
Top-Level Routing for Multiply-Instantiated Blocks with
Topology Hashing

Jiarui Wang1,2, Xun Jiang2, Yibo Lin2,3,4∗
1School of Computer Science, Peking University, Beijing, China
2School of Integrated Circuits, Peking University, Bejing, China

3Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
4Institute of Electronic Design Automation, Peking University, Wuxi, China
jiaruiwang@pku.edu.cn,xunjiang@stu.pku.edu.cn,yibolin@pku.edu.cn

ABSTRACT
Modern System-on-Chip (SoC) design is divided into hierarchical
instances using the multiply-instantiated block (MIB) technique
to simplify the design process. Top-level routing aims at pro-
viding routing prototyping between those instances. It requires
consideration of replicated routing paths that can either be uti-
lized for routing or remain as floating segments. Conventional
path-searching based algorithm often fails to find a legal solution
under such a scenario. To address this, we propose an effective
and efficient top-level routing framework for MIBs by hashing
the topology of each net and using a group maze routing scheme.
Experimental results demonstrate promising performance com-
pared to the winners of the MIB-aware top-level router contest
2022 organized by Synopsys.
ACM Reference Format:
J. Wang, X. Jiang and Y. Lin. 2024. Top-Level Routing for Multiply-
Instantiated Blocks with Topology Hashing . In 61st ACM/IEEE Design
Automation Conference (DAC ’24), June 23–27, 2024, San Francisco, CA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3649329.
3655900

1 INTRODUCTION
As the scale and complexity of modern System-on-Chips (SoCs)
have increased rapidly in recent years, it is difficult for designers
to develop the whole design individually. Therefore, dividing
a large design into multiple levels of blocks using the multiply-
instantiated block (MIB, also called multiply instantiated modules)
technique is applied to ease the implementation of the design
process [17]. Different instances of the same MIB block share the
same placement and routing results. Figure 1(a) shows an example
of the floorplaning result of an MIB SoC Design.

Designers often need to finish routing for critical nets at the
top level between MIB instances before going to the detailed
implementation of them. Different from typical routing problems
inside circuit blocks [5, 11, 13], the routing paths inside an instance
of an MIB block will be copied into other instances of the same
block, which may cause shorts between pins not supposed to
connect. Besides such a path copy rule, other design rules like
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3655900

B
B/C

A1 A2

Net Connection

(a)

B
B/C

A1 A2

Routing Paths Copied Paths

(b)

Figure 1: (a) A floorplanning result of 4 instances with a
net connecting 4 pins. A1 and A2 are both instantiations of
block A, and A2 is flipped by the y-axis. (b) Routing paths
and paths copied by the path copy rule of the net shown in
(a).

the crossing rule are also different from those in conventional
routing. Those unique rules raise challenges for existing routing
algorithms to efficiently and effectively generate a legal routing
result with minimum wirelength.

Existing routing algorithms mostly follow a negotiation-based
routing scheme [1, 9, 11, 13, 14, 16]. The key idea is to model the
entire layout as a grid graph and find a routing path with the
least cost using shortest path algorithms [4, 7]. They iteratively
resolve routing congestion with the rip-up and reroute scheme.
Such approaches are likely to cause shorts when considering the
path copy rule due to the greedy nature of the path-searching
algorithms. Another line of research explores directly building
rectilinear Steiner trees for nets [2, 3], while most of them can
neither consider path copy nor routing conflicts between nets.
A few studies [8, 18] formulate routing problems into integer
linear programming (ILP) to search for routing paths of multiple
nets simultaneously. However, solving an ILP problem is time-
consuming and not scalable with problem sizes.

In this work, we propose an MIB-aware top-level router with
a net topology hashing technique to help our router precisely
estimate the routing cost corresponding to the path copy rule.
To efficiently and effectively handle the design rule violations
caused by the path copy rule and the crossing rule, we regard
the original 2-D MIB SoC design as a 3-D double-layer sparse
grid graph and use a group maze routing algorithm to generate
the routing solution. The major contributions of this paper are
summarized as follows.

• We propose a robust MIB-aware top-level router to effi-
ciently and effectively generate top-level routing solutions
between different instances of MIBs.

• We propose a net topology hashing technique to reduce
the wirelength for those nets with the same topology.

https://doi.org/10.1145/3649329.3655900
https://doi.org/10.1145/3649329.3655900
https://doi.org/10.1145/3649329.3655900

DAC ’24, June 23–27, 2024, San Francisco, CA, USA J. Wang, X. Jiang and Y. Lin

Routing Path 1 Routing Path 2

(a)

Routing Path 1 Routing Path 2

(b)

Figure 2: (a) Path 1 and path 2 violate the parallel-run spac-
ing rule since the parallel paths of them are overlapped. (b)
Path 1 and path 2 do not violate the design rule constraints.

• We propose a group maze routing algorithm on a double-
layer sparse grid graph to handle the path copy rule and
the crossing rule efficiently.

• Comparing to the contest winners of the MIB-aware top-
level router contest 2022 organized by Synopsys (a problem
in the 2022 Integrated Circuit EDA Elite Challenge [12]),
our router achieves a 12%, 32%, and 10% smaller wirelength
with high scalability and robustness.

The rest of the paper is organized as follows. Section 2 describes
the design rule constraints and problem formulation of the MIB
SoC top-level routing. Section 3 demonstrates the algorithm flow
of our top-level router. Section 4 validates our routing algorithm
with experimental results. Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we introduce the background of the MIB-aware
top-level routing problem and demonstrate our design rule con-
straints.

2.1 Background
To reduce the work of SoC designers, an SoC design can be divided
into several MIBs. Each block can have several instances and each
instance shares the same routing results. The boundaries of a block
are horizontal or vertical, and there can be sub-blocks inside a
block. An instance of a block can be flipped by the x-axis and/or
y-axis. Figure 1(a) shows a floorplanning result of 4 instances of
3 blocks. In this example, instance B/C is a sub-block of instance
B. Instances A1 and A2 are both instantiations of block A, and A2
is flipped by the y-axis.

There are Nets at the top level that connect different pins
inside different instances. The target of the top-level routing is
to find a routing path to connect each pin of a net. As shown in
Figure 1(a), there is one net connect 4 instances. An example of
its routing solution is shown in Figure 1(b). The routing path for
a net shall be vertical or horizontal, and it shall follow the design
rule constraints described in the following section.

2.2 Design rule constraints
To generate a legal routing result for each net connecting different
instances, the top-level router shall follow the basic design rules
as follows:

Connectivity rule and shorts rule. Each pin of a net shall be
connected using Manhattan paths vertically or horizontally. Also,
the routing result of a net shall not overlap with pins connected
by other nets to avoid shorts.

Parallel-run spacing rule and crossing rule. Two different
parallel routing paths shall maintain a minimum space between

A

B1 B2 B3

Floating Segment Reused Path
Figure 3: An example showing how the path copy rule can
impact the wirelength. Paths in instance B2 and B3 are both
copied from instance B1, while the path in B2 remains as a
floating segment, but the path in B3 is utilized for routing.

A1 A2

A3 A4

Routed Paths Copied Paths
Net Topo

(a)

A1 A2

A3 A4

Routed Paths Copied Paths
Net Topo

(b)

Figure 4: (a) An example showing shorts caused by the path
copy rule. The copied path of the routing path connecting
pins in instances A1 and A3 makes shorts occur between
pins in instances A2 and A4. (b) The legal routing result of
nets shown in (a).

them. Also, the routing path shall maintain a space between the
boundary of each instance and each pin it is not connected to.
Different from traditional routing problems, two routing paths
can cross with each other in the MIB top-level routing. As shown
in Figure 2(a), path 1 and path 2 violate the parallel-run spacing
rule since they are parallel paths and they are too close to each
other. But in Figure 2(b), path 1 and path 2 are legal paths since
they do not have parallel paths.

Path copy rule. To maintain the same routing topology inside
each instance of a block, the routing path inside an instance of
a block will be copied into other instances of the same block.
The copied path can remain as floating segments or be reused
for routing. We show how the path copy rule can impact the
wirelength in Figure 3. The copied path can also cause shorts
between different nets, which will make the whole routing result
illegal. An example of the short caused by the copied path is
shown in Figure 4.

2.3 MIB-aware top-level routing problem
We formally define the MIB-aware top-level routing problem
as follows. Given a set of multiple instantiated blocks 𝐵, a set of
instantiations of those blocks 𝐼 , a set of pins inside those instances
𝑃 , and a set of nets 𝑁 connecting different pins. The target is to
find a legal routing result for each net following design rules
described in Section 2.2 and minimize the total routed wirelength.

3 ALGORITHM
In this section, we introduce the algorithm of our MIB-aware
top-level router.

Top-Level Routing for Multiply-Instantiated Blocks with Topology Hashing DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Phase I:
Initialization

Double-Layer Sparse
Grid Graph Construction

Net Topology Hashing

Floorplanned
MIB SoC Design

Phase II:
Top-Level MIB-Aware
Group Maze Routing

Vertex & Edge
Group Identification

Top-Level MIB SoC
Routing Results

Group Maze Routing
Path Search

Path Searching with
Group Maze Routing

Illegal Paths Rip-up

Group-Search-based
Rerouting

Node Cost Renewal

Any
DRC VIO?

Routing Results

Y

N

Figure 5: Overall flow of our MIB-aware top-level router.

3.1 Overall flow of our algorithm
We show the overall flow of our MIB-aware top-level router in
Figure 5. Our top-level router takes the floorplanning result of
each MIB instance and the net topology among pins inside those
instances as input and generates the Manhattan routing path for
each net as its output. There are 2 phases in our routing flow:
(1) data structure initialization and (2) MIB-aware group maze
routing.

Our router first builds a double-layer sparse grid graph (Sec-
tion 3.2) to help our group router deal with the design rules and
reduce the search space. We use the net topology hashing tech-
nique to identify the nets with the same topology and help our
groupmaze router precisely estimate the routing cost (Section 3.3).

Traditional maze routers [10] search the routing path of a net
with a single vertex in the search frontier. However, due to the
greedy nature of the path-searching algorithms, those routers may
find a routing result with shorts caused by the path copy rule. To
avoid this problem, wemaintain a group of vertices corresponding
to the path copy rule in the search frontier. We describe our group
maze searching method in Section 3.4.

3.2 Double-layer sparse grid graph
construction

As the routing path of a net can be freely routed vertically and
horizontally in an SoC layout, it brings the top-level router a
large search space. The target of our double-layer sparse grid
graph construction is to decrease the search space of our router
by limiting the possible routing paths to several routing tracks. As
shown in Figure 6(a), the tracks we generate are similar to Hanan
Grids [6]. We have additional tracks to deal with the parallel-run
spacing rule and the path copy rule.

Someworks [20] construct a 2-D grid graph to generate routing
paths. However, it is difficult for such a 2-D grid graph to check
whether two routing paths are crossed with each other since the
vertex representing the cross point will be captured by both the
two paths under such a scenario. Therefore, we regard the 2-D

x-track

y-track

(a)

y-track

x-track

(b)

Figure 6: (a) An example of how we generate the x-tracks
(red) and the y-tracks (blue) for an instance with a pin.
(b) The double-layer sparse grid graph corresponds to the
instance shown in (a).
layout of an SoC design as a 3-D search space and build a double-
layer sparse grid graph to reduce the work of checking the design
rule violations.

Our double-layer sparse grid graph is a bi-directional graph
𝐺 (𝑉 , 𝐸). Each vertex 𝑣 ∈ 𝑉 represents (𝑥,𝑦, 𝑙). (𝑥,𝑦) indicates the
position of vertex 𝑣 on the routing layout, and 𝑙 ∈ {0, 1} represents
the layer of vertex 𝑣 . As shown in Figure 6(b), in layer 0, vertices
are connected to their horizontal neighbors, and vertices in layer
1 are connected to their vertical neighbors. A bi-directional edge
𝑒 connecting 2 vertices on the same layer has a weight𝑤𝑒 as the
distance between positions of two vertices. It is used to represent
a connection between such 2 vertices. Two vertices at the position
but on different layers are also connected by a bi-directional edge.
If one of those edges is used to route a net, it represents the
routing paths of the net changing its direction between vertically
and horizontally at the position where the edge is located. If the
routing paths of two nets cross at the same location, they capture
two vertices at the same location on different layers without
overlapping with each other.

For any pin on the SoC layout, we define the vertex at the same
position on layer 0 as its corresponding vertex on the double-layer
sparse grid graph 𝐺 . Therefore, we can map any net 𝑛 onto 𝐺

correspondingly and the target of our router is to find a routing
path of net 𝑛 on𝐺 between vertices representing the pins the net
connects to.

Algorithm 1: Construct Double-Layer Sparse Grid Graph
Input: Position of each instance and each pin inside

instances
Output: Double-layer sparse grid graph 𝐺 (𝑉 , 𝐸)

1 Add initial x-tracks and y-tracks into track sets X and Y.
2 repeat
3 foreach newly added 𝑥 ∈ X and 𝑦 ∈ Y do
4 Add new tracks generated from 𝑥 or 𝑦 by path

copy constraint into X or Y.
5 end
6 until No new tracks are added into X or Y;
7 Determine vertices at 2 layers and generate edges.
8 Remove illegal edges.

We list how we construct our double-layer sparse grid graph
in Algorithm 1. At first, we initialize the x-tracks X and y-tracks
Y (line 1) using the coordinates of each pin, its nearest tracks
satisfying the parallel-run spacing rule and the nearest tracks of
boundaries of each instance satisfying the parallel-run spacing
rule (Figure 6(a)). As the routing paths are copied in different

DAC ’24, June 23–27, 2024, San Francisco, CA, USA J. Wang, X. Jiang and Y. Lin

A0 B00

B01

A1 B10

B11

B20

B21

A2 A3 C3 B30

B31

Net #0 Net #1

Net #2 Net #3

Figure 7: An example showing nets with or without the
same topology. Net #0, #1, and #2 have the same topology,
as Net #1 is copied from Net #0 and Net #2 is flipped by the
y-axis from Net #0. Net #3 does not have the same topology
as them.

instances of the same block due to the path copy rule, we itera-
tively insert tracks generated by path-copying into X and Y (line
2-6). With X and Y generated, we create vertices on 2 layers at
each cross point of an x-track and a y-track. After vertices are
created, we build edges connecting horizontal neighbors in layer
0, vertical neighbors in layer 1, and vertices representing the same
location on different layers (line 7). To avoid the parallel-run spac-
ing rule violation, we then remove edges that are too close to the
boundaries of each block (line 8).

3.3 Net topology hashing
To simplify the SoC design process, nets with the same topology
commonly appear in an MIB SoC design. As shown in Figure 7,
net #0, #1, and #2 have the same topology, and net #3 does not
have the same topology as them. To help our top-level router
precisely estimate the routed cost and efficiently route the MIB
SoC design, we develop our net topology hashing technique to
identify nets with the same topology. We generate a hash code
for each net in the MIB SoC design. Those nets with the same
topology shall have the same hash code while the hash code of
nets with different topology shall also be different.

We list how we use our net topology hashing technique to gen-
erate the hash code for net 𝑛 in Algorithm 2. We take the position
of each instance and the position of the pins net 𝑁 connects to
as the input. We first generate a bounding box 𝑏 to cover all the
instances the net connects (line 1). As there may be instances
overlapping with 𝑏, and those instances can also influence the
routing paths of 𝑛, we iteratively expand the boundary of 𝑏 to
cover them (lines 2-4). After the area of 𝑏 does not increase, we
record the block type and flipped directions of all the instances
covered by 𝑏 (line 5). As the instances can be flipped by the x-axis,
y-axis, or both the x-axis and y-axis, we generate the hash code
from the down-left, the down-right, the top-left, the top-right
points of 𝑏 regarding all the flip directions for a net (line 6).

With the hash code generated for each net, we define two nets
with the same topology if their four hash codes are the same after
reordering. All the nets with the same topology are defined as a
net group. With the path copy rule, the routing paths of each net
of the same topology shall be the same to reduce the wirelength.

Algorithm 2: Generate Hash Result for Net 𝑁
Input: Position of each instance and position of pins

connected by net 𝑛
Output: Hash result of net 𝑁

1 Initialize a bounding box 𝑏 covering all instances
connected by 𝑁

2 repeat
3 Expand 𝑏 to cover every instance it overlaps with.
4 until Size of 𝑏 does not increase;
5 Record all instances 𝐼 covered by 𝑏 and their flipped

direction 𝐷 .
6 Generate hash results of 𝐼 , 𝐷 , and pins connected by 𝑛

from four directions.

This feature is used by our groupmaze router to precisely estimate
the routing cost.

3.4 Group maze routing scheme
The target of our group maze router is to find each net a routing
path with a minimumwirelength. It shall also efficiently and effec-
tively deal with the design rules listed in Section 2.2. Traditional
maze routers often fail to deal with the unique design rules in
the MIB top-level routing. As shown in Figure 8, expanding the
routing path to vertex v1 will cause shorts between instance B1
and B2 by the path copy rule. Traditional routers cannot deal with
the design rule violation caused by such a scenario since they
only consider the status of the single vertex in the frontier. To
deal with this problem, our group maze routing scheme considers
both the current expanding vertex and vertices in other instances
with the same block type at the same offset position to estimate
whether the current expanding vertex can be expanded.

Routed Path

Expanding Direction

Copied Path
Expanding Direction

Net Topology

A1 A2

B1

B2

v1

v2

Figure 8: A scenario where the traditional path-searching
method fails to find a legal solution.

As shown in Figure 5, our group maze router follows the
negotiation-based [15] method to iteratively generate a routing
result. Before we apply our group maze routing algorithm to find
routing paths for each net, we first record vertices and edges be-
longing to the same group corresponding to the path copy rule.
Then we iteratively rip up those nets with design rule violations
and apply our group maze routing algorithm to find routing paths
for those congested nets until there is no design rule violation.

To route a net using our group maze routing algorithm, we
select a pin connected by the net as the source pin and start
routing from its corresponding vertex on our grid graph. Other
pins of the net are regarded as the target pins. We find paths from
the source pin to each target pin one by one. We list how we find

Top-Level Routing for Multiply-Instantiated Blocks with Topology Hashing DAC ’24, June 23–27, 2024, San Francisco, CA, USA

routing paths to a target pin in Algorithm 3. When searching
paths to a target 𝑡 in net 𝑛, our router will initialize a priority
queue𝑄 and add all the routing paths of 𝑛 into𝑄 (line 1). We pop
out the frontier routing path from𝑄 iteratively. If the frontier path
reaches the target vertex, we end our path-finding process and
return the frontier path as the routing result (lines 3-5). Otherwise,
we check each neighbor vertex 𝑣 and group vertices of 𝑣 of the
head vertex of 𝑝 . We define 𝑣 and its group vertices are legal to
expand if expanding to them does not violate any design rule
constraint. If they are legal to expand, we estimate the routing
cost of 𝑣 and expand the routing path to 𝑣 (lines 8-10).

Algorithm 3: Group Maze Routing
Input: Double-layer sparse grid graph 𝐺 , net 𝑛 needs to

be routed, routing target 𝑡
Output:Manhattan routing path 𝑝 to 𝑡

1 Add all of the vertices and their group vertices used to
route 𝑛 into a priority queue 𝑄 .

2 while 𝑄 is not empty do
3 Pop the frontier of 𝑄 as 𝑝 .
4 if 𝑝 reaches 𝑡 then
5 Return 𝑝 .
6 end
7 foreach neighbor vertex 𝑣 of 𝑝 do
8 if 𝑣 and its group vertices are legal to expand then
9 Calculate the routing cost of expanding to 𝑣 .

10 Add 𝑣 to 𝑄 .
11 end
12 end
13 end

We use the following function to estimate the routing cost 𝑐𝑣
of grid vertex 𝑣 when expanding the routing path from an unused
grid edge 𝑒 to route net 𝑛:

𝑐𝑣 =

(𝑤𝑒 + 𝑝𝑣) ∗

𝑔𝑒

𝑔𝑛
, 𝑒 ∈ 𝐼

𝑤𝑒 + 𝑝𝑣, 𝑒 ∉ 𝐼

(1)

𝑤𝑒 is the initial weight of edge 𝑒 . For edges connecting vertices
on the same layer, it equals the distance between two vertices.
For edges connecting different layers, it is defined as a positive
small number𝑤𝑑 . 𝑝𝑣 is the penalty cost of vertex 𝑣 and it includes
2 parts ℎ𝑣 and 𝑏𝑣 . ℎ𝑣 refers to the historical congestion cost and
is updated after each rip-up and reroute iteration. 𝑏𝑣 refers to
the out-of-area cost and it is used to help nets with multiple pins
find routing paths with smaller wirelength. 𝑔𝑒 refers to the edge
group size of edge 𝑒 , and 𝑔𝑛 refers to the number of nets with
the same topology with net 𝑛. Considering the path copy rule,
we multiply the cost by 𝑔𝑒

𝑔𝑛
for those edges inside an instance 𝐼 .

Edges outside of instances are not influenced by the path copy
rule. Their routing cost will be estimated as the sum of their initial
weight and the penalty cost of 𝑣 .

4 EXPERIMENTAL RESULTS
We implement our algorithm in C++ and conducted experiments
on a Linux machine equipped with an AMD EPYC 7542 32-Core
Processor (2.90 GHz) and 384 GB RAM. We collect the 5 public
cases from the contest [12] provided by Synopsys (P-Cases) and

generate 5 cases following the guide from the contest organiz-
ers (G-Cases) as our benchmarks. We show the statistics of our
benchmarks in Table 1. There can be hundreds of instances and
nets in our benchmarks.

Table 1: The statistics of out benchmarks.

Design #Blocks #Insts #Pins #Nets #Conns
P-Case #0 8 12 16 4 4
P-Case #1 2 64 64 16 16
P-Case #2 72 108 108 36 36
P-Case #3 3 180 180 36 72
P-Case #4 2 100 100 50 50
G-Case #0 3 400 400 100 300
G-Case #1 3 216 252 108 108
G-Case #2 3 448 448 128 256
G-Case #3 1 225 225 50 50
G-Case #4 4 588 392 98 196

We obtain the binary files of top-3 teams winning the Synopsys
Special Award of the contest [12]. We run their routers and our
router on the 10 test cases and list the result of the runtime, the
wirelength, and the number of design rule violations on Table 2.
Note that [19, 20] also solve the MIB-aware top-level routing
problem using a negotiation-based algorithm and a Steiner-tree-
based algorithm. We have contacted the authors but learned that
neither their binary nor benchmarks are available, so we cannot
make a comparison with their methods (note their team does not
enter the top-3 teams of the contest). The result shows that in
the public cases, within similar runtime, our router can acquire
a 12%, 32%, and 10% smaller wirelength compared to the contest
winners on average. In our generated cases, our router has a high
scalability and high robustness. We pass all 5 test cases while the
contest winners pass at most 2 cases. In those cases passed by the
router of the contest winners, our router can achieve up to 67%
smaller wirelength.

To validate the effectiveness of our net-hashing technique, we
run our router on the 10 benchmarks with and without net hash-
ing. When running without net hashing, 𝑔𝑛 in Equation 1 for
each net is always 1 to estimate the routing cost. The comparison
between running with and without net hashing is shown in Ta-
ble 3. It shows that our net-hashing technique can help achieve a
12% smaller wirelength on the public cases of the contest [12]. In
our generated cases, routing without the net-hashing technique
fails to generate a legal solution within the maximum rip-up and
reroute iterations on G-Case #2, and it takes 84% more runtime to
generate routing results with 37% larger wirelength on the other 4
benchmarks compared to routing with the net-hashing technique.

Figure 9 shows the runtime breakdown of our top-level router
on G-Case #4. The process of our double-layer sparse grid graph
construction takes 61.24% of the total runtime. Doing our group
maze routing search takes 28.48% of the total runtime. Those 2
processes are the major portion of the total runtime. Generating
hash code for each net and Identifying vertices and edge groups
only takes 4.80% of the total runtime, and they can effectively
improve the quality of the final routing result. The other part of
runtime is used to read and write files, which takes 5.48% runtime
of total flow.

5 CONCLUSION
In this paper, we propose an MIB-aware top-level router to gener-
ate routing results for the MIB SoC design after floorplanning. We

DAC ’24, June 23–27, 2024, San Francisco, CA, USA J. Wang, X. Jiang and Y. Lin

Table 2: Routed wirelength (WL), routing runtime (RT, ms), and the number of design rule violations (#DRVs) comparison
between the contest winners [12] and our router.

Design
Team 1 Team 2 Team 3 Ours

WL RT #DRVs WL RT #DRVs WL RT #DRVs WL RT #DRVs
P-Case #0 1064 6 0 1440 5 0 1064 4 0 1064 60 0
P-Case #1 8096 25 0 5760 13 0 5760 7 0 5760 42 0
P-Case #2 12996 38 0 18720 353 0 12996 33 0 12996 100 0
P-Case #3 23624 242 0 31320 6161 0 23616 164 0 23550 606 0
P-Case #4 22450 61 0 27580 673 0 28800 70 0 19000 78 0
P-Ratio 1.12 0.45 — 1.32 4.54 — 1.10 0.35 — 1.00 1.00 —

G-Case #0 57097 70823 0 34500 559 0 N/A 101 N/A 27000 1095 0
G-Case #1 N/A 183 N/A ILLEGAL 5163207 98 N/A 94 N/A 17934 374 0
G-Case #2 58176 32040 0 ILLEGAL 17286 192 N/A 94 N/A 48768 1756 0
G-Case #3 N/A 6766 N/A N/A >5h N/A ILLEGAL 517 25 63500 427 0
G-Case #4 ILLEGAL 99556 49 ILLEGAL 871625 196 N/A 88 N/A 108486 27229 0
G-Ratio* 1.67 20.58 - 1.28 >11200.46 - - - - 1.00 1.00 -
"ILLEGAL" means that the router provides a routing result, but the routing solution violates the design rules.
"N/A" means that the router fails to output a routing result.
*Only the wirelength of the legal routing results is counted in G-Ratio.

Table 3: Routed wirelength (WL) and routing runtime (RT,
ms) comparison between routing without net hashing tech-
nique and with net hashing technique.

Design
w/o Net Hashing w/ Net Hashing
WL RT WL RT

P-Case #0 1064 38 1064 60
P-Case #1 8096 52 5760 42
P-Case #2 12996 108 12996 100
P-Case #3 23954 407 23436 606
P-Case #4 22450 119 19000 78
P-Ratio 1.12 1.03 1.00 1.00

G-Case #0 58000 1878 27000 1095
G-Case #1 17934 702 17934 374
G-Case #2 N/A 5286 48768 1756
G-Case #3 65000 549 63500 427
G-Case #4 140091 67187 108486 27229
G-Ratio 1.37 1.84 1.00 1.00

61.24%

28.48%

Double-Layer Sparse
Grid Graph Construction

Others (5.48%)

Group Maze Routing

Net Topology Hashing &
Group Identification (4.80%)

Figure 9: Runtime breakdown on design G-Case #4.

maintain the hash code for each net to identify those nets with
the same routing topology, which helps our group maze router
to precisely estimate the routing cost. We propose a group maze
routing algorithm on a double-layer sparse grid graph to deal
with the path copy rule and crossing rule efficiently. Compared
to the contest winners, our router can archieve 12%, 32%, and 10%
smaller wirelength with high scalability and robustness.

ACKNOWLEDGE
This project is supported in part by the Natural Science Founda-
tion of Beijing, China (Grant No. Z230002), the National Natural
Science Foundation of China (Grant No. 62034007 and 62141404),
and the 111 Project (B18001).
REFERENCES
[1] Yen-Jung Chang et al. 2010. NTHU-Route 2.0: A Robust Global Router for

Modern Designs. IEEE TCAD 29, 12 (2010), 1931–1944.
[2] Gengjie Chen et al. 2017. SALT: Provably good routing topology by a novel

steiner shallow-light tree algorithm. In Proc. ICCAD. 569–576.
[3] C. Chu. 2004. FLUTE: fast lookup table based wirelength estimation technique.

In Proc. ICCAD. 696–701.
[4] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.
[5] Michael Gester et al. 2013. BonnRoute: Algorithms and Data Structures for Fast

and Good VLSI Routing. ACM TODAES 18, 2, Article 32 (April 2013), 24 pages.
[6] M. Hanan. 1966. On Steiner’s Problem with Rectilinear Distance. SIAM J. Appl.

Math. 14, 2 (mar 1966), 255–265.
[7] Peter E. Hart et al. 1968. A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4,
2 (1968), 100–107.

[8] AndrewB. Kahng et al. 2018. TritonRoute: an initial detailed router for advanced
VLSI technologies. In Proc. ICCAD. ACM, 1–8.

[9] Andrew B. Kahng et al. 2021. TritonRoute: The Open-Source Detailed Router.
IEEE TCAD 40, 3 (2021), 547–559.

[10] C. Y. Lee. 1961. An Algorithm for Path Connections and Its Applications. IRE
Transactions on Electronic Computers EC-10, 3 (1961), 346–365.

[11] Haocheng Li et al. 2019. Dr. CU 2.0: A Scalable Detailed Routing Framework
with Correct-by-Construction Design Rule Satisfaction. In Proc. ICCAD. 1–7.

[12] Bohai Liu et al. 2022. Multiply instantiated block-aware top-level router. https:
//eda.icisc.cn/en/file/cacheFile/ee280e8ccf5647ff987ea0e9fc6d9357.pdf.

[13] Jinwei Liu et al. 2020. CUGR: Detailed-Routability-Driven 3D Global Routing
with Probabilistic Resource Model. In Proc. DAC. 1–6.

[14] Wen-Hao Liu et al. 2013. NCTU-GR 2.0: Multithreaded Collision-Aware Global
Routing With Bounded-Length Maze Routing. IEEE TCAD 32, 5 (2013), 709–
722.

[15] L. McMurchie and C. Ebeling. 1995. PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs. In Proc. FPGA. 111–117.

[16] Jarrod A. Roy and Igor L. Markov. 2008. High-Performance Routing at the
Nanometer Scale. IEEE TCAD 27, 6 (2008), 1066–1077.

[17] Synopsys. 2023. Smarter System-on-Chip Signoff with Multiply Instantiated
Module Support. https://www.synopsys.com/implementation-and-signoff/
resources/videos/smarter-soc-signoff.html.

[18] Jiarui Wang et al. 2023. A Robust FPGA Router with Concurrent Intra-CLB
Rerouting. In Proc. ASPDAC (ASPDAC ’23). Association for Computing Machin-
ery, New York, NY, USA, 529–534.

[19] Hang Yang et al. 2023. Multi-instantiated Block Top-layer Routing Technique
Based on Steiner Tree Algorithm. In Proc. ISEDA. 274–279.

[20] Hang Yang et al. 2023. Multi-Instantiation Top-Level Routing Technique Based
on Decision Negotiation Algorithm. In Proc. ICET. 629–634.

https://eda.icisc.cn/en/file/cacheFile/ee280e8ccf5647ff987ea0e9fc6d9357.pdf
https://eda.icisc.cn/en/file/cacheFile/ee280e8ccf5647ff987ea0e9fc6d9357.pdf
https://www.synopsys.com/implementation-and-signoff/resources/videos/smarter-soc-signoff.html
https://www.synopsys.com/implementation-and-signoff/resources/videos/smarter-soc-signoff.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Design rule constraints
	2.3 MIB-aware top-level routing problem

	3 Algorithm
	3.1 Overall flow of our algorithm
	3.2 Double-layer sparse grid graph construction
	3.3 Net topology hashing
	3.4 Group maze routing scheme

	4 Experimental Results
	5 Conclusion
	References

