulate research on global routing, the ISPD 2024GPU/ML-

enhanced global routing contest held by NVIDIA has released

large-scale industrial designs, containing up to 50 million cells

and 60 million signal nets, which is extremely challenging for

existing routing algorithms. To handle these large scale cases in

an affordable time, we propose HeLEM-GR, which formulates a

2D routing algorithm based on the linearized exponential multi-

plier method and utilizes heterogeneous CPU-GPU platforms to

achieve ultrafast routing. We summarize our main contributions

as follows:

• We propose a linearized exponential multiplier (LEM for

short) method for the 2D routing problem to minimize

wirelength and overflow. This LEM framework is general

to integrate any routing kernels.

• We propose well-optimized batched routing kernels includ-

ing L shape and 3-bend routing for GPU parallelization.

Our RMQ-based 3-bend routing algorithm on GPU im-

proves the runtime complexity from linear to logarithmic

and thus mitigates the workload imbalance issue.

• We propose a GPU-accelerated layer assignment algorithm

based on the sweep operations by describing it as a short-

est path problem on a directed grid graph.

Experimental results demonstrate that we can achieve 4.8%-5.8%

better quality scores (considering wirelength, vias, and overflow)

and 1.62×-2.07× speedup compared with the top-3 winners in the

ISPD 2024 contest [1].

The rest of this paper is organized as follows. Section 2 reviews

the background and formulates the problem in our work. Sec-

tion 3 provides a thorough explanation of the proposed routing

methods. Section 4 validates our approach with comprehensive

experimental results. Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we will introduce the global routing problem and

overall flow of our router.

2.1 Global Routing Problem
As shown in Figure 1, the 3D multi-layer design is partitioned into

small rectangular parts called GCells by evenly spaced horizontal

and vertical grid lines. We call the edge between two GCells on

the same layer wire, and the edge between two GCells with the

same 2D coordinates on adjacent layers is called via. The capacity

of a wire is the number of tracks that can go through this edge.

There is no capacity constraints on a via, but a via utilizes routing

resources on its associated wire, which will be further discussed

later. Global routing problem can be defined as follows. Given

a multi-layer design and a set of nets to be routed, find a path

for each net to connect all its pins. Meanwhile, the wirelength

and via usage should be minimized without overflow (capacity

constraints violation).

Pin Access Analysis and

Construct 2D graph

Net Decomposition

Preparation

Netlist

Guides

CPU

LR Framework for 2D Routing

Sweep-based

 Layer Assignment

GPU

2D Routing

LEM Framework for 2D

Routing

RMQ-based

3-Bend Routing

Routing Kernels

Update Parameters

LEM Framework

No

Yes

Next Stage

Converged

L Shape Routing

Routing Kernels

Update Parameters

LR Framework

No

Yes

Next Stage

Converged

Figure 2: The overall flow of our router.

2.2 Evaluation Metrics
In this work, we adopt the same evaluation method as the ISPD

2024 GPU/ML-enhanced global routing contest [1] as follows.

Unstacked and stacked vias: As shown in Figure 1(b), un-

stacked vias [32] are defined as vias that establish connections

with one or more horizontal or vertical wires. In contrast, stacked

vias only connect to other vias. A stacked via needs to occupy

half of the routing demand on its associated wires.

Quality score: Quality score is measured by the weighted sum

of total wirelength, via utilization and overflow penalty,

𝑆𝑐𝑜𝑟𝑒 = 𝑤1 ·𝑇𝑜𝑡𝑎𝑙𝑊𝐿 +𝑤2 ·𝑉𝑖𝑎𝐶𝑜𝑢𝑛𝑡 +𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝑆𝑐𝑜𝑟𝑒, (1)

where𝑇𝑜𝑡𝑎𝑙𝑊𝐿 is the sum of wirelength for all nets and𝑉𝑖𝑎𝐶𝑜𝑢𝑛𝑡

is the total number of vias. Parameters 𝑤1 and 𝑤2 are input

for each design to adjust the weights of different metrics. The

𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝑆𝑐𝑜𝑟𝑒 is the sum of 𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐶𝑜𝑠𝑡 on all edges. For an

edge on layer 𝑙 with routing demand 𝑑 and capacity 𝑐 ,

𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐶𝑜𝑠𝑡 (𝑐, 𝑑, 𝑙) = 𝑂𝑣 𝑓 𝑙𝑊𝑙 · 𝑒𝑠 (𝑑−𝑐) (2)

, where 𝑠 is 0.5 for 𝑐 > 0, 1.5 for 𝑐 = 0. 𝑂𝑣 𝑓 𝑙𝑊𝑙 denotes the

overflow weight for GCell edges at layer 𝑙 , which is provided as

input for each design. Larger 𝑂𝑣 𝑓 𝑙𝑊𝑙 indicates a larger penalty

on overflow at this layer.

3 ALGORITHM FRAMEWORK
In this section, we will first introduce our overall flow. Then, we

explain the details about our LEM for routing, GPU-accelerated

routing kernels, and GPU-accelerated layer assignment.

3.1 Overall Flow
Fig 2 presents the overall flow of our router, which can be divided

into 3 phases: preparation, 2D routing, and layer assignment.

Only the first phase runs on a CPU, and the other phases run on

a GPU. After simple pin access analysis and net decomposition

using FLUTE [33], we adopt the 2D soft capacity method in [13]

to compact 3D graph to 2D graph. The soft capacity technique

helps to get a 3D-routability-driven 2D routing result. Then, we

perform 2D routing based on a Lagrangian relaxation framework

and a LEM framework with different routing kernels. Finally, we

perform sweep-based layer assignment to generate 3D routing

guides.

3.2 Lagrangian Relaxation for Routing
Let 𝑁 be the set of nets, 𝐸 be the set of edges, 𝑥𝑛,𝑒 ∈ {0, 1} be
whether net 𝑛 uses edge 𝑒 , 𝐶𝑎𝑝𝑒 be the capacity constraints of

edge 𝑒 and𝑤𝑒 be the wirelength cost of edge 𝑒 . The problem of

routing of two-pin nets is formulated as an ILP problem given as

follows [30]:

min

𝑥𝑛,𝑒

∑︁
𝑒∈𝐸

𝑤𝑒

∑︁
𝑛∈𝑁

𝑥𝑛,𝑒 , (3a)

s.t.

∑︁
𝑛∈𝑁

𝑥𝑛,𝑒 ≤ 𝐶𝑎𝑝𝑒 ,∀𝑒 ∈ 𝐸, (3b)

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, (3c)

𝑥𝑛,𝑒 ∈ {0, 1}, (3d)

where the detailed formats of constraints (3c) are omitted for

the brevity (refer to [30] for details), which will not affect the

following derivation. Let 𝜒 be the feasible set for constraints (3c)

and (3d) of the problem above, i.e.,

𝜒 = {x ∈ {0, 1} |𝑁 | |𝐸 | |x satisfies (3c)}. (4)

We then define the characteristic function of set 𝜒 as,

𝐼𝜒 (x) =
{
0 x ∈ 𝜒,
+∞ x ∉ 𝜒.

(5)

By introducing a Lagrangianmultiplier y ∈ 𝑅 |𝐸 | with∀𝑒 ∈ 𝐸,𝑦𝑒 ≥
0 in the constraints (3b), we write the problem (3) as follows: The

Lagrangian function of problem (3) can be written as [34],

𝐿(x, y) =
∑︁
𝑒∈𝐸

𝑤𝑒

∑︁
𝑛∈𝑁

𝑥𝑛,𝑒+
∑︁
𝑒∈𝐸

𝑦𝑒

(∑︁
𝑛∈𝑁

𝑥𝑛,𝑒 −𝐶𝑎𝑝𝑒

)
+𝐼𝜒 (x). (6)

Solving the dual problem

max

y≥0
min

x
𝐿 (x, y) (7)

will lead to the optimal solution of the problem (3). We follow the

same procedure as [30] to solve (7). The basic idea is to iterate

between two phases: 1) routing all nets using a routing kernel; 2)

updating the Lagrangian multiplier y using the gradient ascent

method:

𝑦𝑘+1𝑒 = max

{
0, 𝑦𝑘𝑒 +

1

100𝑘

(∑︁
𝑛∈𝑁

𝑥𝑘𝑛,𝑒 −𝐶𝑎𝑝𝑒

)}
, (8)

where 𝑘 denotes the iteration. We perform L shape routing under

the Lagrangian relaxation routing scheme for 8 iterations. Due to

the page limit, we omit the details.

Previous studies like [29, 30, 35] leverage such Lagrangian re-

laxation to solve routing problems. The benefit of such a method

is that all nets can be routed in parallel using the edge costs (deter-

mined by the Lagrangian multiplier) from the previous iteration,

which can be extremely fast. However, our experiments show that

it may oscillate and be unable to quickly reduce routing overflow,

as the linear penalty in (6) does not pay enough attention to high-

overflow regions. Therefore, we only use this method for L-shape

routing to perform initial planning.

3.3 Linearized Exponential Multiplier Method
In this section, we propose a linearized exponential multiplier

method to speedup the reduction of overflow. The basic idea is

to introduce an exponential penalty function [36] for overflow to

the objective of the problem (3). Then, we solve the exponentially

penalized problem with a proximal linearized block coordinate

descent method, the subproblems of which can be solved by rout-

ing kernels. By iteratively updating the multipliers, we can force

the reduction of overflow and achieve convergence.

As the overflow cost in Equation (2) penalizes the overflow

exponentially, we define an exponential penalty function𝜓 : 𝑅 →
𝑅 to align with the format of the overflow cost,

𝜓𝜌 (𝑡) =
1

𝜌

(
𝑒𝜌𝑡 − 1

)
. (9)

Then, the capacity constraint (3b) can be equivalently written as,

𝜓𝜌

(∑︁
𝑛∈𝑁

𝑥𝑛,𝑒 −𝐶𝑎𝑝𝑒

)
≤ 0. (10)

We associate a multiplier y ∈ 𝑅 |𝐸 | with ∀𝑒 ∈ 𝐸,𝑦𝑒 > 0 with the

capacity constraint (10) for edge e. The Lagrangian function of

problem (3) can be written as

𝐿𝜌 (x, y)

=
∑︁
𝑒∈𝐸

𝑤𝑒

∑︁
𝑛∈𝑁

𝑥𝑛,𝑒 +
∑︁
𝑒∈𝐸

𝑦𝑒𝜓𝜌

(∑︁
𝑛∈𝑁

𝑥𝑛,𝑒 −𝐶𝑎𝑝𝑒

)
︸ ︷︷ ︸

Φ𝜌 (x,y)

+𝐼𝜒 (x) , (11)

where Φ𝜌 (x, y) is introduced for brevity of equations later. We

use 𝑥𝑘𝑛,𝑒 , 𝑦
𝑘
𝑒 , 𝜌

𝑘
to denote the value of variable 𝑥𝑛,𝑒 , 𝑦𝑒 , 𝜌 at the

𝑘-th iteration. We compute xk+1 by finding the best x given yk,

xk+1 = argmin

x
𝐿𝜌𝑘

(
x, yk

)
, (12)

and update the multipliers yk+1 as follows [36],

𝑦𝑘+1𝑒 = 𝑦𝑘𝑒 ∇xk+1𝜓𝜌𝑘

(∑︁
𝑛∈𝑁

𝑥𝑘+1𝑛,𝑒 −𝐶𝑎𝑝𝑒

)
. (13)

Intuitively, by increasing the value of 𝜌 , the penalty for violating

the constraints increases exponentially. Meanwhile, we update the

multipliers y to ensure that the penalty for constraints without

any violations will become closer to 0. Such a method can be

proved to be equivalent to the Lagrangian relaxation method

in Equation (6) according to [37], but can achieve much faster

convergence in satisfying the constraints.

By observing variables of different nets are only coupled in

the penalty function𝜓 and the optimal solution of a net always

uses edges around its pins, we divide 𝑁 into 𝐵 subsets 𝑆1, 𝑆2, ..., 𝑆𝐵
satisfying the following rules,

𝑆𝑖 =
{
𝑛𝑒𝑡𝑖,1, 𝑛𝑒𝑡𝑖,2, ..., 𝑛𝑒𝑡𝑖, |𝑆𝑖 |

}
, (14a)

𝑆1 ∪ 𝑆2 ... ∪ 𝑆𝐵 = 𝑁, (14b)

𝑆𝑖 ∩ 𝑆 𝑗 = ∅,∀𝑖 ≠ 𝑗, (14c)

where 𝑛𝑖, 𝑗 denote the 𝑗-th element of 𝑆𝑖 . Let Xi be the 𝑖-th block

variable of x corresponding to 𝑆𝑖 in (14), i.e, x = (X1; ...;XB), and
Xi = (xni,1 ; ...; xni,|Si |). For example, if the net set 𝑁 = {𝑛1, 𝑛2, 𝑛3},
edge set 𝐸 = {𝑒1, 𝑒2}, and 𝑆1 = {𝑛2}, 𝑆2 = {𝑛1, 𝑛3}, then we have

variable set x and block variables X1,X2,

x =
{
𝑥𝑛1,𝑒1 , 𝑥𝑛1,𝑒2 , 𝑥𝑛2,𝑒1 , 𝑥𝑛2,𝑒2 , 𝑥𝑛3,𝑒1 , 𝑥𝑛3,𝑒2

}
,

X1 =
{
𝑥𝑛2,𝑒1 , 𝑥𝑛2,𝑒2

}
,

X2 =
{
𝑥𝑛1,𝑒1 , 𝑥𝑛1,𝑒2 , 𝑥𝑛3,𝑒1 , 𝑥𝑛3,𝑒2

}
.

(15)

In other words, Xi is a subset of variables corresponding to a

subset of nets.

Let 𝜒𝑖 be the feasible set of Xi. We solve the problem (12) by a

Block Coordinate Descent (BCD) algorithm, where we minimize

𝐿𝜌𝑘 in order of X1,X2, ...,XB, by solving each subproblem,

argmin

Xi
𝐿
𝜌𝑘

(
Xk+1
1 , ...,Xk+1

i−1 ,Xi,Xk
i+1, ...,X

k
B, y

k
)

= argmin

Xi
Φ
𝜌𝑘

(
Xk+1
1 , ...,Xk+1

i−1 ,Xi,Xk
i+1, ...,X

k
B, y

k
)
+ 𝐼𝜒𝑖 (Xi) .

(16)

As Φ is differentiable and the projection operator of 𝜒𝑖 is easy

to calculate, we adopt the proximal linear method [38] as a lin-

earization technique to solve the subproblem (16), i.e.

Xk+1
i ∈ arg min

Xi∈𝜒𝑖

(〈
Xi − Xk

i ,∇XiΦ𝜌𝑘
〉
+ 1

2𝜏
∥Xi − Xk

i ∥
2

2

)
, (17)

where 𝜏 > 0 is the step size. Note that 𝐼𝜒𝑖 is moved to constrain

the definition domain of Xi, i.e., Xi ∈ 𝜒𝑖 . The intuition of the

proximal linear method is to find the next solution Xk+1
i near the

neighborhood of the current solutionXk
i andmeanwhile minimize

the objective. We use the symbol ‘∈’ instead of ‘=’ in (17) because

there might be multiple optimal solutions for the subproblem. If

one defines the projection operator by,

𝑃𝜒 (v) = argmin

u∈𝜒
∥u − v∥2

2
, (18)

then we obtain the following equivalent form of (17),

Xk+1
i ∈ 𝑃𝜒𝑖

(
Xk
i − 𝜏∇XiΦ𝜌𝑘

)
. (19)

Note that

𝑃𝜒 (v) = argmin

u∈𝜒
∥u∥2

2
− 2v𝑇 u + ∥v∥2

2
, (20a)

= argmin

u∈𝜒
1𝑇 u − 2v𝑇 u, as 𝑢𝑖 ∈ {0, 1} when u ∈ 𝜒, (20b)

= argmin

u∈𝜒
(1 − 2v)𝑇 u. (20c)

We can rewrite the subproblem in (19) as following,

Xk+1
i ∈ arg min

Xi∈𝜒𝑖

(
1 − 2

(
Xk
i − 𝜏∇XiΦ𝜌𝑘

))𝑇
Xi . (21)

Note that the shortest path problem for net 𝑛 can be formulated

as follows,

min

∑︁
𝑒∈𝐸

𝑐𝑜𝑠𝑡𝑛,𝑒𝑥𝑛,𝑒 , (22a)

s.t. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, (22b)

𝑥𝑛,𝑒 ∈ {0, 1}, (22c)

where 𝑐𝑜𝑠𝑡𝑛,𝑒 is edge 𝑒’s cost for net 𝑛. Then, by recalling the

definition of 𝜒 in (4), solving the problem (21) is equivalent to

solving a set of shortest path problems for the subset of nets 𝑆𝑖
with the edge costs in the 𝑘-th iteration for each net 𝑛 defined as,

𝑐𝑜𝑠𝑡𝑛,𝑒 = 1 − 2
(
𝑥𝑘𝑛,𝑒 − 𝜏∇𝑥𝑛,𝑒Φ𝜌𝑘

)
,

= 1 − 2𝑥𝑘𝑛,𝑒 + 2𝜏
(
𝑤𝑒 + 𝑦𝑘𝑒 ∇𝑥𝑛,𝑒𝜓𝜌𝑘

)
,

(23)

which can be solved by well-designed routing kernels.

The overall exponential multiplier procedure for the routing

problem is summarized in Algorithm 1. Suppose that we have a

RoutingKernel that can finish the routing for a subset (a.k.a

batch) of nets given the edge costs. In each iteration, we apply

the RoutingKernel for nets in order of 𝑆1, 𝑆2, ..., 𝑆𝐵 (line 3).

Then, we update multiplier y in line 6 and penalty factor 𝜌 in line

7. In the experiments, we set 𝑘𝑚𝑎𝑥 = 3, 𝑝𝑚𝑎𝑥 = 1 for efficiency.

We set 𝑦0𝑒 = 1

100𝐿

∑𝐿
𝑙=1

𝑂𝑣 𝑓 𝑙𝑊𝑙 , 𝜌
0 = 0.05, 𝜎 = 2, 𝜏 = 100, where 𝐿

is the number of layers and 𝑂𝑣 𝑓 𝑙𝑊𝑙 is a given parameter in the

Algorithm 1: LEM method for routing

Input: x0, y0, 𝜌0, 𝜎, 𝜏,w,Cap, 𝑘𝑚𝑎𝑥 , 𝑝𝑚𝑎𝑥
Output: xkmax

1 for 𝑘 ← 0 to 𝑘𝑚𝑎𝑥 − 1 do
2 for 𝑝 ← 0 to 𝑝𝑚𝑎𝑥 − 1 do
3 for 𝑖 ← 1 to 𝐵 do
4 // Solve problem (16) with edge costs (23)

Xk+1
i ← RoutingKernel(Xk+1

1 , ...,Xk+1
i−1 ,

Xi,Xk
i+1, ...,X

k
B, y

k, 𝜌𝑘 , 𝜏,w,Cap);
5 for 𝑒 ∈ 𝐸 do
6 Update 𝑦𝑘+1𝑒 according to (13);

7 𝜌𝑘+1 ← 𝜎𝜌𝑘 ;

(a) (b)

source/sink

mid point

obstacles

(c)

Figure 3: (a) L shape routing. (b) 3-bend routing.

input file, as described in Section 2.2. Ideally, RoutingKernel
needs to solve subproblem (16) optimally. In practice, we can

balance runtime and optimality with various fast approximation

algorithms, as introduced in the next section.

3.4 GPU-Accelerated Routing Kernels
Pattern routing is widely used in modern global routers [12, 13, 15,

18, 19, 24, 25]. It restricts the routing solution into some specific

shapes to reduce runtime. In this work, we adopt L shape and 3-

bend patterns to achieve high-quality routing solutions, as shown

in Figure 3.

3.4.1 L shape routing. L shape is the most widely pattern used

in previous routers. As shown in Figure 3(a) , within a 𝑀 × 𝑁
bounding box, L shape routing has at most 2 candidate paths, so

it is not quite time-consuming to perform L shape routing. We

assign one thread on GPU to do L pattern routing for each net.

3.4.2 3-bend routing. 3-bend routing is used in many 2D routers,

such as FastRoute 4.0 [10] and SPRoute 2.0 [13]. It can provide

better routing solution than L shape pattern routing. We will

first introduce how 3-bend routing was implemented in the prior

work, and then propose a GPU-friendly version of 3-bend routing

algorithm for solving a batch of nets.

In Figure 4, we show an example of how to use the 3-bend

pattern to route nets. Figure 4(a) draws two nets for routing and

their bounding boxes. A typical 3-bend routing algorithm needs

to enumerate mid points to find the minimum cost to connect to

the source and sink using L shape patterns, respectively. Figure

4(b) annotates the mid points for nets 𝑛1 and 𝑛2, numbered as

{0, 1, . . . , 5} and {6, 7, . . . , 20}, respectively. Figure 4(c) calculates
the minimum costs for all mid points and find one with the small-

est cost for each net. Finally, we connect the source and sink with

the best path in Figure 4(d). The most time-consuming part is

calculating the minimum cost and selecting the best one. First,

we need to calculate the prefix sum of the horizontal (vertical)

edge cost for each net. With those prefix sums, we can get the

(a)

0 1 2
3 4 5

6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

(b)

5 6 7
6 5

12 16 16 16 16
12 15 15 15 16
17 18 19 16

5

12
(c) (d)

Source/Sink
<latexit sha1_base64="wfG1No2tlnywCp8TU2RvUycGfbE=">AAAB/nicbVA9SwNBEJ2LXzF+nYqVzWIiWIW7FNEyaGMZwXxAEsLeZi9Zsrd77O6J4Qj4V2wsFLH1d9j5b9wkV2jig4HHezPMzAtizrTxvG8nt7a+sbmV3y7s7O7tH7iHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHwz81sPVGkmxb2ZxLQX4aFgISPYWKnvnlzLRAyYGKJAPiIZopLo+6W+W/TK3hxolfgZKUKGet/96g4kSSIqDOFY647vxaaXYmUY4XRa6CaaxpiM8ZB2LBU4orqXzs+fonOrDFAolS1h0Fz9PZHiSOtJFNjOCJuRXvZm4n9eJzHhVS9lIk4MFWSxKEw4MhLNskADpigxfGIJJorZWxEZYYWJsYkVbAj+8surpFkp+9Vy9a5SrNWyOPJwCmdwAT5cQg1uoQ4NIJDCM7zCm/PkvDjvzseiNedkM8fwB87nD27TlH4=</latexit>

Bounding box of n1
<latexit sha1_base64="n4pfD+oK52Bf3NPS/4F0h+U8r8c=">AAAB/nicbVA9SwNBEJ2LXzF+nYqVzWIiWIW7FNEyaGMZwXxAEsLeZi9Zsrd77O6J4Qj4V2wsFLH1d9j5b9wkV2jig4HHezPMzAtizrTxvG8nt7a+sbmV3y7s7O7tH7iHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHwz81sPVGkmxb2ZxLQX4aFgISPYWKnvnlzLRAyYGKJAPiIZopLoV0p9t+iVvTnQKvEzUoQM9b771R1IkkRUGMKx1h3fi00vxcowwum00E00jTEZ4yHtWCpwRHUvnZ8/RedWGaBQKlvCoLn6eyLFkdaTKLCdETYjvezNxP+8TmLCq17KRJwYKshiUZhwZCSaZYEGTFFi+MQSTBSztyIywgoTYxMr2BD85ZdXSbNS9qvl6l2lWKtlceThFM7gAny4hBrcQh0aQCCFZ3iFN+fJeXHenY9Fa87JZo7hD5zPH3BYlH8=</latexit>

Bounding box of n2

Figure 4: Example for routing 2 nets with 3-bend patterns.
(a) Two nets and their bounding boxes; (b) number all can-
didate mid points; (c) calculate costs for all mid points and
find the one with the smallest cost for each net; (d) route
nets with the best paths.

cost of the horizontal (vertical) path in 𝑂 (1), so we can calculate

the cost of a 3-bend path in 𝑂 (1). After getting all the cost of

each mid point, we select the smallest cost sequentially. For a

𝑀 × 𝑁 bounding box, there are 𝑀 × 𝑁 mid points, so the time

complexity of the 3-bend routing algorithm on CPU in previous

works is 𝑂 (𝑀𝑁) [10, 13].
The procedure of the above algorithm can be summarized by

solving the following two subproblems:

(1) Calculating costs of mid points by prefix sum of edge costs.

(2) Finding the mid point with minimum cost for each net.

In a large-scale global routing problem, we need to perform 3-

bend routing for a huge number of nets. A simple strategy like

net-level parallelization is inefficient on GPU due to imbalanced

workloads from heterogeneous net bounding boxes. Hence, new

algorithms are desired to speedup the computation on GPU.

Let 𝑁 be the set of nets, (𝑙𝑥𝑛, 𝑙𝑦𝑛, ℎ𝑥𝑛, ℎ𝑦𝑛) be the bounding
box for net 𝑛, and we define 𝑙𝑛, 𝑟𝑛 satisfies,

𝑁 =
{
𝑛1, 𝑛2, ..., 𝑛 |𝑁 |

}
, (24a)

𝑟𝑛𝑖 − 𝑙𝑛𝑖 =
(
ℎ𝑦𝑛𝑖 − 𝑙𝑦𝑛𝑖 + 1

)
×

(
ℎ𝑥𝑛𝑖 − 𝑙𝑥𝑛𝑖 + 1

)
,∀𝑛𝑖 ∈ 𝑁, (24b)

𝑙𝑛1 = 0, 𝑙𝑛𝑖 = 𝑟𝑛𝑖−1 ,∀𝑖 = 2, ..., |𝑁 |. (24c)

The above equation essentially tries to flatten the mid points

within the bounding box for each net into a range of an array.

Given the example in Figure 4, we have 𝑙𝑛1 = 0, 𝑟𝑛1 = 6 and

𝑙𝑛2 = 6, 𝑟𝑛2 = 21. Let 𝐴 [𝑖] be the cost of the candidate path of

the 𝑖-th mid point. Then, 𝐴 [𝑖, 𝑗) denotes the costs of mid points

from 𝑖 to 𝑗 − 1. For example, 𝐴 [0, 6) is the costs of mid points

{0, 1, . . . , 5}. We show in Figure 5 and Algorithm 2 on how the

flattened array helps to handle two subproblems mentioned above

with three steps.

For the first subproblem, the bottleneck lies in calculating 𝐴,

which is equivalent to computing the prefix sumwithin the bound-

ing box of each net. The workload for solving this subproblem can

be very imbalanced if we perform net-level parallelization, as the

bounding box of each net varies significantly. With the flattened

formulation, we can merge the horizontal (vertical) prefix sum

problems for a batch of nets into a big prefix sum problem in an

array with 𝑟𝑛 |𝑁 | elements, and meanwhile, still maintain the mid

points with minimum costs for the second subproblem. We can

get the prefix sum with GPU prefix scan and thus calculate𝐴 with

time complexity 𝑂

(
𝑙𝑜𝑔2𝑟𝑛 |𝑁 |

)
without any workload imbalance

issues, shown in Step 1 in Figure 5 and Algorithm 2.

For the second subproblem, with the flattened array 𝐴, we can

formulate it as a Range Minimum Query (RMQ) problem. That is,

the minimum cost of net 𝑛 is the minimum element of the interval

𝐴 [𝑙𝑛, 𝑟𝑛). For instance, in Figure 4, the best solutions for net 𝑛1
and net 𝑛2 are the minimum elements of 𝐴 [0, 6) and 𝐴 [6, 21),
respectively. Inspired by a classical data structure called segment

tree for solving the RMQ problem, we propose an efficient algo-

rithm to find the minimum element of 𝐴 [𝑙𝑛, 𝑟𝑛), corresponding
to Step 2 and 3 in Figure 5 and Algorithm 2. We define an interval

of array 𝐴
[
𝑖, 𝑖 + 2𝑗

)
as a segment, where 𝑖 mod 2

𝑗 = 0. Let 𝑑 (𝑖, 𝑗)
be the minimum of segment 𝐴

[
𝑖, 𝑖 + 2𝑗

)
. Step 2 of our algorithm

is to calculate 𝑑 , and Step 3 is to find the minimum cost for each

net with 𝑑 .

Function calcMinOfSegments in line 4 of Algorithm 2

summarizes how to get array 𝑑 on GPU with a divide and con-

quer algorithm for Step 2. We first initialize the smallest segment

𝑑 (𝑖, 0) to 𝐴 (𝑖). Then, for every level 𝑗 , segment 𝑑 (𝑖, 𝑗) depends
on the last level 𝑗 − 1, 𝑑 (𝑖, 𝑗 − 1) and 𝑑

(
𝑖 + 2𝑗−1, 𝑗 − 1

)
. We can

calculate 𝑑 (𝑖, 𝑗) at the same level 𝑗 concurrently on GPU, so Step

2 runs in time 𝑂

(
𝑙𝑜𝑔2𝑟𝑛 |𝑁 |

)
. Considering the example in Figure

5, we calculate {𝑑 (0, 1) , . . . , 𝑑 (18, 1)}, {𝑑 (0, 2) , . . . , 𝑑 (16, 2)}, . . . ,
{𝑑 (0, 4)} concurrently in 4 iterations. calcMinCostOfNets
in line 13 of Algorithm 2 introduces how to use 𝑑 to get the

minimum of 𝐴 [𝑙, 𝑟) for Step 3. We allocate one thread for each

net. Take net 𝑛1 in Figure 5 as an example. It checks segments

{[0, 1) , [0, 2) , [0, 4) , [4, 8) , [4, 6)} andmerge theminimum of {[0,
4), [4, 6)} (i.e.,min{𝑑 (0, 2) , 𝑑 (4, 1)}) to get theminimumof𝐴 [0, 6).

Lemma 3.1. Lines 13-28 in Function calcMinCostOfNets
can finish in 𝑂 (𝑙𝑜𝑔2 (𝑅 − 𝐿)) steps.

Proof. For problem min𝐴 [𝐿, 𝑅), we always try to find the

longest segment

[
𝐿, 𝐿 + 2𝑗

)
⊆ [𝐿, 𝑅) and merge 𝑑 (𝐿, 𝑗) to the re-

sult. In the next iteration, we try to solve the subproblemmin𝐴[𝐿+
2
𝑗 , 𝑅). Let 𝑘1, 𝑘2 satisfy 𝐿 mod 2

𝑘1 = 0, 𝐿 mod 2
𝑘1+1 > 0, 2𝑘2 ≤

(𝑅 − 𝐿) < 2
𝑘2+1

. We define 𝑘1 = ⌊𝑙𝑜𝑔2 (𝑅 − 𝐿)⌋ when 𝐿 = 0. In

other words, 𝑘1 denotes the longest segment corresponding to 𝐿,

and 𝑘2 denotes the largest length does not exceed the boundary

𝑅. We have 𝑗 = min{𝑘1, 𝑘2} and 𝑘1, 𝑘2 ≤ ⌊𝑙𝑜𝑔2 (𝑅 − 𝐿)⌋.
There are two possible cases in every iteration and these two

cases correspond to the first and second parts of our algorithm :

(1) 𝑘1 ≤ 𝑘2: In the next iteration,

(
𝐿 + 2𝑘1

)
mod 2

𝑘1+1 = 0,

we have 𝑘′
1
≥ 𝑘1 + 1. So after at most 𝑂 (𝑙𝑜𝑔2 (𝑅 − 𝐿))

iterations, we have 𝑘1 > 𝑘2.

(2) 𝑘1 > 𝑘2: In the next iteration,

(
𝐿 + 2𝑘2

)
mod 2

𝑘2 = 0, 𝑅 −
𝐿 − 2

𝑘2 < 2
𝑘2
, we have 𝑘′

1
≥ 𝑘2 and 𝑘′

2
< 𝑘2, so 𝑘

′
1
>

𝑘′
2
. That means, if we have 𝑘1 > 𝑘2 in one iteration, we

will have 𝑘1 > 𝑘2 in later iterations. The subproblem[
𝐿 + 2𝑗 , 𝑅

)
has the length less than

1

2
(𝑅 − 𝐿), so after at

most𝑂 (𝑙𝑜𝑔2 (𝑅 − 𝐿)) iterations, we can solve this problem.

Based on the above analysis, we know calcMinCostOfNets
can finish in 𝑂 (𝑙𝑜𝑔2 (𝑅 − 𝐿)) steps. □

Combining the runtime complexity of the three steps in Algo-

rithm 2, we have the following theorem.

Theorem 3.2. Algorithm 2 has 𝑂
(
𝑙𝑜𝑔2𝑟𝑛 |𝑁 |

)
time complexity.

As our RMQ-based 3-bend routing algorithm runs in loga-

rithmic complexity for each net on GPU, it significantly mitigates

the workload imbalance issue, compared with the prior algorithm

[10, 13] running in linear complexity.

A[19, 20)

d(19, 0)

A[20, 21)

d(20, 0)

A[17, 18)

d(17, 0)

A[18, 19)

d(18, 0)

A[15, 16)

d(15, 0)

A[16, 17)

d(16, 0)

A[13, 14)

d(13, 0)

A[14, 15)

d(14, 0)

A[11, 12)

d(11, 0)

A[12, 13)

d(12, 0)

A[9, 10)

d(9, 0)

A[10, 11)

d(10, 0)

A[8, 9)

d(8, 0)

A[7, 8)

d(7, 0)

A[5, 6)

d(5, 0)

A[6, 7)

d(6, 0)

A[3, 4)

d(3, 0)

A[4, 5)

d(4, 0)

A[1, 2)

d(1, 0)

A[2, 3)

d(2, 0)

A[0, 1)

d(0, 0)

A[0, 2)

d(0, 1)

A[2, 4)

d(2, 1)

A[4, 6)

d(4, 1)

A[6, 8)

d(6, 1)

A[8, 10)

d(8, 1)

A[10, 12)

d(10, 1)

A[12, 14)

d(12, 1)

A[14, 16)

d(14, 1)

A[16, 18)

d(16, 1)

A[18, 20)

d(18, 1)

A[0, 4)

d(0, 2)

A[4, 8)

d(4, 2)

A[8, 12)

d(8, 2)

A[12,16)

d(12, 2)

A[16,20)

d(16, 2)

A[0, 8)

d(0, 3)

A[8, 16)

d(8, 3)

A[0, 16)

d(0, 4)

Step 1 : Calculate the cost A[i, i + 1) for every mid point with GPU prefix scan.

Step 2 : Calculate the minimum d of all the segments. Step 3 : Calculate the minimum cost of the net.

Segment Segment used by net Segment used by net

Merge 2 segments in Step 2 Segment checking path in Step 3

1n 2n

1n 2n

Net Net

Figure 5: Our RMQ-based 3-bend routing algorithm. Step 1 : calculate the cost𝐴 [𝑖, 𝑖 + 1) for every mid point. Step 2 : calculate
the minimum 𝑑 of all the segments. Step 3 : calculate the minimum cost of each net. Take net 𝑛1 as an example. At the
beginning, 𝐴 [0, 1) is checked. Since 𝐴 [0, 2) is the subset of 𝐴 [0, 6), we move to 𝐴 [0, 2), and then move to 𝐴 [0, 4). The longer
segment 𝐴 [0, 8) exceeds the boundary 6, so we do not move to it. We merge 𝑑 (0, 2) into the result, and then move to 𝐴 [4, 8).
Wemove to𝐴 [4, 6) and it is the subset of𝐴 [0, 6). Wemerge𝑑 (4, 1) into the result. The solution of net 𝑛1 ismin {𝑑 (0, 2) , 𝑑 (4, 1)}.

Algorithm 2: RMQ-based 3-Bend Routing on GPU

Input: a batch of nets 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛 |𝑁 | }
Output: 2D routing solutions 𝑟𝑒𝑠1, 𝑟𝑒𝑠2,. . . , 𝑟𝑒𝑠 |𝑁 |

1 Step 1 : flatten mid points within bounding boxes of nets in

𝑁 to get 𝑙, 𝑟 , and calculate costs 𝐴 with GPU prefix scan;

2 Step 2 : 𝑑 ← calcMinOfSegments
(
𝐴, 𝑟𝑛 |𝑁 |

)
;

3 Step 3 : 𝑟𝑒𝑠 ← calcMinCostOfNets(𝑑, 𝑙, 𝑟);
4 Function calcMinOfSegments(𝐴, 𝐿):
5 𝑖 ←threadIdx;

6 𝑑 (𝑖, 0) ← 𝐴 (𝑖);
7 for 𝑗 ← 1 to 𝑙𝑜𝑔2𝐿 do
8 if 𝑖 mod 2

𝑗 = 0 and 𝑖 + 2𝑗−1 ≤ 𝐿 then
9 𝑑 (𝑖, 𝑗) ← min

{
𝑑 (𝑖, 𝑗 − 1) , 𝑑

(
𝑖 + 2𝑗−1, 𝑗 − 1

)}
;

10 sync all threads;

11 𝑗 ← 𝑗 + 1;
12 return 𝑑 after all threads finish;

13 Function calcMinCostOfNets(𝑑, 𝑙, 𝑟):
14 𝑖 ← threadIdx + 1;

15 𝐿 ← 𝑙𝑛𝑖 , 𝑅 ← 𝑟𝑛𝑖 , 𝑟𝑒𝑠𝑖 ← +∞;
16 while 𝐿 < 𝑅 do // First part
17 while 𝐿 mod 2

𝑗+1 = 0 and 𝐿 + 2𝑗+1 ≤ 𝑅 do
18 𝑗 ← 𝑗 + 1;
19 if 𝐿 + 2𝑗 > 𝑅 then
20 break;

21 𝑟𝑒𝑠𝑖 ← min {𝑟𝑒𝑠𝑖 , 𝑑 (𝐿, 𝑗)};
22 𝐿 ← 𝐿 + 2𝑗 ;
23 while 𝐿 < 𝑅 do // Second part
24 while 𝐿 mod 2

𝑗 > 0 or 𝐿 + 2𝑗 > 𝑅 do
25 𝑗 ← 𝑗 − 1;
26 𝑟𝑒𝑠𝑖 ← min {𝑟𝑒𝑠𝑖 , 𝑑 (𝐿, 𝑗)};
27 𝐿 ← 𝐿 + 2𝑗 ;
28 return 𝑟𝑒𝑠 after all threads finish;

3.5 GPU-Accelerated Layer Assignment
After 2D routing, we need to generate 3D routing guides. Layer

assignment tries to decide which layer a 2D wire should be placed

and the positions of vias used to connect wires in different layers.

Meanwhile, number of vias and overflow penalty should be con-

sidered. We first introduce a typical layer assignment algorithm in

previous work [13], and then propose our GPU-friendly version

of layer assignment.

Let𝐺𝑖 be the 𝑖-th GCell in the 2D path, and𝐺𝑖, 𝑗 be the GCell on

𝑗-th layer with the same 2D position as 𝐺𝑖 . For example, suppose

that there is a pin in GCell 𝐺1,1 and 𝐺1,2 and a pin to connect in

𝐺5,2. Figure 6(a) is the 2D routing solution from 𝐺1 to 𝐺5. The

objective of layer assignment is to find a 3D path from source

to sink based on the 2D routing solution while minimizing via

usage and overflow penalty. Figure 6(b) shows a possible 3D path

from

{
𝐺1,1,𝐺1,2

}
to

{
𝐺5,2

}
. Our layer assignment algorithm is

based on a directed grid graph model in Figure 6(c). The directed

grid graph transforms the 3D problem into a 2D problem. One

dimension is arranged in the directional order along the 2D path

and the other dimension is arranged according to the layers. All

the possible 3D paths can be found in the directed grid graph.

For an edge in the grid graph, we use a cost function consid-

ering wire / via usage and overflow cost. There are two types of

edges in the grid graph and their cost are:

(1) 𝐺𝑖, 𝑗 → 𝐺𝑖+1, 𝑗 : a wire in one layer.

𝑐𝑜𝑠𝑡𝑒 =

{
+∞, 𝑒 is a non-preferred edge,

𝑙𝑒 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑐𝑒 , 𝑑𝑒 , 𝑙𝑒) , others,
(25)

where 𝑙𝑒 is thewirelength cost of edge 𝑒 , and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑐𝑒 , 𝑑𝑒 , 𝑙𝑒)
is𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐶𝑜𝑠𝑡 (𝑐𝑒 , 𝑑𝑒 + 1, 𝑙𝑒)−𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐶𝑜𝑠𝑡 (𝑐𝑒 , 𝑑𝑒 , 𝑙𝑒).
𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐶𝑜𝑠𝑡 (𝑐, 𝑑, 𝑙) is defined in (2).

(2) 𝐺𝑖, 𝑗 ↔ 𝐺𝑖, 𝑗+1 : a via connecting two neighboring layers.

𝑐𝑜𝑠𝑡𝑒 is defined as the sum of unit via cost and the change

in overflow cost if the via is used.

We select the shortest path from {𝐺1,1,𝐺1,2} to {𝐺5,2} as the
3D routing solution of 2D path𝐺1 → 𝐺5. Note that the problem

𝐺1

𝐺2

𝐺3 𝐺4 𝐺5 Source

Sink

Internal point

X

Y

(a)

𝐺1,3

𝐺1,2

𝐺1,1

𝐺4,3

𝐺4,2

𝐺4,1

𝐺5,3

𝐺5,2

𝐺5,1

Z

X

Y

(b)

𝐺1,1

𝐺1,2

𝐺1,3

𝐺2,1

𝐺2,2

𝐺3,1

𝐺3,2

𝐺3,3

𝐺4,1

𝐺4,2

𝐺4,3

𝐺5,1

𝐺5,2

𝐺5,3𝐺2,3

(c)

Figure 6: Example for layer assignment. (a) 2D routed path
from source to sink. (b) The 3D path from source to sink
after layer assignment. (c) Directed grid graph constructed
to solve the layer assignment problem.

is based on a “rectangular" grid graph, we can use a dynamic

programming-based algorithm instead of a general shortest path

algorithm to solve it. The dynamic programming-based algorithm

runs in time 𝑂 (𝐾𝐿), where 𝐾 is the 2D path length and 𝐿 is the

number of layers. But due to the large scale of those routing cases,

we need a faster method on GPU.

Algorithm 3: Sweep-based Layer Assignment on GPU

Input: 2D Path length 𝐾 , 𝐺1, ...,𝐺𝐾 , pin location

𝑏𝑜𝑡𝐿𝑎𝑦𝑒𝑟1, 𝑡𝑜𝑝𝐿𝑎𝑦𝑒𝑟1, 𝑏𝑜𝑡𝐿𝑎𝑦𝑒𝑟𝐾 , 𝑡𝑜𝑝𝐿𝑎𝑦𝑒𝑟𝐾 , 𝑓 ,

𝑝𝑟𝑒𝑣 , 𝑐𝑜𝑠𝑡 , Layer Number 𝐿, Threshold 𝜃

Output: 3D path with minimum cost

1 for 𝑖 ← 1 to 𝐾 do
2 for 𝑗 ← 1 to 𝐿 do
3 𝑓𝑖, 𝑗 ← +∞;
4 for 𝑗 ← 𝑏𝑜𝑡𝐿𝑎𝑦𝑒𝑟1 to 𝑡𝑜𝑝𝐿𝑎𝑦𝑒𝑟1 do
5 𝑓1, 𝑗 ← 0;

6 for 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1 to 𝜃 do
7 𝑓 , 𝑝𝑟𝑒𝑣 ← VerticalSweep(𝑓 , 𝑝𝑟𝑒𝑣, 𝑐𝑜𝑠𝑡, 𝐾, 𝐿);
8 𝑓 , 𝑝𝑟𝑒𝑣 ← HorizontalSweep(𝑓 , 𝑝𝑟𝑒𝑣, 𝑐𝑜𝑠𝑡, 𝐾, 𝐿);
9 for 𝑗 ← 𝑏𝑜𝑡𝐿𝑎𝑦𝑒𝑟𝐾 to 𝑡𝑜𝑝𝐿𝑎𝑦𝑒𝑟𝐾 do
10 Update the best solution;

11 Get 3D path according to the best solution and 𝑝𝑟𝑒𝑣 ;

0

0

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

4

4

+∞

4

+∞ +∞

+∞

4

8

4

4

4

3 2

5

4

+∞

+∞

7 2

2 1

(a)

0

0

+∞

+∞

2

+∞

+∞

3

+∞

+∞

+∞

+∞

+∞

+∞

+∞

(b)

0

0

4

6

2

7

3

7

+∞

+∞

+∞

+∞

+∞

+∞10

(c)

0

0

4

6

2

7

3

710 10 12

14 16

15 16

(d)

Figure 7: (a) Source, sink, and edge costs in the directed grid
graph. (b) Horizontal sweep. (c) Vertical sweep. (d) Final
solution after several sweeps.

It is hard to accelerate the dynamic programming-based algo-

rithm with GPU because of the heavy data dependency. So we

need a new algorithm to deal with this shortest path algorithm.

We are inspired by the sweep-based shortest path algorithm

on 3D grid graph proposed by [22]. A sweep is to update the

shortest distances to all G-cells with edges in one direction. Hori-

zontal (vertical) sweeps only use horizontal (vertical) edges. After

doing the sweep operation horizontally and vertically alterna-

tively for several iterations, the shortest distance to every GCell

can be found correctly. Sweep can be implemented by GPU prefix

scan algorithm. Figure 7 illustrates the process of our GPU layer

assignment algorithm. After preparing edge costs and initial ver-

tex distance in Figure 7(a), we do horizontal and vertical sweep
alternatively for several iterations in Figure 7(b) and Figure 7(c).

Finally we get the shortest distance of every vertex in Figure 7(d).

4 EXPERIMENTAL RESULTS
We implement our router in C++ and CUDA. We enable CPU

multi-threading with Taskflow [39] and use NVIDIA CUB to

compute prefix scan on GPU. All the experiments are conducted

on a Linux server with 32-core Intel Xeon Gold CPU@2.90GHz

and one NVIDIA A100 GPU. The benchmarks are all from ISPD

2024 GPU/ML-enhanced global routing contest [1] with up to

around 50 million cells and 60 million nets. We obtain the binaries

from the top-3 contest winners and conduct experiments on our

machine for comparison. The official evaluator from the ISPD

2024 contest is used to evaluate the solutions and report scores.

We compare with the contest winners in Table 1. Our router can

achieve about 4.8%-5.8% better quality scores and 1.62 × −2.07×
speed-up on average. Especially in large cases with almost 60

million nets, our router can achieve more than 4% better quality

score compared with the best contest solution, and finish routing

in around 10 minutes. The breakdown of quality scores is listed in

Table 2. It shows that our router has the least overflow among all

routers, i.e., 15.8%, 25.5%, and 28.0% less overflow than the contest

winners, respectively. Our wirelength is comparable to the contest

winners as well. Although our via numbers are slightly higher

than the 2nd and 3rd winners, our overflow is significantly less

than their solutions. We ascribe such benefits to the LEM method

that can effectively reduce overflow with a global view.

In Figure 8, we compare the runtime between four routers

scaling with the number of nets. Our router achieves the best

scalability with the problem size growing. Especially in large cases,

we can achieve 1.58×, 1.87×, and 2.10× faster than the contest

winners, respectively. We ascribe the much shorter runtime of

our router to the efficient GPU-accelerated routing kernels that

can explore a huge number of possible paths in a short time.

We also compare the normalized total and maximum overflow

at the 2D routing stage in Figure 9(a)-9(b), respectively.LR denotes

the Lagrangian relaxation model in previous studies [29, 30, 35].

LR+LEM denotes the two-stage Lagrangian relaxation and LEM

model we adopt in Section 3.3. We can see that LR+LEM leads to a

more stable convergencewithmuch less overflow.We observe that

in each iteration, the LR method solves the routing subproblem

without awareness of the changes in routing resources, which

may cause slow convergence and oscillation when switching to

a new pattern. Figure 9(c) shows the runtime breakdown of our

router on case terapool_cluster_h. We can see 2D routing

and layer assignment take around 67% of the overall runtime. I/O

Table 1: Comparison of quality score and runtimewith top-3 winners in the ISPD 2024 contest.

Design
†

#Nets

Quality Score Runtime
‡
(s)

1st 2nd 3rd Ours 1st 2nd 3rd Ours

ariane_51_p 126873 22536394 22697143 22501453 22484547 2.6 2.6 1.3 2.5

ariane_68_p 127026 19789143 20099496 19897356 19734912 2.5 2.0 1.2 2.4

ariane_68_h 128282 22602876 23093501 22821289 22561640 2.9 2.0 1.4 2.5

mempool_tile_p 135919 15241650 15432389 15280353 15195056 2.6 2.1 1.3 2.8

mempool_tile_h 135666 13827142 14133269 13867124 13773881 2.3 1.9 1.1 2.6

nvdla_p 176755 48257027 48837685 48257010 48108771 4.3 3.2 3.4 3.5

nvdla_h 174731 43195979 44141552 43295092 43031318 3.9 2.9 3.6 3.1

blackparrot_p 768239 113562198 113321049 112592863 112985592 13.8 15.9 14.5 12.4
blackparrot_h 824756 113109620 110986781 111778586 110140593 14.2 8.8 7.2 12.5

mempool_group_p 3252596 398169317 411758419 403915333 396514188 37.0 25.3 20.5 18.4
mempool_group_h 3200973 383637652 395488859 388200338 381952598 36.0 24.0 20.4 18.5

mempool_cluster_p 10612686 1626227314 1665748885 1639553927 1616064157 157.8 90.0 166.9 74.3
mempool_cluster_h 10612686 1782191834 1824527054 1795524941 1775052604 159.4 97.4 184.8 74.2
terapool_cluster_p 59271897 19609525592 19684091476 19730043753 18468687634 1590.6 1944.9 2129.2 1080.7
terapool_cluster_h 59271897 12521927637 12676067016 12597498026 11995425076 1085.4 1205.1 1416.3 607.7

Average 2448920092 2471361638 2464335163 2336114171 207.7 228.5 264.9 127.9
Ratio 1.048 1.058 1.055 1.000 1.624 1.787 2.071 1.000

†
*_p and *_h denote public and hidden cases, respectively.

‡
We observe that runtime varies on different machines. For example, on terapool_cluster_h, the ISPD 2024 contest reported that

the 2nd team is the fastest [1], while on our machine, the 1st team is slightly faster than the 2nd team. Such variation does not affect the

conclusion of this paper, as our router runs much faster than all three teams on large cases with millions of nets.

105 106 107

#Nets

0

500

1000

R
u

n
ti

m
e

(s
)

1st

2nd

3rd

Ours

Figure 8: Runtime scaling
with the number of nets (only
hidden (*_h) cases are plotted
for clear visualization).

Table 2: Comparison of quality score breakdown with top-3 winners in the ISPD 2024 contest.

Design

Wirelength Via Overflow

1st 2nd 3rd Ours 1st 2nd 3rd Ours 1st 2nd 3rd Ours

ariane_51_p 9231428 9282664 9265081 9233921 3030032 2998676 2924628 2989296 10274934 10415803 10311744 10261330
ariane_68_p 9325588 9441111 9418417 9333438 2883136 2925264 2783144 2844740 7580419 7733121 7695795 7556734
ariane_68_h 11931753 12051687 12021241 11937576 2906688 2959392 2813744 2875672 7764435 8082423 7986304 7748393

mempool_tile_p 8336290 8390542 8374632 8338598 3393092 3347480 3287436 3341728 3512267 3694367 3618286 3514729

mempool_tile_h 7541039 7601381 7578562 7544046 3346788 3308184 3233024 3287124 2939315 3223704 3055538 2942711

nvdla_p 21173333 21453123 21359327 21242061 4534604 4451456 4354664 4464608 22549090 22933106 22543019 22402101
nvdla_h 21472301 21840287 21693203 21537535 4661336 4586500 4455428 4581360 17062342 17714764 17146460 16912423

blackparrot_p 58016217 58151649 58219164 58060585 19651620 19295072 19112608 19472196 35894361 35874328 35261090 35452812

blackparrot_h 55573071 55847570 55751773 55596948 19738252 19505444 19182208 19513832 37798298 35633766 36844605 35029813
mempool_group_p 259242540 262602848 261349799 259468578 74230960 75211240 70841780 72532976 64695817 73944331 71723754 64512634
mempool_group_h 247299729 250445950 249498393 247576859 73566828 74362960 70274012 71919096 62771095 70679950 68427932 62476937

mempool_cluster_p 1087812280 1093851156 1090773738 1089016864 274090104 264399732 258033820 266228272 264324930 307497997 290746369 260819021
mempool_cluster_h 1185865082 1190412465 1189656494 1186752708 282548572 274145704 270441852 277553000 313778180 359968885 335426595 310746896
terapool_cluster_p 12167900631 12292803029 12164444468 12210612912 1968847968 1533513212 1499561196 1642840776 5472776994 5857775235 6066038089 4615233946
terapool_cluster_h 7963801629 8039402094 7970278976 7984351151 1690296724 1488566820 1442567228 1529353596 2867829285 3148098101 3184651822 2481720329

Average 1540968194 1555571837 1541978885 1545373585 295181780 251571809 244924451 261586552 612770117 664217992 677431827 529155387
Ratio 0.997 1.007 0.998 1.000 1.128 0.961 0.936 1.000 1.158 1.255 1.280 1.000

0 2 4 6 8 10

Iteration

100

101

102

N
or

m
.

T
ot

al
O

ve
rfl

ow
(2

D
)

L shape 3-bend

LR

LR + LEM

(a)

0 2 4 6 8 10

Iteration

100

101

102

N
or

m
.

M
ax

O
ve

rfl
ow

(2
D

)

L shape 3-bend

LR

LR + LEM

(b)

9%
Parsing input files

7%
Pin access analysis
& construct 2D graph6%
2-pin net decomposition

29%

2D routing
38% Layer assignment

11%

Writing output guides

(c)

Figure 9: (a) Comparison of normalized total overflow and (b) max overflow (evaluated at 2D routing stage) between LR and
LR+LEM routing frameworks. (c) Runtime breakdown in percentage of our router on terapool_cluster_h.

takes around 20% runtime, as those files take around 31GB disk

space. The preparation takes 13% runtime running on CPU only.

5 CONCLUSION
In this paper, we design a 2D global router which can generate

high-quality routing solutions efficiently to handle large scale

routing cases with up to 1 billion GCells and 60 million nets in

ISPD 2024. A novel global routing framework based on LEM is in-

troduced to optimize both wirelength and overflow. To efficiently

explore a huge number of candidate solutions for millions of nets,

we design several GPU-accelerated routing kernels. Finally, we

use a sweep-based layer assignment algorithm on GPU to gen-

erate 3D routing solutions. Compared with top-3 winners in the

ISPD 2024 contest, we achieved around 1.62× to 2.07× speed-up

and around 4.8%-5.8% better quality score on average, and the

experimental result shows that our router has a strong scalability.

ACKNOWLEDGEMENTS
This work was supported in part by the National Science Foun-

dation of China (Grant No. T2293700, T2293701, 12331010 and

12288101), theNatural Science Foundation of Beijing, China (Grant

No. Z230002), and the 111 Project (B18001).

REFERENCES
[1] R. Liang, A. Agnesina, W.-H. Liu, and H. Ren, “Gpu/ml-enhanced large

scale global routing contest,” in Proceedings of the 2024 International
Symposium on Physical Design, ser. ISPD ’24. New York, NY, USA:

Association for Computing Machinery, 2024, p. 269–274. [Online]. Available:

https://doi.org/10.1145/3626184.3639693

[2] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of Algorithms for
Physical Design Automation. CRC press, 2008.

[3] M. Pan andC. Chu, “Fastroute: A step to integrate global routing into placement,”

in 2006 IEEE/ACM International Conference on Computer Aided Design, 2006, pp.
464–471.

[4] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai, and E. F. Y. Young,

“Ripple 2.0: High quality routability-driven placement via global router integra-

tion,” 2013, pp. 152:1–152:6.

[5] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen, and Y.-

W. Chang, “NTUplace4h: A novel routability-driven placement algorithm for

hierarchical mixed-size circuit designs,” vol. 33, no. 12, pp. 1914–1927, 2014.

[6] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR: A high

performance mixed-size wirelengh-driven placer with density constraints,”

vol. 34, no. 3, pp. 447–459, 2015.

[7] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution

quality and routability validation in global placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 9, pp.
1717–1730, 2019.

[8] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan,

“Dreamplace: Deep learning toolkit-enabled gpu acceleration for modern vlsi

placement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 40, no. 4, pp. 748–761, 2021.

[9] L. Liu, B. Fu, S. Lin, J. Liu, E. F. Young, and M. D. Wong, “Xplace: An extremely

fast and extensible placement framework,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1–1, 2023.

[10] Y. Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: Global router with efficient via min-

imization,” in Proceedings of the 2009 Asia and South Pacific Design Automation
Conference, ser. ASP-DAC ’09. IEEE Press, 2009, p. 576–581.

[11] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “Boxrouter 2.0: A hybrid and robust

global router with layer assignment for routability,” ACM Trans. Des. Autom.
Electron. Syst., vol. 14, no. 2, Apr. 2009.

[12] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “Nctu-gr 2.0: Multithreaded

collision-aware global routing with bounded-length maze routing,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 5, pp. 709–722, 2013.

[13] J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, “Sproute 2.0: A detailed-

routability-driven deterministic parallel global router with soft capacity,” in

2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC),
2022, pp. 586–591.

[14] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer scale,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 27, no. 6, pp. 1066–1077, 2008.

[15] J. Liu, C.-W. Pui, F. Wang, and E. F. Y. Young, “Cugr: Detailed-routability-driven

3d global routing with probabilistic resource model,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[16] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute-wxl: The open-source router

with integrated drc engine,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 4, pp. 1076–1089, 2022.

[17] C. Y. Lee, “An algorithm for path connections and its applications,” IRE Trans-
actions on Electronic Computers, vol. EC-10, no. 3, pp. 346–365, 1961.

[18] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern routing: use and

theory for increasing predictability and avoiding coupling,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 7, pp.
777–790, 2002.

[19] J. Liu and E. F. Young, “Edge: Efficient dag-based global routing engine,” in 2023
60th ACM/IEEE Design Automation Conference (DAC), 2023, pp. 1–6.

[20] J. Wang, J. Mai, Z. Di, and Y. Lin, “A robust fpga router with concurrent intra-clb

rerouting,” in 2023 28th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2023, pp. 529–534.

[21] Y. Han, K. Chakraborty, and S. Roy, “A global router on gpu architecture,” in

2013 IEEE 31st International Conference on Computer Design (ICCD), 2013, pp.
78–84.

[22] S. Lin, J. Liu, E. F. Y. Young, and M. D. F. Wong, “Gamer: Gpu-accelerated maze

routing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 42, no. 2, pp. 583–593, 2023.

[23] X. Jiang, J.Wang, Y. Lin, and Z.Wang, “Fpga-acceleratedmaze routing kernel for

vlsi designs,” in 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2022, pp. 592–597.

[24] S. Lin and M. D. F. Wong, “Superfast full-scale cpu-accelerated global routing,”

in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, ser. ICCAD ’22. New York, NY, USA: Association for Computing

Machinery, 2022. [Online]. Available: https://doi.org/10.1145/3508352.3549474

[25] S. Liu, Y. Pu, P. Liao, H. Wu, R. Zhang, Z. Chen, W. Lv, Y. Lin, and B. Yu,

“Fastgr: Global routing on cpu–gpu with heterogeneous task graph scheduler,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 42, no. 7, pp. 2317–2330, 2023.

[26] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang, “Nthu-route 2.0: A

robust global router for modern designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 12, pp. 1931–1944, 2010.

[27] T. Qu, Y. Lin, Z. Lu, Y. Su, and Y. Wei, “Asynchronous reinforcement learning

framework for net order exploration in detailed routing,” 2021, pp. 1815–1820.

[28] T.-H.Wu, A. Davoodi, and J. T. Linderoth, “Grip: Scalable 3d global routing using

integer programming,” in 2009 46th ACM/IEEE Design Automation Conference,
2009, pp. 320–325.

[29] R. Agrawal, K. Ahuja, C. Hau Hoo, T. Duy Anh Nguyen, and A. Kumar,

“Paralarpd: Parallel fpga router using primal-dual sub-gradient method,”

Electronics, vol. 8, no. 12, 2019. [Online]. Available: https://www.mdpi.com/2079-

9292/8/12/1439

[30] P. Yao, P. Zhang, and W. Zhu, “Pathfinding model and lagrangian-based global

routing,” in 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023,
pp. 1–6.

[31] E. Shragowitz and S. Keel, “A global router based on a multicommodity

flow model,” Integration, vol. 5, no. 1, pp. 3–16, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926087800032

[32] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multi-layer global routing consid-

ering via and wire capacities,” in 2008 IEEE/ACM International Conference on
Computer-Aided Design, 2008, pp. 350–355.

[33] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear steiner

minimal tree algorithm for VLSI design,” vol. 27, no. 1, pp. 70–83, 2008.

[34] M. L. Fisher, “An applications oriented guide to lagrangian relaxation,” vol. 15,

no. 2, pp. 10–21, 1985.

[35] R. Agrawal, K. Ahuja, D. Maheshwari, M. U. Shaikh, M. Bouaziz, and A. Kumar,

“Parallel fpga routers with lagrange relaxation,” IEEE Access, vol. 11, pp. 121 786–
121 799, 2023.

[36] P. Tseng and D. P. Bertsekas, “On the convergence of the exponential multiplier

method for convex programming,”Mathematical Programming, vol. 60, pp. 1–19,
1993. [Online]. Available: https://api.semanticscholar.org/CorpusID:13946216

[37] B. W. Kort and D. P. Bertsekas, “A new penalty function method for constrained

minimization,” in Proceedings of the 1972 IEEE Conference on Decision and Control
and 11th Symposium on Adaptive Processes, 1972, pp. 162–166.

[38] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.

[39] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A lightweight parallel

and heterogeneous task graph computing system,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 6, pp. 1303–1320, 2022.

https://doi.org/10.1145/3626184.3639693
https://doi.org/10.1145/3508352.3549474
https://www.mdpi.com/2079-9292/8/12/1439
https://www.mdpi.com/2079-9292/8/12/1439
https://www.sciencedirect.com/science/article/pii/S0167926087800032
https://api.semanticscholar.org/CorpusID:13946216

