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Abstract—Detailed routing for large-scale integrated circuits (ICs) is
time-consuming. It needs to finish the wiring for millions of nets and
handle complicated design rules. Due to the heterogeneity of net sizes,
the greedy nature of the backbone maze routing, and interdependent
workloads, accelerating detailed routing with parallelization is rather
challenging. In this paper, we propose a FPGA-based implementation
to accelerate the maze routing kernels in a most recent detailed router.
Experimental results demonstrate that batched maze routing kernel is
3.1× speedup on FPGA. Besides, our design gets deterministic results and
has less than 1% quality degradation on ISPD 2018 contest benchmarks
[1].

Index Terms—maze routing, detailed routing, FPGA acceleration,
VLSI designs

I. INTRODUCTION

Routing is known as the most time-consuming step in very-

large-scale-integration (VLSI) back-end design flow [2] [3]. Modern

detailed routing needs to process millions of nets and handle com-

plicated design rules, significantly slowing down the design closure.

The main-stream detailed routing engines leverage maze routing as

the kernel path finder and are optimized for multi-threaded CPU

platforms [4], [5]. With the tremendous increase in problem sizes

and complexity, parallelization on CPU can hardly bring any more

benefits. Thus, new paradigms leveraging heterogeneous computing

platforms are desired.

Recent detailed routers like TritonRoute [5] and Dr.CU 2.0 [6] have

demonstrated promising performance on industrial benchmarks from

ISPD 2018/2019 contests. They mainly follow the nature of sequential

routing algorithms, i.e., iteratively invoking the path finder (e.g.,

maze routing) to route each net and adopting the rip-up and reroute

scheme to avoid routing congestions. To leverage the multi-threading

resources on CPU, Dr.CU [4] proposes a batch-based parallelization

scheme, by extracting a batch of independent nets from the layout

and performing maze routing simultaneously. While each batch can

contain thousands of nets, the benefits from CPU multi-threading

saturate at 8–16 cores [6].

To further speedup routing algorithms, the literature has explored

acceleration on heterogeneous platforms like GPU and FPGA.

For VLSI designs, only GPU acceleration for global routing has

been investigated due to the large scale and complicated design

rules in the detailed routing problems. Han et al develop a GPU-

accelerated global router [7], achieving 2.5–3.9× speedup with 2.5%

wirelength degradation. They later improve the scheduling strategy

for net-level concurrency and the GPU implementation of the maze

routing algorithm [8], eventually achieving 4× speedup with 1%

wirelength degradation compared with the academic router NTHU-

Route 2.0 [9]. However, most of the studies on GPU acceleration

suffer from data dependency of routing algorithm, heavy data transfer

and synchronization overhead. As far as we know, only Korolija et al

[10] propose an FPGA-accelerated implementation of the VPR router

for FPGA routing, but ending up with 4–6× slower than running on

Intel Core i5. Therefore, it is challenge to design high-performance

accelerator of routing algorithm for the studies on FPGA acceleration.

In this paper, we propose the first implementation of maze routing

kernel on FPGA for VLSI detailed routing. The main challenges are

summarized as follows:

• Data dependency within maze routing on a single net.

• Heterogeneity in the size of nets.

• A large number of random memory access.

The main contributions of our work are summarized as follows:

• We design a highly efficient data structure and high-performance

implementation for maze routing on FPGA.

• We propose a scalable scheduler and the interconnect network

for multiple maze routing processing elements on FPGA.

• We achieve up to 3.1× speedup of the batched maze routing

with less than 1% wirelength degradation on AWS FPGA cloud

servers compared with Dr.CU 2.0 [6].

We believe the realistic performance results reported in this work will

shed light on future research on routing acceleration.

The rest of the paper is organized as follows. Section II describes

the background and motivation; Section III explains the detailed im-

plementation; Section IV demonstrates the system design, hardware

implementation, and parallelism analysis; Section V demonstrates the

results; Section VI concludes the paper.

II. PRELIMINARIES

This section will review the background on the detailed routing

algorithm and basic FPGA acceleration.

A. Detailed Routing Algorithm

Detailed routing algorithm is critical to routing closure. It optimizes

the global routing results at a lower level of granularity. The routing

resources contain a stack of metal layers. On each layer, wire

segments, which are usually named as tracks, run either horizontally

or vertically. Vias are introduced to connect the wires on the adjacent

metal layers.

During routing, we usually abstract the routing grids to a 3-D grid

graph G(V,E). V denotes the set of vertices at the location of tracks
separated by fixed distances. E denotes the set of edges representing

the wire segments or vias to connect the vertices on the grid graph.

The state-of-the-art detailed routers like Dr.CU 2.0 [6] adopt the

rip-up and reroute (RRR) scheme to optimize the routing quality

with maze routing as the kernel path finder for each net. Firstly, it

assigns nets into batches and employs a scheduler to determine the

execution order of nets. These batches must run in sequential, while

nets within a batch can be executed in parallel. Within each iteration,

if DRC violations occur when routing a net, the net will be rip-up and

wait for rerouting in the next iteration. In general, the routing will

gradually converge with more iterations. In such a sequential routing

scheme, the efficiency and quality of the batched maze routing kernel

are critical to the overall routing performance. In this work, we focus

on accelerating such a kernel on a CPU-FPGA platform.

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

8B-3

592

20
22

 2
7t

h 
As

ia
 a

nd
 S

ou
th

 P
ac

ifi
c 

De
sig

n 
Au

to
m

at
io

n 
Co

nf
er

en
ce

 (A
SP

-D
AC

) |
 9

78
-1

-6
65

4-
21

35
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
P-

DA
C5

24
03

.2
02

2.
97

12
53

3

Authorized licensed use limited to: Peking University. Downloaded on March 09,2022 at 06:06:56 UTC from IEEE Xplore.  Restrictions apply. 



B. FPGA Acceleration

FPGA is a flexible computing platform that enables user-defined

hardware architectures and software programming models. A FPGA

device contains distributed LUTs, SRAMs, DSPs and other comput-

ing resources, which provide dedicated parallelism for specific com-

puting. Traditional workloads running on CPUs need to be carefully

designed to fully utilize the massive parallelism of FPGA. There are

three main techniques to design a high-performance accelerator on

FPGA: 1) pipeline the computing task with custom logic, 2) improve

the ratio of data reuse on FPGA, and 3) use efficient data structure

and memory access behavior to saturate the bandwidth of DRAM.

Furthermore, most FPGA devices also provide PCIe interfaces for

communication with the host CPU, which enables us to leverage the

power of the heterogeneous computing platforms. Meanwhile, since

CPU and FPGA do not share the memory, minimizing the overhead of

data communication is important to the overall performance. Coarse

grained control signals, data blocks, and interrupts are often adopted

to optimize the system performance.

III. ALGORITHMS

In this section, we introduce the algorithm for our hardware-

optimized maze routing and the detailed implementation of the

algorithm on FPGA.

A. Hardware-Optimized Maze Routing

Dr.CU 2.0 [4] has implemented an efficient maze routing algorithm

on the multi-core CPU server. It utilizes the priority queue and

some heuristic methods to improve the quality and speed. However,

the typical maze routing algorithm should be modified to adapt the

property of FPGA.

The goal of maze routing is to connect all pins on the nets

with minimal cost. In the actual computing stage, the nets will first

abstracted as grid graphs. Each pin pn is equivalent to a set of vertices

Sn located on its position. The priority queue Q, the temporary cost

set T , and the vertices’ state set F used in the hardware-optimized

maze routing algorithm are also friendly to implemented on hardware.

At the beginning of the Algorithm 1, T , F , and Q should be

initialized to infinity, false, and empty in line 2. Then, the vertices

with the start pin are pushed into Q, whose costs are written to T .

The main body of searching path consists of two nested loops on

the grid graph. The inner one is the loop of vertices, that comes to

an end at the time of reaching an unconnected pin. The outer one

is the loop of pins, that needs to connect all pin on the grid graph.

Therefore, the path P with minimal cost is a set of partial paths in

a connected graph.

From lines 11 to 24, there are operations used to construct the

total path with many partial paths. In Line 11, GetPartialPath
is used to get the result generated using the vertex and its predecessor

by one inner loop. In Line 12, the connected pin is removed from

the unconnected pin set {pn}, because the partial path of it has been

connected to the total path. From Line 14 to 17, the temporary cost

of the vertex in the partial path is set to zero, and these vertices with

zero cost are pushed into the priority queue. This operation enables

the next partial path can be connected to any vertex in the total path to

get the minimal cost. From Line 18 to 21, the vertices of the searched

pin are pushed to the priority queue and temporary cost set, because

there are no connections between vertices on the same pin. Line 22

means the state of vertices will be cleaned at the end of the inner loop,

which ensures the cost of a temporary total path is always minimal.

Line 25 and 26 mean that if the vertex has been searched in the

same inner loop, the computing will be ignored to reduce redundant

computing. From Line 28 to 37, there is the basic expansion of the

vertex to its neighbors by comparing the new cost of the vertex with

Algorithm 1 Hardware-Optimized Maze Routing.

Input: A local grid graph G(V,E), N sets of vertices {Sn} related

to pins {pn}.
Output: Path P with minimum total cost.

1: A priority queue Q, a set of temporary cost T , a set of vertices’

state F .

2: t←∞, ∀t ∈ T ; f ← false, ∀f ∈ F ; Q← ∅

3: for v ∈ S0 do � Initialize start pin

4: T [v]← v.cost
5: Q.push(v)
6: end for
7: Remove p0 from {pn}
8: while {pn} �= ∅ do � Loop of pins

9: while Q �= ∅ do � Loop of vertices

10: u← Q.pop()
11: if u.pin ∈ {pn} then
12: GetPartialPath(P, u.pin)
13: Remove u.pin from {pn}
14: for v ∈ P.partial do
15: T [v]← 0
16: Q.push(v)
17: end for � Reset vertices in partial path

18: for v ∈ Su.pin do
19: T [v]← v.cost
20: Q.push(v)
21: end for � Push vertices from searched pin

22: f ← false, ∀f ∈ F
23: Break
24: end if
25: if F [u] = true then
26: Continue � Reduce redundant work

27: else
28: F [u]← true
29: for v ∈ u.neighbors do
30: u.penalty ← PenaltyFunc(u, v)
31: v.cost← u.cost+ (u→ v).w + u.penalty
32: v.length← LenFunc(u, v)
33: if v.cost < T [v] and v �= u.pred then
34: T [v]← v.cost
35: Q.push(v)
36: end if
37: end for
38: end if
39: end while
40: end while

the old one. The critical part of maze routing is preserving the search

frontier (priority queue Q) and reducing redundant work to improve

work efficiency.

The function PenaltyFunc(u, v) and LenFunc(u, v) utilize the

same heuristic methods as Dr.CU 2.0 [6]. But the whole calculation

of the result is separated on CPU and FPGA to take advantage of the

bandwidth and the hardware resource on FPGA.

For optimization on hardware, G(V,E), {Sn} and {pn} are stored

in DRAM on board, but Q, T , and F are implemented using BRAM

on chip. The operations on G(V,E), {Sn} and {pn} refers to

accessing large-capacity DRAM, which is large enough to store these

data. The operations on Q, T , and F refers to accessing BRAM,

which is tightly coupled with logic for computing with high-level

parallelism. These components are orchestrated to complete the maze

routing on hardware.
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B. Data Structure for Accelerator

In the implementation of maze routing on CPU, the data structure

is represented by C++ class. However, this format is unsuitable

to be directly used by an accelerator on FPGA, which favors a

more regular data structure to fully utilize bandwidth and parallel

computing components.

Batched Graph Table

Graph Pin Table
Pin Vertex Table

Vertex Property Table

EdgeCost1
EdgeCost3
EdgeCost5

newLenAdd1
newLenAdd5

Vertex3
L1

EdgeCost0
EdgeCost2
EdgeCost4

newLenAdd0
newLenAdd4

Vertex2
L0

Vertex1 Vertex0
Vertex5 Vertex4L3 L2

Pin1 Pin0Pin3 Pin2Pin5 Pin4
L5 L4M uL

063

448511

Chip Data Block

Data Size (bits)
064

64*NumOfGraphs

Data Layout

64*NumOfPins
64*NumOfVerticesOnPins
512
512*NumOfVertices

Fig. 1: Data Layout in FPGA Memory.

Because the grid graph is a regular cube grid that each vertex on

it has just six adjacent vertices, each entry of the adjacent array has

the same bit width. As shown in Fig.1, the memory space of the

graph on FPGA is divided into four sections: Graph Pin Table, Pin
Vertex Table, Chip Data Block, and Vertex Property Table. The entry

of Graph Pin Table is each pin’s bias address and the number of

vertices with it. The entry of Pin Vertex Table is the vertex and its

cost with the same pin index. The entry of Chip Data Block includes

some data for each layer. The entry of Vertex Property Table is the

six adjacent vertices of one vertex and their costs, along with other

data to computing length and temporary cost.

For maze routing implemented on FPGA, the Vertex Property
Table is accessed with the highest frequency, which dominates the

performance of memory access. So, every entry of it is packed

into 512 bits to adapt the width of AXI-4 bus and fully utilize the

bandwidth of memory. The experimental result shows the benefit of

this design.

In Fig. 1, L represents layer index for each adjacent vertex.

uL represents layer index for original vertex. M(4 bits) represents

minAreaFixable(1 bit), which indicates if the length of original vertex

can be fixed with post routing operations, and areOvlpVertex(2 bits),

which indicates zero penalty at the two via directions. newLenAdd
represents the additional length, which is used in LenFunc(u, v) to

compute the new length of adjacent vertex.

IV. IMPLEMENTATION

A. An Overview of FPGA Acceleration Framework

The FPGA acceleration framework is shown in Fig. 2. A Graph

Dispatcher is designed to receive commands from the host, schedule

graphs processed on FPGA, and monitor the status of maze routing

processing elements (PEs). Maze Routing PEs Cluster are used

to fetch graph data from FPGA memory independently to process

routing tasks in parallel.

B. Maze Routing Processing Element

The Maze Routing Processing Element in Fig. 3 is composed of

Tri-State Priority Queue, Controller, and Executor. All components

work together to complete the maze routing task and store the path

with minimal cost in FPGA memory.

Graph
Dispatcher

Maze Routing
PEs Cluster

done

AXI Interconnect

PCIe
DMA

CPUs
irq_req

irq_ack

AXI-Lite

AXI-4
AXI-4AXI-4

 DDR
DDR Interface

PCIe

Host-Side FPGA-Side

data

Fig. 2: The FPGA Acceleration Framework on AWS Elastic Compute

Cloud (EC2) [11].

1) Tri-State Priority Queue: The backbone architecture of Tri-

State Priority Queue is P-Heap [12], which is similar to the structure

of minority heap. The priority queue is targeted to sort vertices by

temporary cost in ascending order. Due to the structure of pipeline

between the adjacent layers of the heap, the time complexity of all

operations in the priority queue is reduced to O(1). However, Tri-

State Priority Queue has improvements compared to P-Heap [12]

and Korolija & Stojilović’s work [10].

First, our work employs three operations, which are push, pop,

and predict, compared to the traditional two operations in a priority

queue. The state transform diagram is shown in Fig. 4. Different from

push and pop operations, predict operation only reads the top data

from the priority queue, then sends the vertex to Controller with the

tag of predict.

Second, the usage of LUTs only increases by the order of log(n)

compared to Korolija & Stojilović’s work [10], which shows high

scalability for massive parallel PEs.

The benefit of prediction is demonstrated on the timeline in Fig.

5. In the maze routing algorithm, vertex with minimal cost will be

popped from the priority queue at each iteration to ensure optimality.

In a normal situation, only when the total adjacent vertices of

the last vertex have been pushed into the priority queue, the next

vertex will be popped from the priority queue. Therefore, there

is a strict global data dependency between the operations of the

priority queue, which is hard to handle on CPU. In this design, a

predictive policy is employed to fetch the next vertex’s data from

memory before the end of the last one. From the structure of Maze

Routing Processing Element in Fig. 3, when LSU (Load Store Unit)

operates one predictive vertex, the other parts of Executor and Priority

Queue will operate on the last vertex. The two periods can be

overlapped to hidden the long latency of accessing data from DRAM,

as a result, to shorten the total time of one iteration of searching

vertex. According to the experimental results of predictive policy,

the probability of the second-minimal vertex to be the minimal one

at the next iteration is over 80%. Therefore, the predictive policy is

beneficial for the implementation of maze routing algorithm with just

a little incremental cost of hardware consumption.

In Fig. 5, PO represents pop operation in Priority Queue. PR
represents predict operation in Priority Queue. CH represents check-

ing vertex in Controller. NL represents skipping loading data from

memory in Executor. LOAD represents loading data from memory

in Executor. EXEC represents computing and updating in Executor.

PUSH represents push operation in Priority Queue. WAIT represents

the stalls in the processing pipeline.

2) Controller: Controller is composed of Vertex Operation Code

Table, Closed Set, and Pin State Table. This module needs to com-

municate with Graph Dispatcher and schedule different operations of

the vertex in a Maze Routing Processing Elements. The scheduling

policy in this module can reduce redundant computing and ensure
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PE PE PE PE PE PE PE PE

AXI Interconnect

DDR

Graph Dispatcher

PCIe XDMA

Multi-Core CPU Pripority 
Queue

Controller

Pin State 
Table

Closed 
Set

Controller 
FSM

done

Executor

vertex

repop
pop valid

pin

Load Store Unit Parallel Compute Crossbar

LenCostUnit

LenCostUnit

PenCostUnit

PenCostUnit

LenCostUnit

LenCostUnit

Parallel Update

CMP Unit

CMP Unit

CMP Unit

CMP Unit

CMP Unit

CMP Unit

CMP Unit

done AXI-4

FIFO

Dispatch graph 
data

CMP Unit

cost

vertex

pin

cost

opcpde

Predict
Reg

AXI FSM

Fig. 3: Structure of Maze Routing Processing Element.

IDLE PUSH POP PREDICT

Push Singnal Push Finish Closed Set passed

Closed Set failed

Predict Finish

Fig. 4: State transform diagram in Priority Queue.

PO

PR

CH

CH LOAD

EXEC PUSH

PO CH wait

NL

NL

wait

wait

EXEC

PO CH LOAD EXEC PUSH

Vertex 0 Pop

Vertex 1 Predict

Vertex 1 Pop

Runtime with successful prediction 

Runtime without prediction 

PUSH

Vertex 0 Pop

Fig. 5: Impact of Prediction on Runtime.

the optimality of the algorithm.

Vertex Operation Code Table: Different from a simple graph

algorithm, maze routing has to handle a more complex schedule

policy of vertices. We design a set of vertex operation codes for

hardware implementation.

The process of maze routing can be decoupled into two loops of

iteration in Fig.6. The inner loop is iteration over vertices, in which

vertices are being searched until the vertex belongs to a new pin is

searched. The outer loop is iteration over pins, in which pins are

being searched until all pins are searched.

START_OP

PREDICT_OP

COMMIT_OP

MAKE_ZERO_OP

REFRESH_OP

Push vertices on Start Pin

Search one new pin

Signal from Graph Dispatcher

Unsearched pins exist

All pins searched

Signal from Priority Queue

Inner Loop

Outer Loop

Signal from Controller FSM

Fig. 6: Operation flow of Controller.

These vertex operation codes will control the behavior of Executor.

1) START_OP: Executor should fetch vertices that belong to the

start pin, then push them to the priority queue.

2) COMMIT_OP: Executor should search the neighbors of com-

mitted vertex, then push them to the priority queue if their cost

is minimal.

3) PREDICT_OP: Executor should search the neighbor of the

predicted vertex but just store the information.

4) MAKE_ZERO_OP: When one pin is searched in Controller, this

opcode will be sent to Executor. This operation will be triggered

at the ending of one inner iteration. Executor makes the cost

of all vertices on the path searched in this inner loop zero and

pushes these vertices with zero cost into the priority queue.

5) REFRESH_OP: After the execution of MAKE_ZERO_OP, Ex-

ecutor will push all vertices that belong to the searched pin

with original cost into the priority queue.

Closed Set: Closed Set is a table used to store the status of vertices,

where each entry indicated one vertex’s status. In the Closed Set, the

true status of vertex means it has been searched during the inner loop

of searching one pin, but the false status of vertex means it has not

been searched in the inner loop.

Pin State Table: Pin State Table is used to record the status of

the pin and the number of vertices related to this pin. When all pin

has been searched, Pin State Table will send done signal to Graph

Dispatcher.

3) Executor: Executor is composed of Load Store Unit, Parallel

Computing Unit, Crossbar, and Parallel Updating Unit. The module

executes vertex operation codes sent by Controller to access data

from off-chip memory, compute new vertices’ cost and length, and

reconstruct searched paths with minimal total cost. The architecture

of Executor is designed for parallel processing of vertices.

Load Store Unit: The Load Store Unit(LSU) consists of registers

for vertices’ information, the logic for prediction, the logic for

reconstructing path with minimal cost, and logic for memory access.

Parallel Computing Unit: The Parallel Computing Unit(PCU) is

composed of four LenCostUnits and two PenCostUnits in Fig. 7,

which are designed for computing cost, penalty, and length of new

vertices adjacent to the last popped vertex.

Crossbar: The Crossbar is an 6-in-8-out multiplex to dispatch

vertices from Parallel Computing Unit to Parallel Updating Unit. The

main architecture of Crossbar is 8 6-in-1-out arbiters and logic

for broadcasting vertices to different arbiters with the lower 3 bits.

Parallel Updating Unit: The Parallel Comparing Unit in Fig. 7

consists of 8 same Comparing Units to fully utilize the parallelism

of adjacent vertices of a single vertex.
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CMP Unit

Temp Cost
SRAM Bank

<

Reg new costnew cost

vertex
valid out

wen

(a) Compare cost

LenCostUnit

Reg

Reg

Reg

Min
len

lenAdd
minlen

cost

edge cost

newlen

newcost

(b) Compute Length and Cost

newcost

PenCostUnit

Reg

Reg

0

1

0

10

<

0

1

0

1

< Reg

0-

getUnitMinAreaViaCost
minlen

len

penaltyCalcValid
areOvlpVertex

viaOvlpDist
minLenTwoVia
minLenOneVia

cost

edgeCost

(c) Compute Penalty and Cost

Fig. 7: Computing Units in PPU and PCU.

V. EXPERIMENTAL RESULTS

The acceleration framework is developed in Verilog and validated

on an Amazon AWS f1.2xlarge instance [11], which has a Linux

server with 8-core Intel Xeon CPU E5-2686 v4 @ 2.30GHz with

122GB Memory and the Xilinx Ultrascale+ VU9P FPGA. There are

1.2M LUTs, 76 Mb of Block RAM, and 270 Mb of Ultra RAM

on this FPGA device. The hardware design is synthesized by using

Vivado 2020.2. We configured the hardware with one cluster of 1, 2,

4, 8, or 12 PEs for the test with a targeted frequency of 125MHz.

Dr.CU 2.0 [6] runs on the same AWS server as the baseline.

A. Batched Maze Routing Acceleration

Because of the benchmarks of ISPD2018 and ISPD2019 are both

executed by the same maze routing kernel, we just use ISPD2018

benchmark to justify the effectiveness of FPGA acceleration. Batched

maze routing kernel is executed on a large batch of graphs in the

detailed routing stage. There are almost 1,000 ∼ 10,000 graphs (nets)

in one batch without data dependency between any two graphs. From

the distribution of graphs’ sizes in ISPD2018 contest benchmark [1]

and the capacity of PE, the small graphs (number of vertices less

than 216, taking more than 90% among all graphs) are accelerated

on FPGA.

Fig. 8 shows the acceleration ratio of batched maze routing kernel

on FPGA compared with CPUs. The test6 of ISPD2018 contest

benchmark [1] is used to show the acceleration of batched maze

routing kernel. In Fig. 8, the implementation of batched maze routing

kernel on FPGA with 12 PEs is 3.1× faster than the state-of-the-art

detailed router Dr.CU 2.0 [6] running with 8 threads when the batch

size is larger than 200. When batch size is within the range of 0 ∼
200, the acceleration ratio is still above 2.0×.

To verify the routing quality of the FPGA-accelerated maze routing

kernel, the results of accelerator are dumped and further processed in

the software framework of Dr.CU 2.0 [6]. For batched maze routing,

the workload is composed of kernels with various batch sizes, the

number of PEs is configured to 12, and the number of CPU threads

is configured to 8. In TABLE I, the quality degradation of FPGA-

Accelerated maze routing is less than 1%. The degradation is caused

by omitting the method of expanding searching space in Dr.CU 2.0

[6] for the implementation on FPGA. The detailed routing stage is

composed of multiple iterations, where the first iteration is the most

Fig. 8: Acceleration ratio at different batch size compared with 8-

thread CPU.

time-consuming according to Dr.CU [4]. With the time breakdown

of detailed routing in Dr.CU [4], 37.3% of the total runtime is taken

by maze routing and the other part is mainly the time of generating

routing graphs. Therefore, the Runtime column in TABLE I refers to

the batched maze routing in the first iteration of the detailed routing,

which is reasonable to demonstrate the promising speedup of maze

routing kernel on FPGA.

With the same configuration of the accelerator, we also compare

the runtime of the batched maze routing with prediction policy and

without it. In TABLE I, the runtime of the test6 on FPGA with

prediction policy is 27ms. However, the runtime of the same test

without prediction policy is 29ms. Therefore, the prediction policy

accounts for 7% performance gain for the batched maze routing.

B. Scalability of Multiple PEs

In Fig. 9, our design shows promising scalability compared with

Dr.CU 2.0 [6]. With the number of PEs is 4, 8, or 12, the performance

of FPGA is 1.2×, 2.2×, or 3.1× higher than 8-thread CPU execution

mode. The runtime of batched maze routing kernel with 8 threads on

CPU server is regarded as baseline runtime, because it has almost

reached the peak performance on a multi-core CPU server form

Fig. 9. The gain of speedup on multi-core CPU server decreases

drastically with 4 threads and beyond, and saturates at 8 threads.

The reasons probably come from massive random memory access

and synchronization overhead with the number of threads increasing.

The performance of parallel PEs on FPGA increases almost

linearly, when the number increases form 1 to 12. We cannot further

increase the number of PEs due to the limitation of the FPGA device.

From the potential growth of the acceleration ratio, we believe the

performance will continue to increase. Considering all PEs just share

one independent DDR4 channel, the scalability is remarkable with

the compact data structure and concurrent memory access pattern.

Besides, the speed of running maze routing on FPGA is always

higher than that on CPUs with the same number of PEs and threads.

Especially, when the number of PEs is one, the acceleration ratio is

still 1.9× compared with one CPU thread. Considering the frequency

of CPU is 2.30 GHz, which is almost 20× of the frequency on

FPGA (i.e., 125MHz), the custom logic on FPGA shows remarkable

performance by leveraging internal parallelism of maze routing and

designing high-performance architecture.

C. Consumption of Hardware Resource

The hardware resource consumption of this design is shown in

Table II. PE is configured with 16-bit vertices and 6-bit pins.

Top(12) is the top-level module implemented on FPGA with 12

PEs. Considering the resource consumption of Top(12), the number

of PEs can still be increased to boost performance.
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TABLE I: Comparison of performance between Dr.CU 2.0 [6] and our FPGA acceleration to complete batched maze routing kernel with

ISPD 2018 [1] contest benchmarks.

Basic Cost Non-preferred usage Design Rule Violations
ISPD’18

quality score
Runtime (s) Speed-up

WL #vias
Out-of-guide Off-track Wrong-way

Short area #min area #spacing
WL #vias WL #vias WL

ours

test1 430051 32311 2130 425 393 0 5699 0 0 4 290099 2 2.0×
test2 7819979 325756 38789 6488 5233 0 53452 56000 0 44 4685023 11 2.2×
test3 8705500 318581 71369 6483 6038 0 60080 36661000 0 93 5291929 11 2.1×
test4 26365425 734234 388747 29561 17916 0 207602 10351764 184 603 15808947 18 2.4×
test5 27697175 968543 151866 22360 6586 2 81751 2503540 324 337 16406741 19 2.7×
test6 35565380 1485088 242069 36889 18077 16 127438 483600 492 492 21666362 27 2.7×
test7 64954693 2410170 404656 56403 34885 0 200889 7647444 614 287 38523171 44 2.8×
test8 65251816 2420576 394414 55187 34802 0 196869 6582412 684 325 38717711 43 2.8×
test9 54533301 2418298 358613 56331 28358 0 191474 654400 980 240 33342024 43 2.9×

test10 67873499 2603982 1078699 100097 42014 0 250404 100966300 967 960 42820500 49 2.7×

Dr.CU
2.0 [6]

test1 433584 32394 2172 445 419 0 5853 14400 0 2 291305 4 1.0×
test2 7832656 325674 41036 6542 5291 0 54119 19600 0 57 4700581 24 1.0×
test3 8718263 318303 65586 6602 5990 0 60553 37074200 0 96 5295331 23 1.0×
test4 26419880 729197 388623 29618 17721 0 205951 8418136 90 619 15761113 43 1.0×
test5 27802051 965546 150636 21840 5833 3 77203 2505800 148 361 16370540 52 1.0×
test6 35703514 1480728 242099 36492 16544 16 119149 598000 271 549 21636717 73 1.0×
test7 65173353 2402487 402055 55583 32575 0 186348 6855672 343 199 38408621 121 1.0×
test8 65468212 2412163 402983 54459 32411 0 182755 7223072 392 189 38595625 120 1.0×
test9 54759612 2410625 358136 55296 26348 0 177596 508000 491 115 33114609 123 1.0×

test10 68098159 2595706 1091463 99121 40703 0 237319 110771500 619 958 42861890 132 1.0×

Fig. 9: Acceleration ratio at different numbers of PEs/threads (batch

size = 5923).

TABLE II: Hardware resource consumption on FPGA.

Avail. Top(12) PE PQ Ctrl Exe
LUTs(K) 859 327 15 9 0.6 5
FFs(K) 1790 412 11 7 0.3 3.7
BRAM 1680 502 117 27 5 0
URAM 800 624 36 36 0 16

VI. CONCLUSION

In this paper, we present the first FPGA-accelerated maze routing

kernel. To leverage the internal parallelism of the algorithm, we

design an efficient data structure, hardware-optimized maze routing

algorithm, and a scalable hardware-based task scheduler to solve the

batched maze routing problem on FPGA. Compared with the state-of-

the-art detailed router Dr.CU 2.0 [6], we can accelerate the batched

maze routing kernel by up to 3.1×. In the future, we plan to integrate

the accelerator to the CPU-FPGA system and leverage system-level

parallelism to improve the performance of the entire detailed routing.
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