Synergistic Die-Level Router for Multi-FPGA
System with Time-Division Multiplexing
Optimization

Jiarui Wang!'2, Yanjing Liu®3, Yibo Lin?%5*
1School of Computer Science, Peking University, Beijing, China 2School of Integrated Circuits, Peking University, Bejing, China

3School of Software & Microelectronics, Peking University, Bejing, China “Institute of EDA, Peking University, Wuxi, China

®Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

jiaruiwang @pku.edu.cn, liuyanjing @stu.pku.edu.cn, yibolin@pku.edu.cn

Abstract—Modern multi-FPGA systems featuring multi-die
devices connected through time-division multiplexing (TDM)
techniques have become increasingly common as the scale
of designs increases rapidly. FPGA designs are meticulously
partitioned at die-level for prototyping in modern emulation
systems. Conventional FPGA-level routers often result in a
large critical connection delay that impacts the whole design’s
frequency. Additionally, the excessive use of super long lines
(SLLs) between neighboring dies leads to substantial routing
congestion, causing the failure of the routing progress. To tackle
these issues, we propose an effective and efficient die-level
router for multi-FPGA systems, optimizing routing topology
and the TDM ratio. Experimental results on the benchmarks
from the die-level routing contest 2023 demonstrate 7.6 % better
critical connection delay with a 5.761 x speed-up compared to
the state-of-the-art router.

I. INTRODUCTION

Multi-FPGA systems with multiple dies within each
FPGA device are widely applied to implement large-scale
circuit designs as the scale of designs increases rapidly. As
shown in Fig. 1(a), a single multi-die FPGA device consists
of several dies, each interconnected by super long lines
(SLLs) [1, 2]. To address the challenge of limited I/O pins
in the FPGA devices, the time-division multiplexing (TDM)
technique [3] has been widely applied to enable efficient
communication between different FPGAs. Fig. 1(b) and (c)
illustrate the TDM I/O structure driven by the TDM clock,
whose frequency is much higher than that of the system
clock. Each physical TDM wire is assigned a TDM ratio,
which specifies the number of nets it transmits within one
system clock period.

There are two primary approaches to deploying a design
to multi-FPGA systems: FPGA-level and die-level flows.
FPGA-level flows partition a design into different FPGAs
and let FPGA CAD tools like Vivado [4] finish the physical
implementation of each FPGA. In contrast, die-level flows
perform more fine-grained partitioning, dividing the design
into dies (a.k.a SLRs in Xilinx FPGA) of FPGAs and only
letting FPGA CAD tools finish the physical implementation
of each die. FPGA-level flow can quickly generate the
partitioning and FPGA-level routing topology, but it can
lead to congestion during physical implementation for each
FPGA device as it cannot precisely estimate the congestion
level between and inside each die. Thus, fine-grained die-
level flow is commonly used in many emulation systems

*Corresponding author

Inter-FPGA
Connection|

|_Dic0_uismmn |_Dies B

[Died | _Dies |} —

| Die3 | M| " (—

FPGAA FPGAB FPGA A\; FPGAB
1 —
I Die SLLs — TDMs M Instance [JConverter
(@) (b)

System CLK ’—\—‘
TOMCLK [y

TOM wire #1135 ¥ I e e
TDM wire #2 ratio = 4
Transmitted Nets

v I I
(©

Fig. 1: (a) A multi-FPGA system with 2 FPGAs and 8 dies,
with each die-to-die edge having several physical wires, for
example, 100 wires. (b) The TDM edge between two dies
on different FPGAs. (c¢) The waveforms of the system clock
and the TDM clock.

like Synopsys ZeBu [5] and S2C OmniArk [6] to precisely
estimate the design performance and control congestion at
the early stage of the design process.

System routing is an essential step in the multi-FPGA sys-
tem design flow to generate inter-FPGA and inter-die routing
topologies and TDM ratios in FPGA-level flow and die-
level flow, respectively. Compared to FPGA-level routing,
die-level routing provides more precise control and requires
a more synergistic routing algorithm. A die-level router must
simultaneously consider the different timing behaviors of
SLL and TDM edges. It shall also synergistically avoid
violating complex design rules or overlapping on SLL edges,
as well as increasing design frequency by minimizing the
maximum delay of all net connections (critical connection
delay).

Prior academic works on multi-FPGA system routing
mainly focus on FPGA-level [7] while ignoring die-level
routing. They usually consist of two steps: initial routing to
generate the routing topology, and TDM ratio assignment to
determine TDM ratios. [8] and [9] propose SMT-based initial
routing algorithms by finding minimum Steiner trees while
dynamically adjusting routing costs. [10] applies maze rout-
ing [11, 12] and spanning tree algorithm [13] for nets with
different criticality. However, as routing resources within dif-
ferent dies differ, FPGA-level initial routing cannot precisely
estimate the design’s frequency and can lead to insufficient
SLL resources when the design’s scale increases. To do the

TDM ratio assignment, many academic FPGA-level routers
apply criticality-based algorithms [8, 10, 14] or Lagrangian-
relaxation-based algorithms [15, 16]. Besides those works,
[17] also considers the TDM capacity and direction rule
during the TDM ratio assignment process. However, they
ignore the different timing behavior between SLL and TDM
wires, leading to an imprecise timing estimation.

Recently, [18] considers die-level routing by combining
the minimum Steiner tree algorithm and maze routing algo-
rithm for the initial routing and applying dynamic program-
ming to assign the TDM ratio for each physical TDM wire.
Their initial routing algorithm focuses on minimizing the
total usage of SLL and TDM edges, which can lead to a large
delay on critical connections. Their dynamic programming
does not scale with design sizes either.

In this paper, we propose a synergistic die-level router
for multi-FPGA systems to minimize the critical connection
delay. The major contributions of this paper are summarized
as follows.

o« We propose a synergistic die-level router for multi-
FPGA systems, optimizing both routing topologies and
TDM ratios at die-level.

e We propose a balanced initial routing algorithm that
synergistically optimizes connection delay and demands
on SLL and TDM edges.

e« We propose a multi-threaded Lagrangian-relaxation-
based initial TDM ratio assignment algorithm with a
margin-aware TDM ratio legalization and TDM wire
assignment algorithm to assign TDM ratios for nets and
physical TDM wires synergistically.

Compared to the state-of-the-art (SOTA) die-level multi-
FPGA system routers, we achieve a 7.6% less critical
connection delay with 5.761x speed-up on die-level multi-
FPGA system routing contest 2023 [19] benchmarks (a
problem of the 2023 Integrated Circuit EDA Elite Challenge
organized by an industrial vendor [20]).

The rest of this paper is organized as follows. Section II
describes a die-level multi-FPGA system and the problem
formulation of the die-level multi-FPGA system routing
problem. Section III demonstrates the algorithm flow of
our router. Section IV validates our routing algorithm with
experimental results. Section V concludes the paper.

II. PRELIMINARIES

In this section, we introduce the background of the die-
level multi-FPGA system routing problem and demonstrate
our design rule constraints. The symbols and their descrip-
tions used in this paper are listed in TABLE L

A. Background

Modern FPGA architectures [1] usually have multiple
dies. As shown in Fig. 1(a), FPGA A and FPGA B are two
FPGAs, each with 4 dies. Neighboring dies are connected by
SLL edges, and each SLL edge consists of several physical
SLL wires. We define the number of physical SLL wires as
the capacity of an SLL edge e, denoted as cap,, which is
the maximum number of nets it can route. The capacity of
each SLL edge can be up to 10%.

Multi-FPGA systems have been widely applied for large
designs in recent years. As shown in Fig. 1(a), FPGA A
and FPGA B form a multi-FPGA system consisting of two
FPGAs. TDM edges Erpyn connect different dies across

TABLE I: List of symbols.

Symbol Description
\Y The set of FPGA dies.
Erpwm, Esp, The set of TDM edges and SLL edges.
N All the nets in the netlist.
Ne All the nets using edge e.
C All the connections.
Sce Binary variable representing whether edge e is used

to route connection c.
Ne The net of the connection c.

Tne The TDM ratio of net n on TDM edge e.

cap, The number of physical wires edge e contains.

demand. The number of nets using e.

d the critical connection delay.

de The delay of the connection c.

dsLL, The delay of connection c¢ contributed by the SLL
edges.

dst1, The delay of the SLL edges.

p TDM step.

et S S

+ v

S =

(@ (b)

Fig. 2: The Difference between FPGA-level routing and die-
level routing. (a) A typical flow of ICCAD 2019 contest [7]
FPGA-level routers. (b) A typical flow of die-level routers.

different FPGAs. Each TDM edge erpwm is formed by
several physical TDM wires, and each physical TDM wire
has a TDM ratio. The capacity of a TDM edge e is the
number of physical wires it has, which is also denoted as
cap,. All the physical TDM wires within the same TDM
edge share the same TDM clock but may have different TDM
ratios. As shown in Fig. 1(c), the two physical wires have
TDM ratios of 8 and 4, respectively.

As shown in Fig. 2, die-level routing is completely
different from FPGA-level routing. Conventional FPGA-
level multi-FPGA system routers (e.g. ICCAD 2019 contest
routers [7]) take FPGA-level partitioning results as their
inputs and assign TDM ratio between each FPGA-to-FPGA
pair, which is shown in Fig. 2(a). As illustrated in Fig. 2(b),
die-level routers take die-level partitioning results as in-
puts and output an overlapping-free routing solution with
minimum critical connection delay at die-level. They shall
also do TDM wire assignment to assign the TDM ratio on
each physical TDM wire and assign each cross-FPGA net to
physical TDM wires on the die-to-die TDM edges it passes,
which is not considered by most FPGA-level routers.

B. Design rules

Unlike conventional FPGA-level routing, die-level routing
deals with much more complex design rules, which are listed
below.

Connectivity rule. Each connection of a net shall be
routed by SLL edges or TDM edges without loops.

SLL capacity and delay rule. Each physical SLL wire
can only be used to route at most one net. Therefore, the

Multi-FPGA

Netlist Architecture

D Nets into C

Initialize
Lagrangian Multipliers
Solving LRS

N
Converged?
Y

Initial TDM Ratios

Weight-Based Connection Ordering

g TDM Ratio L
and TDM Wire Assignment

Routing
Results

Fig. 3: The overall algorithm flow of our die-level router.

number of nets using an SLL edge e shall never exceed cap,.
The delay of all the SLL edges Egr, is a constant dgyy,.

TDM wire ratio and delay rule. A physical TDM wire
belonging to TDM edge e can route any number of nets. The
number of nets routed by a wire is defined as its demand.
The TDM ratio r of a TDM wire shall be not less than its
demand, and it shall also be multiple of the TDM ratio step
p. All the TDM ratios of nets using the same physical TDM
wire with TDM ratio r are the same as r, and the delay of
a TDM wire is defined as dy + dir, where dy and d; are
constants.

TDM capacity rule and TDM direction rule. For a
TDM edge e, the demand for physical TDM wires shall
never exceed cap,. Moreover, although TDM edges are bi-
directional, a physical TDM wire can only be used to pass
signals in the same direction.

C. Die-level routing problem for multi-FPGA system

We formally define our die-level multi-FPGA system
routing problem as follows.

Problem. Given a die-level multi-FPGA system and netlist
N, find the routing paths for each net with the minimum
critical connection delay following the design rules listed
in Section II-B:

i .
min Izleaé(Sce(dO + dlrnce) + Z ScedSLL ()

e€Erpm e€EsLL

III. ALGORITHM

In this section, we introduce the algorithm of our die-level
router for multi-FPGA systems.

A. Overall flow of our algorithm

The overall flow of our die-level router is shown in
Fig. 3. Our router takes the netlist and the multi-FPGA
system as input and outputs die-level routing paths for each
net and TDM ratios for each net and TDM wire. Our
router synergistically optimizes the usage of SLL edges and
TDM edges by two phases: (I) initial routing to generate
routing paths for each die-crossing net, and (II) TDM ratio
assignment to assign TDM ratios on TDM wires to minimize
the critical connection delay.

Our router first generates die-level routing paths for each
net at the initial routing phase (Section III-B). We decom-
pose each net into die-to-die connections and find a routing

@ Die 6

Die 3 @

g Al

FPGA A FPGA B FPGA A FPGA B
@ source @ fanout @ source @ fanout
SLL ——TDM —» path SLL —TDM —» path

(@) (b)

Fig. 4: (a) The minimum Steiner tree for the net connecting
die 0 to die 3 and die 6 with the larger connection delay
to die 5. (b) The shortest path tree for the same net with a
smaller connection delay but uses more edges to route.

result while balancing the connection delay and demand on
SLL and TDM edges.

To further optimize the critical connection delay, our
router assigns TDM ratios on each TDM edge based on
our initial routing solution. We first use the Lagrangian-
relaxation-based method to assign the initial TDM ratio
(Section III-C). Then, we legalize the TDM ratio and assign
the TDM ratio for each physical TDM wire (Section III-D).

B. Delay-demand-balanced initial routing

Our initial routing phase aims to find a routing path for
each net without congestion. Some prior works [8] apply
the minimum Steiner tree algorithm to get initial routing
results. Those algorithms aim to minimize the total routing
cost of the input design. However, as shown in Fig. 4(a),
such algorithms can lead to a large connection delay when
routing multi-fanout nets. An alternate idea is to find each
net a shortest-path tree to minimize the connection delay.
Such an idea can decrease the delay for each connection,
but as shown in Fig. 4(b), it increases the usage of routing
edges and can cause routing congestion on the SLL edges
or lead to large TDM ratios on TDM edges. Thus, our initial
routing algorithms synergistically balance the delay of each
connection and the demand of each SLL and TDM edge.

To find delay-demand-balanced initial routing results for
each net, our initial router decomposes each net into connec-
tions and finds each connection a routing path. The routing
order of those connections is decided by sorting the routing
weight by the Floyd-Warshall [21] algorithm by the decreas-
ing order. Using the cost function listed in the following
paragraphs, we then find a routing path for each connection
following the negotiation-based path-finding algorithms [22].
The routing cost for each SLL and TDM edge is impacted by
both edge delay and demand of each edge to synergistically
consider connection delay and edge demand. As there may
be congestion in the routing result since there are capacity
constraints on those SLL edges, we increase the cost of
those congested SLL edges and reroute those congested nets
iteratively to find an overlapping-free routing result for each
net.

Weight estimation and connection ordering. We assign
a routing weight to each edge to calculate the routing weight
of each pair of dies. Based on the number of nets in the
design, SLL and TDM edges have different weights. When
the number of nets on each die is less than half of the
capacity of SLL edges, TDM edges are assigned a higher

weight of ||V|| + 1, while SLL edges are given a lower
weight of 1. Such a weight assignment encourages the
router to explore more SLL and TDM edges for less delay.
Conversely, if the number of dies exceeds this threshold,
SLL edges receive a || V|| + 1 weight, and TDM edges are
weighted at 1, which helps the router avoid congestion on
SLL edges.

The routing weight of each connection is the sum of the
edge weight of the shortest path between two dies, which is
collected by the Floyd-Warshall algorithm [21]. Connections
with higher routing weights are routed first, and connections
belonging to the net with fewer fanouts have higher priority
when the routing weight is the same.

Calculating routing cost. Our router iteratively applies
the negotiation-based path-finding algorithms [22] to find a
routing path for each connection, and we need to precisely
estimate the routing cost of each SLL edge and each TDM
edge to balance usage of routing edges and delay of con-
nections. SLL. and TDM edges have different routing cost
functions as their timing behaviors differ. To reduce usage of
the routing edges, when routing a connection of a net n, the
cost of a routing edge is also impacted by whether the edge
is used to route other connections of n. For SLL edges, we
define their routing costs as pw., where w, is the estimated
edge weight, and p is impacted by whether the SLL edge
has been used to route the net the connection belongs to,
which will be discussed in the following paragraph. For
TDM edges, their routing costs are defined as follows:

demand,
cap,

The routing cost of TDM edges increases as their demand
increases, which can balance the usage of TDM edges to
minimize the critical connection delay.

The parameter p is used to balance the total usage of
routing edges and the delay of each connection. When we
explore edge e when routing a connection c of a net n, u
is impacted by whether e has already been used to route n.
If e is not used to route n, u is set as 1. If e is used to
route other connections of n, then p is set as a real number
between 0 and 1, and we set it as % in practice.

coste = p(do +p+). 2)

C. Lagrangian-relaxation-based initial TDM ratio assign-
ment

It is difficult to directly assign the TDM ratio of each
TDM wire and assign nets to them. Therefore, we relax the
TDM wire ratio and delay rule, and assign each net a TDM
ratio as a real number on each TDM edge it passes. Those
initially assigned TDM ratios are legalized by the algorithms
described in the next section.

The formulation of our TDM ratio assignment problem is
listed as follows:

min d
d,rne
st. Y Seedee +dsir, <d, VeeC,
e€ETrpm (3)
Z < cap, — 1, Ve € Erpwm,
neN, Tne
where
dce = dO + lenCe- (4)

Note that to avoid a physical TDM wire being used
bidirectionally, we restrict usage of each TDM edge e to
no more than cap, — 1, not cap,. The usage of TDM edges
is fulfilled in our TDM ratio legalization phase.

As the primal problem (PP) is difficult to solve, we apply
Lagrangian relaxation (LR) to PP and get the Lagrangian re-
laxation subproblem (LRS) by adding Lagrangian multipliers
(LMs) X to the first set of constraints in (3), such a method
is widely used in many FPGA-level TDM ratio assignment
algorithms [15, 16]. LRS is much easier to solve than PP,
and its optimal solution of LRS is a lower bound on PP. We
list the formulation of LRS as follows:

Izlin Ly(d,r)
®)]
s.t. <cap, —1, Vee&€ Erpum.
Tne
n€EN,
where
La(d,r) =d+Y Ae(> Seeldotdirn,e)+dsir, —d).
ceC e€Erpm
(6)

The optimal solution of LRS is defined as LRS*(\). The
maximization of LRS*(\) provides the maximum lower
bound of PP. We aim to maximize LRS*()) in our TDM
ratio assignment phase, which is known as solving the
Lagrangian dual problem (LDP). The formulation of LDP
is defined as follows:

max LRS*())
A (N
st. A.>0, Ve € C.

We list how we assign the initial TDM ratio and solve
LDP in Algorithm 1. We init A\, as m (line 1) at the
beginning and iteratively update A to maximize LRS*(\)
until the difference between LRS*(A) and d is less than
the given threshold € or the number of iterations reaches the
maximum iteration number (lines 2-7). In each iteration, we
first solve LRS to assign TDM ratios for each net on each
TDM edge it passes (line 4). Then, we calculate LRS™*(\)
and d and update the LMs A (lines 5-6).

Algorithm 1: Initial TDM Ratio Assignment

Input: Initial routing result, Maximum iterations

MaxIter, Threshold e
Output: Initial TDM ratios 7.
1 Initialize Lagrangian Multipliers .

2 Iter < 0.
3 while %f(/\()’\) > ¢ And Iter < MaxIter do
4 Calculate 7, by solving LRS.

Calculate LRS*(\) and d.
Update the Lagrangian Multipliers A.
Iter < Iter + 1.

N QW

Finding the optimal solution of LRS. To find the optimal
solution of LRS, we first apply the Karush-Kuhn-Tucker
(KKT) condition:

OLy B
W7172/\670. 8)

ceC

Therefore, we only need to solve the following optimiza-
tion problem for each TDM edge e to minimize L (d,r):

mgn Z NMneTne + Z)‘C(dSLLc + Z doSce), (9)

neN, ceC e€Erpm

where
Tne = dy Z AcSce- (10)
ceC,
By applying Cauchy-Schwarz Inequality, we have:
1
2
O Vimerne (D) > (D Vime)® (D)

2
neN, V Tne

To fully use the capacity of each TDM edge, the optimal
solution of LRS must follow that }°, . 1 = cap(e) — 1.
Therefore, the equality in (11) holds if and only if

r _ Zn/ €N, Mn’

" Vi(cap, — 1)
Afterwards, we obtain the optimal solution 7, for LRS.

Iteratively update solution of LDP. The target of LDP is
to find A that maximize LRS*(\). Based on the fact that PP
is a convex problem, which has only one optimal solution,
we apply methods in [15] to update X in each iteration by the

following equation to obtain the solution of LDP quickly:

neEN, neN,

(12)

AL = /\g(%)’(i. (13)
K is the acceleration factor, and it is updated every iteration
by the method in [15]. After that, we normalize \.‘*! to
satisify the KKT condition listed in (8).

Multi-threaded acceleration. Solving LDP usually takes
many iterations, which is very time-consuming when the
netlist is very large. We apply a multi-threaded technique
for large-scale netlists to efficiently obtain initial TDM ratio
assignment results and accelerate the process without losing
quality. At the beginning of each iteration, we first calculate
Nne and use them to calculate 7,,.. This progress is individual
for each TDM edge and we can assign each TDM edge
an independent thread to accelerate the process. Next, we
need to calculate the results of LRS and LDP. To calculate
them, we need to obtain the delay of each connection, which
can be calculated parallelly for each connection. We assign
each connection a thread to calculate its delay. To avoid
the read-write conflict, we use the reduction operation [23]
to parallelly calculate LRS*(\) and d. We then need to
update LMs \. We first parallelly calculate)\'c”l and use
the reduction operation to get the sum of A“**. Finally, we
update A, for each connection individually.

D. TDM ratio legalization and margin-aware TDM wire
assignment

Our initial TDM ratio assignment process assigns each net
a TDM ratio on each TDM edge it passes. We then need to
legalize those TDM ratios to multiples of TDM step p. The
legalized TDM ratios can be used for TDM wire assignment
to decide the TDM ratio of each TDM wire and assign nets to
TDM wires. Such a process increases the TDM ratio of each
net, leaving a margin between demand and capacity on each
TDM edge. To further optimize the critical connection delay,
we propose a TDM ratio refinement algorithm to resolve
those margins. Our legalization and assignment process is
individual for each TDM edge, and we parallelly process
each edge on large designs for less runtime.

Since a physical TDM wire can only pass connections
in one direction, we first assign the number of physical
wires for two directions of a TDM edge. For each bi-
directional TDM edge e, we first calculate the sum of

i for two directions and round them up to the nearest
integer as the number of physical TDM wires for each
direction, which are nominated as capg and cap+ for two
directions. Note that we restrict the sum of ﬁle less than
cap, — 1 in the initial assignment stage. Therefore, the sum
of physical wires assigned to two directions is exact cap.

Algorithm 2: TDM Ratio refinement

Input: TDM Ratios r,,- on the directed TDM edge
_)
€
Output: Refine TDM Ratios r,»
1 Initialize an empty priority queue gq.
2 Push all the nets using @ and their criticality in to q.
3 while capp — > -1~ > e do

s 2
4 Pop out the most critical net n from gq.
5 Decrease 7,,» and the criticality of n.

6 Add n back to gq.

To legalize TDM ratios on a TDM edge e, we first increase
all the r,,. to the nearest multiple of TDM step p. After that,
there will be a margin between demand and capacity on each
TDM edge. We list how we refine TDM ratios on a directed
TDM edge < in Algorithm 2. We define the criticality of
a net on a TDM edge as the largest connection delay of
the connections of the net passing the TDM edge. We use
a priority queue to manage all the nets passing the TDM
edge (line 2) and pop out the most critical net repeatedly
until the margin is less than a certain threshold (lines 3-6).
If the TDM ratio for the most critical net on the TDM edge
is larger than TDM step p, we decrease its ratio by p and
its criticality by dip (line 5), and push the net back into the
priority queue (line 6).

After the TDM ratios are refined, we use a greedy-based
method to assign the TDM ratio of physical TDM wires
and assign nets to them. For each TDM wire, we assign the
smallest 7, of the remaining nets as its TDM ratio and then
assign nets from the same direction with the top r,.-smallest
to use the TDM wire. After that, there will be remaining
demands to assign or remaining wires not assigned a ratio.
We then increase the TDM ratio of the wires with small
criticality nets to assign the remaining demands or assign
nets with large criticality to empty wires to resolve the
remaining capacity. Finally, each net will be assigned to a
TDM wire, and the TDM ratio of the wire is assigned to
nets using it as their ratio on the TDM edge.

IV. EXPERIMENTAL RESULTS

We implement our algorithm in C++ and use
OpenMP [24] for multi-threading. Our experiments
are conducted on a Linux machine with an Intel Xeon
4210-R 10-Core Processor (2.40 GHz) and 320 GB RAM.
For designs with more than 200,000 nets, we use 10 threads
to run phase II of our router. We use a single thread to
avoid the time of multi-thread scheduling for other designs.

TABLE II: The statistics of the contest [19] benchmarks.

SLL TDM

‘ Design #FPGAs #Dies #Edges #Wires #Edges #Wires #Nets #Conns
Case #1 2 8 6 122K 2 400 5 5
Case #2 2 8 6 122K 2 400 86 155
Case #3 2 8 6 122K 2 20 84 154
Case #4 2 8 6 122K 2 40 449 577
Case #5 3 12 9 183K 3 440 5K SK
Case #6 3 12 9 183K 14 10K 145K 281K
Case #7 4 16 12 244K 15 9K 76K 118K
Case #8 4 16 12 244K 15 7K 86K 146K
Case #9 4 16 12 244K 21 142K 871K 183K
Case #10 5 20 15 305K 19 75K 3324K 7279K

TABLE III: Critical connection delay (Delay), the number of overlapping on SLL edges (#CONF), and routing runtime
(Runtime, s) on the die-level routing contest benchmarks [19] between the contest winners, [18], adapted [9] and our router.

Design Case Case Case Case Case Case Case Case Case Case N
Router #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 orm.
Delay 6.5 75 115 195 1355 213 84.5 124 150 4657.5 1.098
Ist #CONF 0 0 0 0 0 0 0 0 0 0 -
Runtime 0.01 0.01 0.01 0.03 0.17 6.73 2.43 3.11 50.81 356.70 | 1.557
Delay 6.5 75 145 19.5 136 260 1025 1455 196.5 4745 1238
ond #CONF 0 0 0 0 0 0 0 0 0 0 -
Runtime 0.01 0.01 0.01 0.02 0.10 3.70 1.49 1.90 612.19 784.55 | 4.468
Delay 6.5 75 115 185 1325 287 76 123 177 5700 1171
3rd #CONF 0 0 0 0 0 0 0 0 0 0 -
Runtime 0.01 0.01 0.01 0.03 0.87 263.14 85.56 303.77 227493 2115.07 | 34.362
Delay 6.5 75 115 185 131 2115 785 1135 1545 47395 1.076
[syt #CONF 0 0 0 0 0 0 0 0 0 0 -
Runtime 0.01 0.01 0.01 0.02 0.30 18.76 6.04 5.94 36328 2169.83 | 5.761
Delay 6.5 12 28 32 185 FAIL? 270 505 FAIL FAIL 2353
Adapted #CONF 0 0 0 0 0 11052 0 0 676430 4920599 -
9] Runtime 0.08 0.06 0.06 0.07 0.14 2.96 1.34 1.59 22.69 106.38 | 2.323
Delay 6.5 75 11.5 185 136 163 74 107.5 1225 4207.5 | 1.000
Ours #CONF 0 0 0 0 0 0 0 0 0 0 -
Runtime 0.01 0.02 0.02 0.02 0.10 5.08 2.09 2.88 21.01 84.50 1.000

! We obtained the latest binary from the authors of [18]. The results on our machine are slightly different from the original paper, which have been

verified by the authors [18].

2 *FAIL’ means the routing result is illegal as there are overlapping on the SLL edges.

We collect 10 cases from the die-level routing contest
2023 [19] provided by an industrial vendor [20], and the
cases are available at [25]. The statistics of the contest
benchmarks are listed in TABLE II. The number of FPGAs
in the multi-FPGA system varies from 2 to 5, and the number
of dies in the multi-FPGA system ranges from 8 to 20. The
number of nets and connections can be up to 106.

We collect the binary files of the top-3 winners from the
die-level routing contest [19] and the latest binary file of [18]
and run their binary files on our machine by 10 threads.
We list the results of those four routers and our routers in
TABLE III. Compared to the contest winners, our router
has a 9.8%, 23.8%, and 17.1% less critical connection delay
with a 1.557x, 4.468x, and 34.362x speedup. Also, our
router has a 7.6% less critical connection delay and a 5.761 x
speedup compared with [18].

We also collect the binary file of [9], which is the
SOTA FPGA-level multi-FPGA routing to the best of our
knowledge. We run their binary files by faking each die as an
FPGA, with each edge as a fake FPGA-to-FPGA connection
while regarding each net as a net group. We use our TDM
ratio legalization and TDM wire assignment algorithm to
assign the TDM ratio of their result. The adapted result is
also listed in TABLE III. The adapted router fails to deal
with 3 of the 10 cases and has much more critical connection
delay in other cases. Note that comparing the results of
adapted [9] with ours is not fair since the die-level routing
problem is entirely new compared to the FPGA-level routing
problem from ICCAD 2019 contest [7]. The main purpose
of this experiment is to show that these two problems are
quite different, and thus, simple adaption is not effective.

To validate the effectiveness of our initial routing algo-
rithm and our TDM ratio algorithms (containing initial TDM
ratio assignment, TDM ratio legalization, and TDM wire
assignment), we collect the routing topology generated by
the router of the contest [19] winners and [18] and use
our TDM ratio algorithms to refine the results. The results
of the ratio of the critical connection delay are listed in
Fig. 5(a). As Fig. 5(a) shows, the results assigned by our
TDM ratio algorithms can refine the critical connection delay
of the routing results of the four baselines by 0.3%, 10.3%,
7.7%, and 2.5%, which shows the effectiveness of our TDM
ratio algorithms. The critical connection delay of the refined

u w/o TDM Ratio Algorithms
mw/ TDM Ratio Algorithms TA,

19.50%-,

1.238

1.171
1.135

1.098 1.095 1.094

1.076

I1051

[18]

(a) (b)

Fig. 5: (a) The ratio of critical connection comparison
between the results of the contest [19] winners and [18]
without our TDM algorithms, the results of the contest
winners and [18] refined by our TDM ratio algorithms, and
the results of our router. (b) Runtime breakdown of the
routing algorithms on design Case #10.

results are 9.5%, 13.5%, 9.4%, and 5.1% larger than the
results of our router, demonstrating the effectiveness of our
initial routing algorithm.

The runtime breakdown of our routing algorithms, includ-
ing initial routing (IR), initial TDM ratio assignment (TA),
TDM ratio legalization and TDM wire assignment (LG &
WA), is listed in Fig. 5(b). The initial routing takes 70.39%
of the total routing algorithm runtime, as we need to route
each connection sequentially. Assigning the TDM ratio by
Lagrangian relaxation takes 19.50% of the runtime while
legalizing the TDM ratio and assigning the TDM ratio to
each wire takes 10.12% of the runtime, as they are multi-
threaded accelerated.

Ours
1.000

V. CONCLUSION

In this paper, we propose a synergistic die-level multi-
FPGA system router to generate die-level routing results
for multi-FPGA systems. We propose a connection-based
path-searching algorithm to balance connection delay and
edge demand synergistically. We propose a Lagrangian-
relaxation-based initial TDM ratio assignment algorithm
to effectively reduce the critical connection delay with a
margin-aware TDM ratio legalization and TDM wire assign-
ment method. Compared to the SOTA, we can achieve a
7.6% less critical connection delay with a 5.761 x speed-up.

ACKNOWLEDGE

This project is supported in part by the Natural Science
Foundation of Beijing, China (Grant No. Z230002), and the
111 Project (B18001).

[1]
[2

—

3

=

[4]

[5]

[6]

(7]

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

REFERENCES

R. Raikar and D. Stroobandt, “Multi-die heterogeneous FPGAs: How
balanced should netlist partitioning be?” ser. SLIP ’22, 2023.

C. Ravishankar, D. Gaitonde, and T. Bauer, “Placement strategies
for 2.5D FPGA fabric architectures,” in 2018 28th International
Conference on Field Programmable Logic and Applications (FPL),
2018, pp. 16-164.

J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agar-
wal, “Logic emulation with virtual wires,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 6, pp. 609-626, 1997.

AMD, “Vivado overview,” 2024, https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vivado.html.

Synopsys, “Emulation systems — system verification,” 2024, https:
/Iwww.synopsys.com/verification/emulation.

X. Zhang, “How do logic simulation, emulation, and FPGA pro-
totyping work?” 2023, https://www.s2cinc.com/resources/lit/en/wp/
s2c-how-do-logic-simulation-emulation-and-fpga- prototyping- work.
pdf.

Y.-H. Su, R. Sun, and P-H. Ho, “2019 CAD contest: System-
level FPGA routing with timing division multiplexing technique,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2019, pp. 1-2.

P. Zou, Z. Lin, X. Shi, Y. Wu, J. Chen, J. Yu, and Y.-W. Chang, “Time-
division multiplexing based system-level FPGA routing for logic
verification,” in Proceedings of the 57th ACM/EDAC/IEEE Design
Automation Conference, ser. DAC *20. IEEE Press, 2020.

W.-K. Liu, M.-H. Chen, C.-M. Chang, C.-C. Chang, and Y.-W. Chang,
“Time-division multiplexing based system-level FPGA routing,” in
2021 IEEE/ACM International Conference On Computer Aided De-
sign (ICCAD), 2021, pp. 1-6.

D. Zheng, X. Zhang, C.-W. Pui, and E. F. Young, “Multi-FPGA
co-optimization: Hybrid routing and competitive-based time division
multiplexing assignment,” in Proceedings of the 26th Asia and South
Pacific Design Automation Conference, ser. ASPDAC °21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 176-182.
[Online]. Available: https://doi.org/10.1145/3394885.3431565

C. Y. Lee, “An algorithm for path connections and its applications,”
IRE Transactions on Electronic Computers, vol. EC-10, no. 3, pp.
346-365, 1961.

H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Y. Young, “Dr. cu 2.0:
A scalable detailed routing framework with correct-by-construction
design rule satisfaction,” in 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2019, pp. 1-7.

K. Mehlhorn, “A faster approximation algorithm for the steiner
problem in graphs,” Inf. Process. Lett., vol. 27, no. 3, p. 125-128,
mar 1988. [Online]. Available: https://doi.org/10.1016/0020-0190(88)
90066-X

Z. Zhuang, X. Huang, G. Liu, W. Guo, W. Qian, and W.-H. Liu,
“ALIFRouter: A practical architecture-level inter-FPGA router for
logic verification,” in Proc. DATE, 2021, pp. 1570-1573.

T.-W. Lin, W.-C. Tai, Y.-C. Lin, and I. H.-R. Jiang, “Routing
topology and time-division multiplexing co-optimization for multi-
FPGA systems,” in Proceedings of the 57th ACM/EDAC/IEEE Design
Automation Conference, ser. DAC *20. IEEE Press, 2020.

C.-W. Pui and E. F Y. Young, “Lagrangian relaxation-based
time-division multiplexing optimization for multi-FPGA systems,”
ACM Trans. Des. Autom. Electron. Syst., vol. 25, no. 2, feb 2020.
[Online]. Available: https://doi.org/10.1145/3377551

C.-W. Pui, G. Wu, F. Y. C. Mang, and E. F. Y. Young, “An analytical
approach for time-division multiplexing optimization in multi-FPGA
based systems,” in 2019 ACM/IEEE International Workshop on System
Level Interconnect Prediction (SLIP), 2019, pp. 1-8.

C. Huang, P. Chu, S. Bi, R. Sun, and H. You, “System routing and
tdm assignment optimization in multi-2.5d FPGA-based prototyping
systems,” in 2024 2nd International Symposium of Electronics Design
Automation (ISEDA), 2024, pp. 324-331.

S2C, “FPGA die-level system routing algorithm design,” 2023,
https://edaicisc.oss-cn-shanghai.aliyuncs.com/file/cacheFile/2023/10/
23/0e6d23494cd24c7c94816d5bd0acf89c.pdf.

——, “S2C prototyping: FPGA ASIC SoC IP verification, validation,
emulation,” 2024, https://www.s2cinc.com.

R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM,
vol. 5, no. 6, p. 345, jun 1962. [Online]. Available: https:
//doi.org/10.1145/367766.368168

L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in Third International ACM
Symposium on Field-Programmable Gate Arrays, 1995, pp. 111-117.
J. Ciesko, S. Mateo, X. Teruel, X. Martorell, E. Ayguadé, J. Labarta,
A. Duran, B. R. de Supinski, S. Olivier, K. Li, and A. E. Eichen-
berger, “Towards task-parallel reductions in OpenMP,” in OpenMP:

Heterogenous Execution and Data Movements.
International Publishing, 2015, pp. 189-201.

Cham: Springer

[24] “OpenMP,” http://www.openmp.org/.
[25] 2023

Integrated Circuit EDA Elite Challange contest
problems,” 2023, https://eda.icisc.cn/en/download/index ?periodld=
c87b85¢3751c43ceb3cad82eedcc313d&type=2.

	1647: Synergistic Die-Level Router for Multi-FPGA System with Time-Division Multiplexing Optimization

