DREAMPIlace: Deep Learning Toolkit-Enabled GPU
Acceleration for Modern VLSI Placement

Yibo Lin Member, IEEE, Zixuan Jiang, Jiaqi Gu, Wuxi Li Member, IEEE, Shounak Dhar,
Haoxing Ren, Brucek Khailany, David Z. Pan Fellow, IEEE

Abstract—Placement for very-large-scale integrated (VLSI) circuits is
one of the most important steps for design closure. We propose a novel
GPU-accelerated placement framework DREAMPlace, by casting the
analytical placement problem equivalently to training a neural network.
Implemented on top of a widely-adopted deep learning toolkit PyTorch,
with customized key kernels for wirelength and density computations,
DREAMPlace can achieve around 40x speedup in global placement
without quality degradation compared to the state-of-the-art multi-
threaded placer RePlAce. We believe this work shall open up new
directions for revisiting classical EDA problems with advancements in
Al hardware and software.

I. INTRODUCTION

Placement is a critical but time-consuming step in the VLSI
design flow. As it determines the locations of standard cells in
the physical layout, its quality has significant impacts on the later
stages in the flow, such as routing and post-layout optimization. A
placement solution also provides relatively accurate estimation to
routed wirelength and congestion, which is very valuable in guiding
the earlier stages like logic synthesis. Commercial design flows often
run core placement engines many times to achieve design closure.
As placement involves large-scale numerical optimization, today’s
placers usually take hours for large designs, thus, slowing down
design iterations. Therefore, ultra-fast yet high-quality placement is
always desired.

Analytical placement is the current state-of-the-art for VLSI
placement [1]-[15]. It essentially solves a nonlinear optimization
problem. Although analytical placement can produce high-quality
solutions, it is also known to be relatively slow [11], [13], [14],
[16]. Here we provide a brief introduction to the analytical placement
problem. Suppose a circuit is described as a hypergraph H = (V| E),
where V' denotes the set of vertices (cells) and E denotes the set
of hyperedges (nets). Let x,y denote the locations of cells. The
objective of analytical placement is to determine the locations of
cells with wirelength minimized and no overlap in the layout.

Analytical placement can be roughly categorized into quadratic
placement and nonlinear placement. Quadratic placement tackles the
problem by iterating between an unconstrained wirelength minimiza-
tion step and a rough legalization or spreading step [10]-[15]. The
wirelength minimization step usually adopts a quadratic wirelength
model and minimizes the total wirelength regardless of the overlaps
between cells. The rough legalization step removes the overlaps
based on heuristic approaches without explicit consideration of the
wirelength cost. By iterating between these two steps, cells can be
gradually spread out. Meanwhile, the wirelength cost is minimized.
Nonlinear placement directly solves the placement problem with

Y. Lin is with the Center for Energy-Efficient Computing and Appli-
cations, School of EECS at Peking University, Beijing, China. Email:
yibolin@pku.edu.cn

Z. Jiang, J. Gu, and D. Z. Pan are with The Department of Electrical and
Computer Engineering, The University of Texas at Austin, TX, USA.

W. Li is with Xilinx Inc., CA, USA.

S. Dhar is with Intel Corp., CA, USA.

H. Ren and B. Khailany are with NVIDIA, Austin, TX, USA.

nonlinear optimization techniques [1]-[9], [17]. It formulates a non-
linear optimization problem with a wirelength objective subjecting
to a density constraint. By relaxing the density constraint into
the objective, gradient descent based techniques can be adopted
to search for a high-quality solution. In this paper, we focus on
the nonlinear placement approach, as many commercial tools like
Cadence Innovus [18] and Synopsys IC Compiler [19] adopt that.

To accelerate placement, existing parallelization efforts have
mostly targeted multi-threaded CPUs using partitioning [16], [20],
[21]. As the number of threads increases, speedup quickly saturates
at around 5x in global placement with typical quality degradation
of 2-6%. Cong et al. explored GPU acceleration for analytical
placement [22]. They combined clustering and declustering with
nonlinear placement optimization. By parallelizing the nonlinear
placement part, an average of 15X speedup in global placement was
reported with less than 1% quality degradation. Lin et al. proposed
GPU acceleration techniques for wirelength gradient computation
and area accumulation [23], but their experiments failed to consider
real operations such as density cost computation, and it lacked the
validation from real analytical placement flows. In addition, current
research on placement is facing challenges in the lack of well-
maintained public frameworks and the high development overhead,
raising the bar to validate new algorithms systematically.

In this work, we propose DREAMPlace, a GPU-accelerated ana-
Iytical placer developed with deep learning toolkit PyTorch [24] by
casting an analytical placement problem to training a neural network.
DREAMPIlace is based on the state-of-the-art analytical placement
algorithm ePlace/RePlAce family [6], [8], but the framework is
designed in a generic way that is compatible with other analytical
placers such as NTUplace [4]. The key contributions are summarized
as follows.

o We take a totally new perspective of making an analogy
between placement and deep learning, and build an open-
source generic analytical placement framework that runs on
both CPU and GPU platforms developed with modern deep
learning toolkits.

o A variety of gradient-descent solvers are provided, such as
Nesterov’s method, conjugate gradient method, and Adam [25],
with the help from deep learning toolkit.

o We propose efficient GPU implementations of key kernels in
analytical placement like wirelength and density computation.

o« We demonstrate around 40x speedup in global placement
without quality degradation of the entire placement flow over
multi-threaded RePlAce implementations. More specifically, a
design with one million cells finishes in one minute even with
legalization. The framework maintains nearly linear scalability
with industrial designs up to 10-million cells.

The source code is released on Github'. To clarify, the casting
of placement problem to deep learning problems aims at using
the toolkit to solve placement, which is orthogonal to using deep
learning models for placement. The rest of the paper is organized

Thttps://github.com/limbo018/DREAMPIlace

https://github.com/limbo018/DREAMPlace

min Z F(@(xi;w),y:) + AR(w) min Z WL (e;; W) + AD(w)

Forward Propagation Forward Propagation

(Compute obj) (Compute obj)
Data Neural Error Net Neural Error
Instance Network by Function Instance o Network by Function
(@iy) 7| oiw) [PF@(eiw)y) (e:,0) ©] WLGw) [P WL(esw)

Backward Propagation
(Compute Gradient g‘;?

(@ (b)

Fig. 1: Analogy between neural network training and analytical
placement. (a) Train a network for weights w. (b) Solve a placement
for cell locations w = (x,y).

Backward Propagation

. dobj
(Compute Gradient 5

as follows. Section II describes the background and motivation;
Section III explains the detailed implementation; Section IV demon-
strates the results; Section V concludes the paper.

II. PRELIMINARIES

This section will review the background and motivation.

A. Analytical Placement

Analytical placement usually consists of three steps: global
placement (GP), legalization (LG), and detailed placement (DP).
Global placement spreads out cells in the layout with a target cost
minimized; legalization removes the remaining overlaps between
cells and aligns cells to placement sites; detailed placement performs
incremental refinement to further improve the quality. Usually,
global placement is the most time-consuming portion in analytical
placement.

Global placement aims at minimizing the wirelength cost subject-
ing to density constraints. The formulation can be written as follows,

min Z WL(e; x,y), (1a)
oy ecE
st d(x,y) <d, (1b)

where WL(+;-) is the wirelength cost function that takes any net
instance e and returns the wirelength, d(-) is the density of a location
in the layout, and d; is a given target density. A typical solving
approach is to relax the density constraints to the objective as a
density penalty [1], [4], [6],

min () WL(&;x,¥)) + AD(x,), @
X,y
eckE
where D(-) is the density penalty to spread cells out in the layout.
The density constraints can be satisfied by gradually increasing the
weight of A.

B. Analogy to Deep Learning

As both solving an analytical placement and training a neural
network are essentially solving a nonlinear optimization problem,
we investigate the underlying similarity between the two problems:
the analogy of the wirelength cost to the error of misprediction
and that of the density cost to the regularization term. Figure 1
shows the objective functions of the two problems. In neural network
training, each data instance with a feature vector z; and a label
y; is fed to the network, and the neural network predicts a label
¢(x;; w). The task for training is to minimize the overall objective
over weights w, where the objective consists of the prediction errors

Random Initial Placement
¥ 7
Density Grad

Placement
API
Python - .ar
4
Automatic
Gradient

GP
Optimization & Update

-
Y

ors X0 Lo
(UL DP NTUplace DP
(a) (b)

Fig. 2: (a) Software architecture for placement implementation using
deep learning toolkits. (b) DREAMPlace flow.

for all data instances, and a regularization term R(w) [26]. In
the analogy of placement to neural network training, we combine
cell locations (x,y) into w for brevity. Each data instance is
replaced with a net instance with a feature vector e; and a label
zero. The neural network then takes a net instance and computes
the wirelength cost WL(e;; w). Using the absolute error function
f(@,y) = |§ — y| and noting that wirelength is non-negative,
the minimization of prediction errors becomes . WL(e;; w). The
density cost D(w) corresponds to the regularization term R(w), as
it is not related to net instances. With this construction, we find a
one-to-one mapping of each component in analytical placement to
neural network training, which makes it possible to take advantage
of recent developments in deep learning toolkits for implementation.
Then, we can solve the placement problem following the neural
network training procedure, with forward propagation to compute
the objective and backward propagation to calculate the gradient.
Deep learning toolkits nowadays consist of three stacks, low-level
operators (OPs), automatic gradient derivation, and optimization
engines, as shown in Figure 2a. Toolkits like TensorFlow and
PyTorch offer mature and efficient implementation of these three
stacks with compatibility to both CPU and GPU acceleration. The
toolkits also provide convenient APIs to extend the existing set
of low-level operators. Each custom operator requires well defined
forward and backward functions for cost and gradient computation.
To develop an analytical placement with deep learning toolkits, we
only need to implement the custom operators for wirelength and
density cost in C++ and CUDA. Then we can construct a placement
framework in Python with very low development overhead and easily
incorporate a variety of optimization engines in the toolkit. The
placement framework can run on both CPU and GPU platforms. The
conventional development of placement engines takes huge efforts
in building the entire software stacks with C++. Thus, the bar of
designing and validating a new placement algorithm is very high
due to the development overhead. Taking advantage of deep learning
toolkits, researchers can concentrate on the development of critical
parts like low-level operators and high-level optimization engines.

C. The ePlace/RePlAce Algorithm

ePlace/RePlAce is a state-of-the-art family of global placement
algorithms that model the layout and netlist as an electrostatic system
[6]-[8]. It uses weighted-average wirelength (WA) for wirelength
cost originally proposed by [27], [28],

ZiEE 1:1-671 _ Ziee ziei?

Ziee 671 ZiEE 67471.
where v is a parameter to control the smoothness and accuracy of the
approximation to half-perimeter wirelength (HPWL). The smaller

is, the more accurate it is to approximate HPWL, but the less smooth.

WA, = ; 3)

TABLE I: Notations

[Notation] Description | Notation | Description |
v Set of cells E Set of nets
P Set of pins B Set of bins
z:f max;ce T;, Ve € E Te min;c, i, Ve € B
a:r e 7 ViceecE a; e ViceecE
b > ice) ,VeeE bo > ice ,veeE
e Zleﬁ T Vee E ce e Tia; Ve €EE
xt {zT}, VeEE X~ {a:;},VeeE
at {a]},Vic P a~ {a; },Vie P
bt {bl}, Ve € E b~ {b; },YVe € E
ct {cT}, Ve € E c~ {cc },Ve € E

Its density penalty is quite different from other analytical placers
[11, [3], [4]. With analogy to an electrostatic system, cells are
modeled as charges, density penalty is modeled as potential energy,
and density gradient is modeled as the electric field. The electric
potential and field distribution can be computed by solving Poisson’s
equation from the charge density distribution.

V- Vi(z,y) = —p(l‘ y) (4a)
n-Viy(z,y) =0, ,y) € OR, (4b)

// (z,v) / Y(z,y) =0, (4c)

where R denotes the placement region, OR denotes the boundary
to the region, n denotes the outer normal vector of the placement
region, p denotes the charge density, and ¢ denotes the electric

potential.

The numerical solution of Poisson’s equation can be obtained with
spectral methods. Given an M x M grid of bins and w, = 27‘—“ and
wy = 2 with w = 0,1,...,M —1,v = 0,1,...,M — lthe
solution can be computed as follows [6],

M—1M-1
Qu,p = M2 Z Z p(z,y) cos (wyx) cos (wyy), (5a)
z=0 y=0
MoiM-1
Yper(z, y) = Z Z ﬁ cos (wyx) cos (wyy), (5b)
u=0 v=0 u v
MoiMo1
Kor(z,y) = Z Z 7111;1 qu sin (wyx) cos (wyy), (5¢)
u=0 v=0 u v
MoiM-1
Ehest(@,y) = Z Z ﬁms (wyu) sin (woy), (5d)
u=0 v=0 u v

where ¥ pcr denotes the numerical solution of the potential func-
tion, and &ngor and €5ogr denote the solution of the electric
field in horizontal and vertical directions respectively. Equation (5)
requires Discrete Cosine Transform (DCT) and Inverse Discrete
Cosine Transform (IDCT) routines to solve efficiently. The detailed
computation is explained in Section III. With the electric field
defined for each bin, the density gradient of each cell is the overall
force taken by the cell in the system.

After defining wirelength cost and density penalty, RePlAce
adopts gradient-descent optimizers, such as Nesterov’s method and
conjugate gradient method, to solve the optimization problem.
RePlAce was implemented with multi-threading support [8]. The
runtime breakdown for RePlAce [8] is elaborated in Figure 3. GP
including initial placement (GP-IP) and nonlinear optimization (GP-
Nonlinear) takes about 90% of the runtime with both single thread
and 10 threads. Therefore, accelerating GP is the most effective in
reducing the overall runtime.

III. THE DREAMPLACE ALGORITHMS

Our overall placement flow is given in Figure 2b. It is slightly
different from the typical one that starts from a bound-to-bound

GP-Nonlinear
GP-Nonlinear
719 050

LG : LG S22

DP 5 1.7

21.1 bp 211
GP-IP GP-IP
(@) (b)

Fig. 3: RePlAce [8] runtime breakdown in percentages on
bigblue4 (2 million cells). (a) 1 thread; (b) 10 threads.

initial placement [4], [6]. We observe that starting from a random
initial placement also achieves the same quality (< 0.04% differ-
ence) with significantly less runtime (21.1% in Figure 3). In initial
placement, standard cells are placed in the center of the layout
with a small Gaussian noise. In our experiments, the scales of the
noise are set to 0.1% of the width and height of the placement
region. The kernel global placement iterations refer to the loop
that involves the computation of wirelength and density gradient,
optimization engines, and cell location updating. After the global
placement converges, legalization is performed to remove remaining
overlaps and align cells to placement sites. The last step before
the output is detailed placement to refine the placement solutions
relying on NTUplace3 [4]. The rest of this section will focus on
GPU acceleration to the ePlace/RePlAce algorithm [6], [8].

A. Wirelength Forward and Backward

As RePlAce adopts WA wirelength, we also use it as an example
for the GPU acceleration to wirelength forward and backward.
Similar insights also apply to other wirelength costs like log-sum-
exp (LSE) [29], which is also implemented in the framework. For
brevity, we only discuss the equations in the x dimension, as those
in the y dimension are similar. The real implementation will separate
the computation for and y into different GPU streams as they are
independent.

Direct implementation of WA wirelength defined in Equa-
tion (3) may result in numerical overflow, so we convert e to

T;—MaXjce Tj oy _zifminjegzz' . . i
e B ,ande 7 toe ¥ in Equation (3), which
is an equivalent transformation. With the notations in Table I, the
gradient of WA wirelength to a pin location can be written as,

OWL, (1+Z0bd —tef (1—-Z0bs +iec .
o ez T e ©

A native parallelization scheme is to allocate one thread for
each net. This scheme has also been discussed in [23], which only
demonstrated limited speedup because the maximum number of
threads to allocate is |E|, and the workload for each thread is
imbalanced due to the heterogeneity of net degrees.

Noting that the total number of pins |P| is much larger than
|E|, we consider the possibility of pin-level parallelization. The
dependency graph for WA wirelength forward and backward is
elaborated in Figure 4a. A straight-forward implementation of this
pin-level parallelism is to compute a®, b¥, ¢* in separate CUDA
kernels by using multiple CUDA streams. The computation can be
completed in four steps: 1) compute xt; 2) compute and store

*. 3) compute and store b¥, ¢®; 4) compute WL, in forward or
6;\/ L, in backward. Algorithm 1 1llustrates this multi-stream version
of pin-level parallel implementation of WA wirelength forward
and backward functions. We make all the CUDA kernel functions
inline, which should be separate in practice, for brevity. Specifically,
computations for an array with different & signs, e.g., x* and x~,
are separated into different CUDA streams in the implementation. In

Backward Forward Backward

(a) (b)

Fig. 4: Forward and backward dependency graph for (a) weighted
average wirelength and (b) density computation.

Forward

the algorithm, six kernels are needed. The x* kernel requires atomic
maximum and minimum operations, and the b¥, ¢t kernels require
atomic addition. At the end of the forward function, summation
reduction is needed to compute the overall wirelength cost, which
is provided by the deep learning toolkit. In our implementation,
multiple CUDA streams are adopted for independent computations,
such as z/y directions and positive/negative components.

We observe that Algorithm 1 [30] has several drawbacks: ex-
pensive CUDA streams, sequential launches of many kernels, con-
tention, and frequent global memory access. Among these draw-
backs, frequent global memory access, especially frequent writing to
intermediate variables xi7 ai, bi, cT, becomes the major runtime
bottleneck. In other words, it is memory bounded rather than
computation bounded. Thus, we review the natural net-by-net and
pin-by-pin approaches again. We discover that the net-by-net strategy
has the potential to remove all the intermediate variables by merging
the forward and backward functions, as shown in Algorithm 2.
Instead of storing x* at bt ctin global memory, we only create
local variables in the kernel function, and directly compute the
wirelength for each net and the gradient for each pin. Although
variable at is computed twice, the store instructions only happen
to the variables WL, and aawx Le ' which significantly alleviate the
memory pressure. The efﬁcienc§ of the two algorithms is empirically
compared in Section IV-B.

For parallel CPU implementation, we adopt the net-by-net strategy
and dynamic scheduling for heterogeneous net degrees. We observe
that a chunk size of m works well for most designs, where
|E| is the number of nets in the design.

B. Density Forward and Backward

Forward and backward of density cost is a computation-intensive
procedure. Figure 4b plots the dependency graph for density cost
forward and backward. The computation consists of four steps:

1) compute density map p;

2) compute Gu,u;

3) compute ¥ in forward or £ in backward;
D

4) compute D in forward or % in backward.

We model this computation flow as a dynamic bipartite graph
forward and backward process, as shown in Figure 5. First, density
map calculation is modeled as a bipartite graph forward or a special
2D histogram problem where one cell may update multiple bins
[31]. Then the electric potential and field are solved via DCT and
other Fourier-related transforms. Finally, the electric force inflicted
on each cell is collected from its overlapped bins, which can be
modeled as a 2D gathering problem [31].

1) Dynamic Bipartite Graph Forward for Density Map: Each step
of density map computation updates bins based on the overlapping
area of corresponding cells. Thus, it can be modeled as a particular

Algorithm 1 Wirelength Forward and Backward Atomic [30]

Require: A set of nets F, a set of pins P, and pin locations x;
Ensure: Wirelength cost and gradient;

1: function Forward(FE, P, x)

2: xt « —00,x™ + o0, bT « 0,ct « 0;

3: for each thread 0 < t < |P| do > xT kernel
4: Define e as the net that pin ¢ belongs to;

5: xF &b max(z), z:); > atomic max
6: T, &b min(z, , zt); > atomic min
7: end for

8: for each thread 0 < t < |P| do > a® kernel
9: Define e as the net that pin ¢ belongs to;

10: ati —et D ;

11: end for

12: for each thread 0 < t < |P| do > b™ kernel
13: Define e as the net that pin ¢ belongs to;

14: bE < bE 4 o) > atomic add
15: end for

16: for each thread 0 < ¢t < |P| do > ¢t kernel
17: Define e as the net that pin ¢ belongs to;

18: céﬁ & cf + xtaf; > atomic add

19: end for

20: for each thread 0 < ¢t < |E| do
21: Define e as t'" net in E;
22: Compute WL, ;—‘jr - Z%;
23: end for ‘ ‘
24: return reduce(
25: end function

26: function Backward(E, P, z,a*,b*, ct)

> WL, kernel

+ ot ot
eeEWLe),a ,b*,c™;

27: for each thread 0 < t < |P| do > ‘9(,;:6 Lte kernel
28: Define e as the net that pin ¢ belongs to;
29: Compute O;gf;

30: end for
31: return {2} Vi € P;

)
32: end function

Cells

O
()
)
()

(@ (b)

Fig. 5: Computation flow of (a) density map; (b) electric force.

Cells Bins

=]
7]

2D histogram problem or a dynamic bipartite graph forward, as
shown in Figure 5a. Each edge in the bipartite graph represents
an update to the entry of the target bin in the density map, where
the edge weight represents the overlapping area of the {cell, bin}
pair. The reason why we call it “dynamic” is that, as cells move,
edges in the bipartite graph, which indicate overlaps between cells
and bins, will change accordingly.

A naive algorithm to parallelize this step is to allocate one GPU
thread for each cell and use atomic addition to accumulate the
overlapping areas with bins [30]. However, as a cell may cover
multiple bins, simply using one GPU thread to update all overlapped
bins sequentially will cause load imbalance problem due to the

Algorithm 2 Wirelength Forward and Backward Merged

Require: A set of nets F, a set of pins P, and pin locations z;
Ensure: Wirelength cost and gradient;
1: function Forward_Backward(F, P, x)
2: for each thread 0 < ¢t < |E| do

> WL, 6;;2 I: kernel

3 Define e as the net corresponds to thread t;
4 zh — maxpee Tp; > 2 are local in the kernel
5: T, ¢ Minpee Tp;
6: b «+ 0,cF « 0; > bE, cF are local in the kernel
7 WL, «+ 0; > WL, is in the global memory
8 for each pin p € eido
Tp—J‘e
9: a,? et > a;,t is local in the loop
10: b b +af
. + + +.
11: Co < Co +2xp-ap;
12: end for .
13: WLe + £ — =3
14: for each pin p € e do
op—ad
15: a?,[et 7 ; > Compute a;t again
16: Compute %; > % is in the global memory
P p
17: end for
18: end for
19: return reduce({WL.}), aa\%e },Vp € Pe € E;
20: end function
2.0

.2 float64 @ float32

= 1.5 1

~

[}

é 1.0 A

=

= 0.5

~

00 T T T T T T T T T
SN Y N Y Y N S N
AN I L R L G G ARG G

Fig. 6: Comparison of different numbers of threads to update one
cell in density forward and backward on bigblue4. The numbers
are normalized by the runtime of 1 x 1 thread with float64.

variety in cell sizes. Empirically, the number of bins covered by a
cell can vary from ~ 10 to ~ 1000. This ill-balanced workload
within a thread warp introduces a big chunk of idle time and
significantly degrades the performance. Therefore, we develop the
following techniques to address this issue.

Sort cells by area. We sort the standard cells by their areas, such
that the 32 threads in a warp can process 32 consecutively-indexed
cells with similar sizes. In this way, the cell-level workloads will be
automatically balanced within a warp.

Update one cell with multiple threads. We use multiple threads
to update a single cell, which can effectively reduce the workload
of each thread. Thus the issue of load imbalance can be further
alleviated. An appropriate number of threads need to be selected
given that this fine-grained parallelism inevitably introduces some
runtime penalty. Specifically, more computational redundancy and
memory write contention from atomic operations will happen among
threads updating the same cell. We experimentally evaluate dif-
ferent settings of threads. Figure 6 shows the comparison on the
bigblue4 benchmark. Based on the above results, we empirically
adopt 2 x 2 threads, i.e., 2 threads for both vertical and horizontal
directions. It provides about 20 ~ 30% runtime improvement with
both float32 and float64.

For parallel CPU implementation, we adopt the native atomic
operations and dynamic scheduling for heterogeneous cell sizes. We
set the chunk size to m, where |V| is the number of cells
in the design.

2) Dynamic Bipartite Graph Backward for Electric Force: In the
electric force computation, each cell receives the forces from the
bins it overlaps with. Thus, the computation can be viewed as a 2D
gathering problem or a dynamic bipartite graph backward, as shown
in Figure 5b. Each edge represents the force from a bin, and the
edge weight is the amount of the force. The weight is computed as
the product of the overlapping area between the cell and the bin and
the electric field at the bin.

A natural strategy to accelerate this step is to allocate one
thread for each cell and accumulate the forces sequentially from
its overlapping bins [30]. However, considering this computation
task shares a similar structure with the density map computation,
we borrow the same idea from Section III-B1 by sorting the cells
and allocating multiple threads for each cell.

3) DCT/IDCT for Electric Potential and Field: The electric po-
tential and field computation in Equation (5) requires fast DCT/IDCT
kernels for efficient calculation. The standard DCT/IDCT for one-
dimensional (1D) length-/N sequence x is,

N—-1
DCT({zn})x = ZB e cos (7 (n + %)k), (7a)
1 e - 1
IDCT({zn}) = S0 + n; an cos (el + 2)), (7b)

where £ =0,1,..., N — 1. We further derive IDXST as,

N—1
IDXST({zn)i = 3 @ sin (Gon(h+ %)), (8a)
n=0
N—-1 1
= (-1 an)’“sin(M), (8b)
n=0 N
N-—-1 _ 1
= (=1)* Zn COS(F(Nn—)(k"'Z))’ (8¢)
n=0 N
N-—-1 . 1
= (-1* ; N cos (o +), (8d)
= (-D)*IDCT{zx—n Dk, (8e)

where znx = 0. The equality between Equation (8d) and Equa-
tion (8e) can be derived by incorporating xn_, into Equation (7b).
Given an M x M density map p, the electric potential and field can
be computed using DCT/IDCT, IDXST routines.

au.o = DCT(DCT(p)T)7, (92)
Yper = IDCTADCT({ — 1) T)7, (9b)
wy;, + wg

Ay v Wy

&pser = IDXST(IDCT({ —=—5H")7, %¢)
wu + w’U
Ay v Wy

€bcst = IDCT(IDXST({—=—5 11T, (9d)
wﬂ + w’U

where (-)7 denotes matrix transposition. The two-dimensional (2D)
DCT/IDCT is computed by performing 1D DCT/IDCT to columns
and then rows. We can see all the computations can be broken down
into the 1D DCT/IDCT kernels with proper transformations. Thus,
highly optimized DCT/IDCT kernels are critical to the performance.

As the highly optimized fast Fourier transform (FFT) is provided
by many deep learning toolkits, we leverage FFT to compute DCT.
There are multiple ways to compute DCT using FFT with linear
time additional processing. For example, TensorFlow adopts the
implementation using 2/N-point FFT. We choose the N-point FFT

Algorithm 3 DCT/IDCT with N-Point FFT

Require: An even-length real sequence x;

Ensure: An even-length transformed real sequence y;
1: function DCT(x)
2: N « |z|;

3 for each thread 0 <t < N do > Reorder kernel
4 if t < & then

5: Ty — Tar;

6: else

7 Ty 4 Ta(N_t)—15

8 end if

9: end for

10: x'" + RFFT(z); > One-sided real FFT kernel
11: for each thread 0 <t < N do > 67% kernel
12: if t <% then

13: Yi %%(wé’e_%); > get real part
14: else int

15: Yt %%(m?’lv_t)e_ﬁ); > get real part
16: end if

17: end for

18: return y;

19: end function
20: function IDCT(x)

21: N + |zf;
22: for each thread 0 <t < %_Jr 1 do > Complex kernel
23: Ty — (z¢ —jm(N_t))e%Vt; >letxy <0
24: end for
25: x' < IRFFT(x'); > One-sided real IFFT kernel;
26: for each thread 0 <t < N do > Reverse kernel
27: if ¢ mod 2 == 0 then
28: ye < T
29: else

. N _n .
30: yt%zm(N_%),
31: end if
32: end for
33: return y;

34: end function

implementation [32] and demonstrate better efficiency in the exper-
iments, as shown in Algorithm 3. Due to the symmetric property of
FFT for real input sequences, we utilize one-sided real FFT/IFFT to
save almost half of the sequence. With additional processing kernels
like linear-time reordering and multiplication, DCT/IDCT can be
computed with an N-point real FFT/IFFT.

In the placement problem, we need to compute 2D DCT/IDCT.
A widely adopted algorithm aforementioned is to perform 1D
DCT/IDCT through the rows and columns sequentially [30]. This
row-column DCT algorithm is easy to implement but limited by
its two-step procedure, redundant computation, and frequent mem-
ory transaction. To achieve better efficiency, we implement 2D
DCT/IDCT directly through 2D FFT, proven in [32]. Algorithm 4 il-
lustrates the 2D DCT/IDCT implementation with 2D pre-processing
and post-processing kernels. This implementation eliminates unnec-
essary computations with a one-time call to 2D FFT kernels. The pre-
and post-processing routines can be fully parallelized. This algorithm
is adopted for both GPU and CPU implementations. We evaluate the
efficiency of the DCT/IDCT transforms and the density operator in
Section IV-B.

C. Density Weight Updating

We need to update the density weight A\ in Equation (2) in each
iteration to penalize the density cost. RePlAce [8] uses the following
equations to update .

MHmax, if p < 07
M= 1—p . ’
max(fmin, hmay), Otherwise;

A=A,

(18a)

(18b)

where fimin = 0.95, tmaz = 1.05 and p = %. We follow
almost the same scheme with one minor difference. When p < 0,
we set [t < fhmae - max(0.9999%,0.98) instead of fimaz, Where k
is the current iteration. This equation indicates that from iteration 0
to 200, p gradually drops from 1.05 to 1.03 and keeps this value
afterward, given the previous fimaqz setting. We found that this minor

change provides relatively stable convergence in our experiments.

D. Optimization Engine

ePlace/RePlAce [6], [8] uses Nesterov’s method as the gradient-
descent solver with a Lipschitz-constant approximation scheme for
line search. We implement the same approach in Python leveraging
the efficient API provided by the deep learning toolkit. The frame-
work is compatible with other well-known solvers in deep learning
toolkits, i.e., various momentum-based gradient descent algorithms
like Adam [25] and RMSProp [33], providing additional solver
options.

E. Legalization

We also develop legalization as an operator in DREAMPlace. It
first follows the Tetris-like procedure similar to NTUplace3 [4]. Then
it performs Abacus row-based legalization [34]. This step copies the
cell locations from GPU to CPU and executes legalization purely on
CPU because we observe that it only takes several seconds even for
million-size designs with a single CPU thread.

F. Extension to Consider Routability

To optimize routing congestion, we adopt cell inflation to optimize
congested regions [35]. We follow a similar scheme to RePlAce [8],
which invokes the NCTUgr global router [36] to get the routing
overflow map during placement iterations. For each metal layer, we
compute the ratio between routing demand and capacity at each
routing tile. Then we use the maximum ratio across all layers to
compute the inflation ratio for each tile.

demand,)2‘572'5)7 (19)

ratio = min((max -
vIeL capacity;
where L is the set of metal layers. The exponent and maximum
limits can be adjusted according to the benchmarks. We choose 2.5
in the experiments. After that, we obtain an inflation ratio map. A
cell will be inflated according to the inflation ratios of the tiles it
overlaps with. If cells inflate too much, there may not be enough
total whitespace to digest the area increment. Thus, we limit the
area increment to be 10% of the total whitespace area in the layout
every time. If the attempted area increment exceeds this ratio, we
uniformly scale down the inflation ratio for each cell. During the
placement iterations, once the cell overflow drops to 20%, we invoke
the global router and perform inflation. The overflow will increase
after inflation. Then, the solver is restarted to optimize wirelength
and density again. We keep on looping until the total inflation ratio
is less than 1% of the total cell area, or we reach a maximum of
5 times of inflation. Starting from the first round of cell inflation,

Algorithm 4 2D DCT, 2D IDCT, IDCT_IDXST, and IDXST_IDCT with N-Point 2D FFT

Require: An real N; x N2 matrix z;

1: function 2D_DCT(x)

2: x' = 2d_dct_preprocess(x) using Equation (10),
z(2n1,2n2),
T 2N1 - 2711 - 1,271,2),

, _

z' (n1,n2) =

33(2711,2N2 — 277,2 — 1),
(

X 2N1 — 2711 — 1,2N2 — 277,2 — 1),

3: x" = 2D_RFFT(z');

> Ni and N> can be any positive number

N
3

=
+
—
[E—

(10)

— O — O
N
[V}
3
AN NEA
3
N
<

=
Nl
=
| S

> 2D real FFT kernel

4: return y = 2d_dct_postprocess(z”) using Equation (11),

_j""2 _Jmny " jmng 7
y(ni,ng) = 2§R(e 22 (7 201 2" (n1,m2) + € 21 2’ (Ny — n1,n2))), (1
where :c”(Nl, na) = :v"(nl, N3) = 0,Vnq,no;
5: end function
6: function 2D_IDCT(x)
7: x' = 2d_idct_preprocess(z) using Equation (12)
jrn jrn
a:l(nhnZ) —e 21\111 o 21\/22 (x(nl, n2) — (N1 — n1, Na — na) — J(:L’(Nl —n1,n2) + z(n1, N2 — nz))), 12)
where 2(N1,n2) = x(n1, N2) = 0,Vni,no;
8: x" = 2D_IRFFT(z'); > 2D real inverse FFT kernel

1

9: return y = 2d_idct_postprocess(z’’) = 2d_dct_preprocess’1(ﬂc”) using Equation (13)

x (5L, 52), nq is even, mo is even,
12 ni+1l n . .
" (Np — 2= 22) n1 is odd, na is even
y(ni,ma) =4 0 ? iy . . ’ (13)
x" (%, Ny — 2252, n1 is even, ng is odd,
z (Ny — “LEL Ny — 225y ny s odd, na s odd;
10: end function
11: function IDCT_IDXST(x)
12: x' = idct_idxst_preprocess(z) using Equation (14)
z(ni, Na —n n 0
o/ (1,) = (n1, N2 —n2), n2 #0, (14)
0, na = 0;
13: z" = 2D_1IDCT(z');
14: return y = idct_idxst_postprocess(z”) using Equation (15)
y(ni,n2) = (=1)"a" (n1, n2); (15)
15: end function
16: function IDXST_IDCT(x)
17: x’ = idxst_idct_preprocess(z) using Equation (16)
(N1 —ni,n n 0
o/ (1,) = (N1 —ni,n2), n1#0, (16)
0, ny = 0;
18: x" = 2D_1IDCT(z")
19: return y = idxst_idct_postprocess(z”) using Equation (17)
y(ni,n2) = (=1)"' 2" (n1,n2); a7

20: end function

we slow down the density weight updating to make the gradient
descent more stable. That is, we update the density weight A every
5 iterations instead of every iteration.

G. Other Possible Extensions

The framework is general and can be extended to consider various
advanced design objectives and constraints, e.g., timing and fence
regions. Timing can be considered by net weighting or additional

differentiable timing costs in the objective [29], [37]. Fence regions
can be implemented by introducing multiple electric fields, e.g., one
for each region, to enable independent spreading between regions.

IV. EXPERIMENTAL RESULTS

The framework was developed in Python with PyTorch for
optimizers and API, and C++/CUDA for low-level operators. The
CPU parallelism was implemented with OpenMP for wirelength
and density operators. Both the DREAMPlace and the RePlAce [8]

programs run on a Linux server with 40-core Intel ES-2698 v4 @
2.20GHz and 1 NVIDIA Tesla V100 GPU based on Volta architec-
ture. ISPD 2005 contest benchmarks [38] and large industrial designs
were adopted. We conducted experiments with both double-precision
(float 64) and single-precision (f Loat 32) floating point numbers
on CPU and GPU. We use the same dimensions of bins as RePlAce.

A. Placement Acceleration

Table II and Table III show the HPWL and runtime details
on ISPD 2005 and industrial benchmarks. With almost the same
solution quality (within 0.3% difference on average), DREAMPlace
running on GPU is able to achieve 38x and 47X speedup in
GP on the two benchmark suites compared to RePlAce with 40
threads. DREAMPIlace running on CPU is also 2x faster than
RePlAce with 40 threads in GP. RePlAce [8] crashed on the 10-
million-cell industrial benchmark at the 6th iteration for Nesterov’s
optimization. The potential reason is that the peak memory usage of
RePlAce exceeded the maximum memory (64GB). Before crashing,
it took 3396 seconds for initial placement and on average 7.5
seconds for each Nesterov iteration. As this benchmark takes 1000
iterations with DREAMPlace, we made a runtime estimation of
3396 + 1000 x 7.5 ~ 10896 seconds. Meanwhile, among all
RePlAce runs, initial placement takes 25 ~ 30% of the entire global
placement time, and solving the nonlinear placement takes around
70 ~ 75%. The LG of DREAMPlace is also around 10x faster
than the NTUplace3 legalizer in the RePlAce flow. As NTUplace3
does the DP for both placers, so the runtime is similar. The speedup
for the entire placement flow on GPU is 4.6, and that on CPU is
2.7x.

Figure 7 plots the GP runtime comparison between multi-threaded
DREAMPIlace and RePlAce with different precisions and implemen-
tations. It can be seen that the parallel CPU version of DREAMPlace
is consistently faster than RePlAce. Meanwhile, this TCAD exten-
sion further improves the efficiency of the GPU implementations
from the DAC version [30] except for the smallest benchmark
adaptecl. Figure 8 plots the average runtime ratio for different
cases. By switching from float64 to float32, an average
speedup of 1.4x on CPU and 1.3x on GPU can be achieved, while
the quality stays almost the same. Compared with the previous DAC
version [30], this extension achieves 1.3x speedup with float 64
and 1.8x speedup with £1oat32. From Figure 8, we also observe
that the speedup of CPU implementations saturates quickly from
single thread to 40 threads. This observation holds for both RePlAce
and DREAMPIlace. For RePlAce, the best number of threads is 40
with a speedup of 3.2, while for DREAMPlace, 20 threads provide
the best efficiency with a factor of 5.0x.

Figure 9 draws the runtime breakdown of DREAMPlace on a 2-
million-cell design bigblue4, where GP and LG only take 6.2%
runtime of the entire flow. The runtime of GP and LG is even
less than that of file 10 for benchmark reading and writing. The
majority of the runtime (82%) is taken by DP, which still relies
on the external placer currently. Previous studies [39], [40] have
demonstrated more than 6 x speedup from GPU acceleration for DP
over multi-threaded CPU. While DP is not the focus of this paper,
there is a potential of 18 x speedup for the entire placement by future
incorporation of GPU-accelerated DP, e.g., % ~ 18 for
bigblued according to Table II. On the other hand, within each
forward and backward pass of GP, the density-related computation
takes longer than wirelength (73.4% v.s. 26.5%). With efficient
DCT/IDCT implementation, the electric field computation is no
longer the bottleneck for density forward and backward.

B. Acceleration of Low-Level Operators

We further investigate the efficiency of the low-level operators,
e.g., wirelength forward and backward, DCT/IDCT, and density for-
ward and backward. Figure 10 compares three approaches discussed
in Section III-A. “Net-by-Net” denotes the net-level parallelization;
“Atomic” denotes the pin-level parallelization with atomic operations
in Algorithm 1 [30]; “Merged” denotes the combined forward and
backward implementation in Algorithm 2. When using float32
on GPU, the merged approach achieves 3.7 x speedup over the net-
by-net one and 1.8x speedup over the atomic one. On CPU, the
atomic strategy is 20% slower than the net-by-net strategy with 40
threads, while the merged strategy is over 30% faster. Meanwhile, a
promising speedup factor of 7.5x from a single thread to 40 threads
can be achieved with the net-by-net strategy.

Figure 11 compares the 2D DCT/IDCT implementation using 2N -
point FFT (“DCT-2N” and “IDCT-2N”), N-point FFT (“DCT-N”
and “IDCT-N”), and N-point 2D FFT (“DCT-2D-N” and “IDCT-
2D-N”) [32]. Considering the map sizes in the experiment (from
512 x 512 to 4096 x 4096) with f1loat32, the N-point DCT im-
plementation is 2.1 x faster [30] and the N-point 2D implementation
can be 5.0x faster. For IDCT, the N-point implementation achieves
1.3x speedup and the 2D implementation achieves 4.1 x speedup.
This result demonstrates the efficiency of Algorithm 4.

As DCT/IDCT is used in the density operator, in Figure 12, the
efficiency of the entire density forward and backward procedure is
compared for GPU and CPU implementations. With all the speedup
techniques, an average of 1.5 ~ 2.1x speedup on GPU can be
achieved with the current implementation over the preliminary DAC
version [30]. For the parallel CPU implementation, 3.1 runtime
reduction can be achieved with 40 threads.

C. Comparison with Solvers in PyTorch

As mentioned, DREAMPlace can enable easy adoption of native
solvers in PyTorch. Here we compare with the widely-used solvers
implemented in the toolkit, like Adam [25] and stochastic gradient
descent (SGD) with momentum, as shown in Table IV. As these
solvers do not have line search, we add simple learning rate decay
in each iteration to control the step size of gradient descent with
the decay factor shown in the “LR Decay” columns. We use the
default configurations for these solvers and report the final HPWL
after detailed placement and the runtime for global placement in
seconds. In our experiments, we find the gradient descent process
may be unable to converge if the learning rate is not properly
designed. Therefore, we customize the decay factor for each design.
It can be seen that Adam can achieve slightly better results than
the Nesterov’s accelerated gradient decent method (shortened to
Nesterov’s method for brevity) implemented in RePlAce, while the
Nesterov’s method converges much faster. Meanwhile, the results for
SGD with momentum are about 1.2% worse. As the solvers have
many parameters to tune, it is hard to simply conclude that Adam
or SGD with momentum is definitely worse than the Nesterov’s
method with the experiments, but the preliminary results are at
least promising enough to worth further exploration. With the
DREAMPIlace framework, we can investigate new solvers easily by
scripting in PyTorch.

D. Routability-Driven Placement

To verify the runtime benefits in routability-driven placement, we
conducted experiments on the DAC 2012 contest benchmarks [41].
We consider two major metrics for solution quality: “sHPWL” as
scaled wirelength and “RC” as routing congestion. In the contest,
the RC is defined as a weighted average of overflows in the top

TABLE II: Experimental results on ISPD 2005 benchmarks [38] with f1loat64.

RePlAce (40 threads) DREAMPIlace (40 threads) DREAMPIlace (V100)
Design #cells | #nets [Runtime (s) [Runtime (s) [Runtime (s)
HPWL —5p 1716 [op [Tour | ""WE 6P TTG [DP [10 [Tour | "*WE [GP LG | DP | 10 [Towl
adaptecl 211 221 73.22 30 4 21 112 73.22 67 04 | 24 4 96 73.22 5 05 | 25 4 34
adaptec? 255 266 81.86 159 7 27 201 82.23 98 0.5 31 5 134 82.22 6 0.5 31 5 42
adaptec3 452 467 193.34 | 297 20 48 378 193.81 133 1 57 9 201 193.72 8 1 57 9 76
adaptec4 496 516 175.25 336 20 55 426 173.85 | 187 2 65 10 264 174.08 9 2 65 9 85
bigbluel 278 284 89.87 130 4 27 170 89.40 87 0.3 32 5 125 89.38 6 04 [31 6 43
bigblue2 558 577 138.07 | 299 22 32 419 136.73 | 143 9 91 10 254 136.54 8 9 95 10 123
bigblue3 | 1097 1123 | 305.09 | 787 41 120 | 1030 | 303.89 | 316 3 142 | 21 484 | 303.90 | 14 3 142 | 20 180
bigblued | 2177 | 2230 | 743.80 | 1789 51 299 | 2400 | 743.69 | 655 9 336 | 45 | 1047 | 74375 | 25 9 332 | 45 413
[raio | - [- [1003 [382 10109] 46 [1.000 [187 [09 [1.0 [1.0] 27 [1.000 1.0 [10 [1.0 [10] 10 |
TABLE III: Experimental results on industrial benchmarks with £loat64.
RePlAce (40 threads) DREAMPIlace (40 threads) DREAMPIlace (V100)
Design | #cells #nets [Runtime (s) [Runtime (s) [Runtime (s)
HPWL —&5p 116 [P (o | "W op T [pP [0 [Towr | WL 'GP TG DP | 10 [Toml
designl 1345 1389 340.76 787 39 140 1039 340.64 341 4 173 30 549 340.67 17 4 172 30 224
design2 1306 1355 274.65 793 39 134 | 1057 275.41 363 4 166 30 564 275.36 17 5 167 29 218
design3 2265 2276 524.36 1369 74 233 1777 522.68 543 14 299 48 906 522.62 27 14 302 48 393
design4 1525 1528 454.86 857 48 166 1136 453.86 384 8 200 33 626 453.83 18 8 202 33 262
design5 1316 1364 287.46 776 38 138 1016 287.14 335 3 167 29 535 287.11 17 4 169 31 221
design6 | 10504 | 10747 NA ~10896 | NA | NA NA 2360.94 | 3056 77 1650 | 246 | 5037 | 2358.44 | 181 76 1666 | 253 | 2184
[(mto [- | - [100l [473 [81]08] 46 | 1000 [199 [1.0] 10 | 1.0] 24 [1000 [1.0 [1.0] 10 | 10] 1.0 |
10°
RePlAce m float64, 40 Threads
104 4 DREAMPlace m float64, 40 Threads float32, 40 threads
= DAC-float64, V100 == TCAD-float64, V100 TCAD-float32, V100
= 103 4
[}
El
2 102 4
Z 10
N I I I | ‘
10° - I I I T I T T T T T T T T T
N v) D -~ 9) D D U L) > o o
g ¢ © © © © © © & & & & &
@b‘b @b‘b‘ @b‘v @b‘b' \éxéo 3P «éxéo «6&‘50 I I I I I I

Fig. 7: GP runtime comparison for ISPD2005 and industrial benchmarks between various implementations and precisions. The runtime of
design6 for RePlAce for different number of threads is estimated with the method mentioned in first paragraph of Section IV-A.

103

CPU Threads V100
1, 10, 20, 40
107y 42.9%
§ 19.1x 13.6x
£ 10'4
£ 1.3x
wd - g 1.0x 0.7x
101 r r r
& & & < & &
N4 N N NN N J N o5V
Q\g Y,VS > ’&“8@» & {Z.;o ﬁ‘&Q & %S &
& N LS & R
NSy F& S S SO
N 9 A N DS

Fig. 8: Average GPU runtime ratio for ISPD2005 and industrial
benchmarks with different number of CPU threads. Normalized
by the runtime of the TCAD version of DREAMPlace on V100
with float64, which is consistent with the ratios in Table II
and Table III. The normalized ratios for 40 threads and GPUs are
annotated for easier comparison.

0.5%, 1%, 2%, 5% congested tiles. The minimum value for RC
is 100, indicating no overflow. The sHPWL is computed using the

24.4 Density Backward

3.0. WL Backward
Electric Field [15.7

Density M Density Forward
801 ensity Map
bp

23.5 WL Forward

(@) (b)

Fig. 9: Runtime breakdown in percentages of DREAMPlace with
float32 on V100 (a) for bigblued and (b) one forward and
backward pass in GP.

10
11.7

43

GP
LG

following equation [41],

sHPWL = HPWL x (1+0.03 x (RC —100)), (20)

indicating that unit increase in routing congestion is counted as 3%
HPWL overhead.

In this experiment, we obtained the RePlAce binary from the
authors of [8] to keep consistent experimental settings. Table V
shows the solution quality and runtime. As NCTUgr is repeatedly
invoked as an external congestion estimator and it only runs on
CPU with single-thread, we separate the runtime of GP into two
parts: nonlinear optimization (“NL”) and global routing (“GR”).

2 B Net-By-Net f Atomic = Merged
3
~
o
.42
5
~
N >
S &L IS
‘vb‘bg b&& ‘b&& %&9 \oxéo \.',\oo N \0\,60
(@)
2 B Net-By-Net B Atomic = Merged
3
~
g
E
~
> O &l
R G S X N N N
I GG G PO P N
3 SHIEIE I
®b® @&18 @SDQ ®b® \oxéo X \6\90 \0\,‘50
(b)
2 DREAMPlace Threads == 1 mm 40
<
2 1
g 1/2
2 1/4
é 1/8

%) > N & D N
S R e e
& & RS PSR A

C
Fig. 10: Wirelength forward and<bz)1ckward with float32. (a) GPU
runtime comparison of different implementations. (b) CPU runtime
comparison of different implementations with 40 threads. (c) CPU
runtime comparison of the net-by-net strategy between single thread
and 40 threads.

2.0 2.0
2 § DCT-2N = DCT-2D-N 2 | W IDCT-2N © IDCT-2D-N
27 » perN 211 8 merN
é 1.0 1 £ 1.0
£ 0.5 1 £ 0.5
& &
0.0 -5 : : 0.0 85 : :
512 1024 2048 4096 512 1024 2048 4096
Map Size (N x N) Map Size (N x N)
(a) (b)

Fig. 11: GPU runtime comparison of DCT/IDCT algorithms with
float32.

NTUplace3 [4] is adopted as the LG and DP for RePlAce, and
DP for DREAMPlace. We can see that DREAMPlace with GPU
acceleration can provide very similar solution quality, while 20x
faster in NL and 9Xx faster in GP including the runtime of the global
router. For the entire placement flow, we can achieve 5x speedup.
DREAMPIlace also shows compelling efficiency and quality with 40
threads on CPU. We also observe that DREAMPIlace invokes the
global router less often than RePlAce, leading to shorter GR time.
Meanwhile, for DREAMPIlace, GR takes around 70% of the GP
time, which is the runtime bottleneck.

o
o

TCAD-float32

B DAC-float64
TCAD-float64

—_
ot

Runtime Ratio
p Lt
ot o

o
o

0% 3\ 3l D N 3 Sl D
& & FF E Q\QQ; S

Q&
"
PN N
@b@g _@8«& @&ﬂ @b‘bg RO IR

(@
2 DREAMPIlace Threads = 1 == 40
T 1
[a =1
ué‘ 1/2
£ 1/4
é 1/8

&»

FF S
&
=

N v o) D
Q) & & &
& & &
30\ >) P

&

Q&
o XS N
:z»b ‘vé %»b :z»t'\

NS X‘,xéo S

(b)

Fig. 12: Density forward and backward comparison. (a) GPU runtime
comparison between DAC [30] and this extension. (b) CPU runtime
comparison between single thread and 40 threads with float32.

TABLE IV: Comparison with native PyTorch solvers like Adam
[25] and SGD with momentum with f1oat64 on GPU.

Design Nesterov [8] Adam SGD Momentum
GP GP LR GP LR

HPWL IS HPWL ‘ I ‘ Decay HPWL ‘ ©) ‘ Decay
adaptecl 73.22 5 73.02 8 0.995 73.84 8 0.993
adaptec2 82.22 6 82.44 7 0.995 83.72 9 0.993
adaptec3 | 193.72 8 191.22 12 0.995 198.07 12 0.993
adaptecd | 174.08 9 172.84 13 0.995 175.77 14 0.993
bigbluel 89.38 6 89.89 10 0.995 89.64 9 0.993
bigblue2 | 136.54 8 136.43 14 0.995 137.48 14 0.993
bigblue3 | 303.90 14 302.95 33 0.997 | 312.79 24 0.995
bigblue4 | 743.75 25 740.60 66 0.997 | 744.55 57 0.995

[raio [1.000 [1.000 [0.997 [L.781 | [1.012] 1.687] |

V. CONCLUSION

In this paper, we take a new perspective on solving classical
analytical placement by casting it into a neural network training
problem. Leveraging the deep learning toolkit PyTorch, we de-
velop a new open-source placement engine, DREAMPlace with GPU
acceleration. It achieves around 40x speedup in global placement
without quality degradation for academic and industrial benchmarks,
compared to the state-of-the-art RePlAce running on many threads.
We explore different implementations of low-level operators for
forward and backward propagation to boost the overall efficiency.

Furthermore, DREAMPIlace is highly extensible to incorporate
new algorithms/solvers and new objectives by simply writing high-
level programming languages such as Python. We plan to further
investigate cell inflation for routability and net weighting for timing
optimization [29], [35], [37] as well as GPU-accelerated detailed
placement. It can also be extended to leverage multi-GPU platforms
for further speedup. Meanwhile, we plan to investigate the efficiency
of implementations using fixed point numbers to guarantee run-
to-run determinism. As DREAMPlace decouples the high-level
algorithmic design and low-level acceleration efforts, we believe
this work shall open up new directions for revisiting classical EDA
problems.

TABLE V: Experimental results on DAC 2012 benchmarks [41] for routability-driven placement.

RePlAce’ DREAMPIlace (40 threads) DREAMPIlace (RTX 2080TI)
. Runtime (s) Runtime (s) Runtime (s)
Design | #nodes | #nets
sHPWL RC GP sHPWL RC GP sHPWL RC GP

NC GR LG | DP ‘ Total NC R LG ‘ DP ‘ Total N GR LG ‘ DpP ‘ Total
SB2 1014K | 991K 62.39 102.47 | 6981 | 2168 | 46 160 | 9382 61.06 101.57 [3953 | 1200 | 30 | 183 [5390 61.20 101.76 [293 [1215 | 31 184 | 1746
SB3 920K 898K 30.69 100.81 | 2354 [969 70 149 | 3565 30.18 100.73 | 3306 | 524 16 172 | 4040 30.18 100.65 | 131 485 16 182 [835
SB6 1014K | 1007K 31.30 100.61 1874 | 548 44 144 | 2634 30.92 100.26 | 1888 [309 27 168 | 2414 31.00 100.33 | 169 | 309 27 168 | 694
SB7 1365K | 1340K 37.20 101.13 | 2068 | 438 54] 201 | 2794 36.73 100.60 | 963 144 23 | 234 | 1395 36.73 100.61 78 143 23 | 233 509
SB9 847K 834K 21.48 101.09 | 1866 | 369 23 148 | 2426 21.21 100.61 677 87 11 170 | 964 21.23 100.65 | 54 83 11 171 337
SBI11 955K 936K 34.28 102.65 | 2676 | 549 28 108 | 3385 32.86 100.86 | 1218 | 214 24 | 125 | 1602 32.80 100.79 | 150 | 283 24 | 125 603
SB12 1293K | 1293K 26.69 103.02 | 3040 | 441 153 | 230 | 3898 26.90 101.25 | 2767 | 319 5 278 | 3398 26.38 100.72 | 171 398 5 278 | 883
SB14 635K 620K 21.26 100.75 | 740 188 22 87 1052 21.25 100.55 | 1067 146 15 104 | 1345 21.24 100.51 65 148 15 108 | 349
SB16 699K 697K 25.57 102.29 | 1669 | 539 16 91 2331 2542 101.77 | 649 119 2 105 891 25.53 101.94 | 44 115 2 106 | 283
SBI19 523K 512K 14.21 101.05 | 1288 | 257 17 110 | 1685 15.10 103.28 | 701 108 1 126 | 948 14.67 10273 | 71 57 1 133 274

[ratio] I [1010] 1.005 [21.6 [27 [62 [08 [54 [1004 [1.001 [140 [LT [1.0] 1.0] 34] 1000 [1.000 [1.0 J 1.0 J10] 1.0 | 1.0]

Both results for RePlAce and DREAMPlace are collected from a Linux machine with two 20-core Intel Xeon Gold 6230 CPUs (40 cores in total) and 1 NVIDIA RTX 2080TI GPU.
T We obtain the binary of RePlAce [8] to keep consistent experimental settings for this benchmark suite. As the RePlAce binary uses float32 for nonlinear placement, we use the same setting for DREAMPlace
in this experiment. The binary also only supports single-thread and the external global router NCTUgr is also single-thread.

ACKNOWLEDGE
The authors would like to thank Mr. Lutong Wang and Mr.

Ilgweon Kang from the University of California at San Diego
for preparing the RePlAce binary, suggestions on the experimental
setups, and verifying the results.

[10]

(11]

[12]

[2]

[4]

[5]

[7]

This project is supported in part by NVIDIA.

REFERENCES

[11 A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details of a

high quality, large-scale analytical placer,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 1EEE, 2005, pp.
891-898.

T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in ACM International Symposium on
Physical Design (ISPD). ACM, 2005, pp. 185-192.

A. B. Kahng and Q. Wang, “A faster implementation of APlace,” in
ACM International Symposium on Physical Design (ISPD). ACM,
2006, pp. 218-220.

T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“NTUplace3: An analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 27, no. 7, pp. 1228-1240, 2008.

M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen,
and Y.-W. Chang, “NTUplace4h: A novel routability-driven placement
algorithm for hierarchical mixed-size circuit designs,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 33, no. 12, pp. 1914-1927, 2014.

J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng,
and C.-K. Cheng, “ePlace: Electrostatics-based placement using fast
fourier transform and nesterov’s method,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 20, no. 2, p. 17, 2015.
J. Lu, H. Zhuang, P. Chen, H. Chang, C. Chang, Y. Wong, L. Sha,
D. Huang, Y. Luo, C. Teng, and C. Cheng, “ePlace-MS: Electrostatics-
based placement for mixed-size circuits,” [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 34, no. 5, pp. 685-698, 2015.

C. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 38, no. 9, pp. 1717-1730, 2019.

Z. Zhu, J. Chen, Z. Peng, W. Zhu, and Y.-W. Chang, “Generalized
augmented lagrangian and its applications to VLSI global placement,”
in ACM/IEEE Design Automation Conference (DAC). 1EEE, 2018, pp.
1-6.

N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC). IEEE, 2007, pp. 135-140.

X. He, T. Huang, L. Xiao, H. Tian, and E. F. Y. Young, “Ripple: A
robust and effective routability-driven placer,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 32, no. 10, pp. 1546-1556, 2013.

T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “PO-
LAR: placement based on novel rough legalization and refinement,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2013, pp. 357-362.

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR: A
high performance mixed-size wirelengh-driven placer with density con-
straints,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 34, no. 3, pp. 447-459, 2015.
M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An effective
placement algorithm,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 31, no. 1, pp. 50-60,
2012.

M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji,
“MAPLE: multilevel adaptive placement for mixed-size designs,” in
ACM International Symposium on Physical Design (ISPD). 1EEE,
2012, pp. 193-200.

T. Lin, C. Chu, and G. Wu, “POLAR 3.0: An ultrafast global placement
engine,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 1EEE, 2015, pp. 520-527.

W. Li, Y. Lin, and D. Z. Pan, “elfPlace: Electrostatics-based placement
for large-scale heterogeneous fpgas,” in IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). Westminster, CO: IEEE
Press, November 2019.

“Cadence SOC Encounter,” http://www.cadence.com.

“Synopsys IC Compiler,” http://www.synopsys.com.

A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic parallel
placement for FPGAs on commodity hardware,” in ACM Symposium
on FPGAs. ACM, 2008, pp. 14-23.

W. Li, M. Li, J. Wang, and D. Z. Pan, “UTPlaceF 3.0: A parallelization
framework for modern FPGA global placement,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). 1EEE, 2017,
pp. 922-928.

J. Cong and Y. Zou, “Parallel multi-level analytical global placement
on graphics processing units,” in JEEE/ACM International Conference
on Computer-Aided Design (ICCAD). ACM, 2009, pp. 681-688.
C.-X. Lin and M. D. Wong, “Accelerate analytical placement with GPU:
A generic approach,” in IEEE/ACM Proceedings Design, Automation
and Test in Eurpoe (DATE). IEEE, 2018, pp. 1345-1350.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An imper-
ative style, high-performance deep learning library,” in Conference on
Neural Information Processing Systems (NeurIPS). Curran Associates,
Inc., 2019, pp. 8024-8035.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.
1. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical
placement for 3D IC designs,” in ACM/IEEE Design Automation
Conference (DAC). ACM, 2011, pp. 664-669.

M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-aware analytical
placement for 3-D IC designs based on a novel weighted-average
wirelength model,” ACM/IEEE Design Automation Conference (DAC),
vol. 32, no. 4, pp. 497-509, 2013.

W. C. Naylor, R. Donelly, and L. Sha, “Non-linear optimization system
and method for wire length and delay optimization for an automatic
electric circuit placer,” Oct. 9 2001, US Patent 6,301,693.

Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled textGPU acceleration for modern
VLSI placement,” in ACM/IEEE Design Automation Conference (DAC).
ACM, 2019, pp. 1-6.

K. A. Berman and J. Paul, Fundamentals of Sequential and Parallel
Algorithms, 1st ed. Boston, MA, USA: PWS Publishing Co., 1996.

http://www.cadence.com
http://www.synopsys.com

[32]

(33]

[34]

(351

(36]

[37]

(38]

[39]

[40]

[41]

J. Makhoul, “A fast cosine transform in one and two dimensions,” IEEE
Transactions on Signal Processing, vol. 28, no. 1, pp. 27-34, 1980.

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition
for convergences of Adam and RMSProp,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 1EEE, 2019, pp.
11127-11135.

P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: fast
legalization of standard cell circuits with minimal movement,” in ACM
International Symposium on Physical Design (ISPD). ACM, 2008, pp.
47-53.

T. F. Chan, K. Sze, J. R. Shinnerl, and M. Xie, “mPL6: Enhanced
multilevel mixed-size placement with congestion control,” in Modern
Circuit Placement. Springer, 2007.

W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0:
multithreaded collision-aware global routing with bounded-length maze
routing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 32, no. 5, pp. 709-722, 2013.

A. B. Kahng and Q. Wang, “An analytic placer for mixed-size
placement and timing-driven placement,” in /IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 1EEE, 2004, pp.
565-572.

G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz,
“The ISPD2005 placement contest and benchmark suite,” in ACM
International Symposium on Physical Design (ISPD). ACM, 2005,
pp. 216-220.

S. Dhar and D. Z. Pan, “GDP: GPU accelerated detailed placement,”
in IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2018, pp. 1-7.

Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCD-
Place: Accelerated batch-based concurrent detailed placement on multi-
threaded cpus and gpus,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2020.

N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei, “The DAC
2012 routability-driven placement contest and benchmark suite,” in
ACM/IEEE Design Automation Conference (DAC). ACM, 2012, pp.
774-782.

Yibo Lin (S’16-M’19) received the B.S. degree
in microelectronics from Shanghai Jiaotong Uni-
versity in 2013, and his Ph.D. degree from the
Electrical and Computer Engineering Department
of the University of Texas at Austin in 2018. He
is current an assistant professor in the Computer
Science Department associated with the Center for
Energy-Efficient Computing and Applications at
Peking University, China. His research interests
include physical design, machine learning applica-
tions, GPU acceleration, and hardware security. He

has received 4 Best Paper Awards at premier venues (ISPD 2020, DAC 2019,
VLSI Integration 2018, and SPIE 2016). He has also served in the Technical
Program Committees of many major conferences, including ICCAD, ICCD,
ISPD, and DAC.

-

Zixuan Jiang received the B.E. degree in electronic
information engineering from Zhejiang University,
Hangzhou, China in 2018. He is currently pursuing
his Ph.D. degree in the Department of Electrical and

—

- Computer Engineering of the University of Texas at
(sva Austin. His current research interests involve ma-
<> chine learning frameworks and applications, phys-
- ical design algorithms and implementations.

Jiaqi Gu received the B.E. degree in Microelec-
tronic Science and Engineering from Fudan Uni-
versity, Shanghai, China in 2018. He is currently a
post-graduate student studying for his Ph.D. degree
in the Department of Electrical and Computer Engi-
neering, The University of Texas at Austin, Austin,
TX, USA, under the supervision of Prof. David Z.
Pan. His current research interests include machine
learning, algorithm and architecture design, optical
neuromorphic computing for Al acceleration, and
GPU acceleration for VLSI physical design automa-
tion. He has received the Best Paper Reward at ASP-DAC 2020.

Wuxi Li (S’18-M’19) received the B.S. degree
in microelectronics from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2013., the M.S. and
Ph.D. degrees in computer engineering from the
University of Texas at Austin, Austin, TX, in 2015
and 2019, respectively. He is currently a Staff
Software Engineer in the Vivado Implementation
Team at Xilinx, San Jose, CA, where he is primarily
working on the physical synthesis field.

Dr. Li has received the Best Paper Award at DAC
2019, the Silver Medal in ACM Student Research
Contest at ICCAD 2018, and the 1st-place awards in the FPGA placement
contests of ISPD 2016 and 2017.

Shounak Dhar obtained his B.Tech in Electrical
Engineering from IIT Bombay in 2014 and PhD
in Electrical and Computer Engineering from the
University of Texas at Austin in 2019. His research
interests include Electronic Design Automation and
Hardware Acceleration. He is currently working
at Intel Corporation on EDA algorithms in Intel’s
FPGA design implementation tool.

Haoxing Ren (M’00-SM’09) received his
B.S/M.S. degrees in Electrical Engineering
from Shanghai Jiao Tong University, his M.S.
degree in Computer Engineering from Rensselaer
Polytechnic Institute, and his PhD degree in
Computer Engineering from University of Texas
at Austin. From 2000 to 2006, he was a software
engineer with IBM Microelectronics. From 2007
to 2015, he was a Research Staff Member with
IBM T. J. Watson Research Center. From 2015 to
2016, he was a technical executive with SuZhou
PowerCore Technology. He is currently a Principal Research Scientist at
NVIDIA. His research interests are machine learning applications in design
automation and GPU accelerated EDA. He received many IBM technical
achievement rewards including the IBM Corporate Award for his work on
improving microprocessor design productivity. He holds over twenty patents
and co-authored more than 40 papers including several book chapters in
physical design and logic synthesis. He has received the Best Paper Awards
at ISPD’13 and DAC’19.

Brucek Khailany (M’00-SM’13) received the the
Ph.D. degree from Stanford University in Stanford,
CA in 2003 and the B.S.E. degree from the Uni-
versity of Michigan in Ann Arbor, MI in 1997, in
electrical engineering. He joined NVIDIA in 2009
and is currently the Director of the ASIC and VLSI
Research group. He leads research into innovative
design methodologies for integrated circuit (IC)
development, machine learning (ML) and GPU-
assisted electronic design automation (EDA) algo-
rithms, and energy-efficient ML accelerators. Over
10 years at NVIDIA, he has contributed to many projects in research and
product groups spanning computer architecture and VLSI design. Previously,
from 2004-2009, he was a Co-Founder and Principal Architect at Stream
Processors, Inc (SPI) where he led research and development activities related
to parallel processor architectures.

David Z. Pan (S’97—M’00—SM’06—F’14) re-
ceived his B.S. degree from Peking University,
and his M.S. and Ph.D. degrees from University
of California, Los Angeles (UCLA). From 2000
to 2003, he was a Research Staff Member with
IBM T. J. Watson Research Center. He is currently
Engineering Foundation Professor at the Depart-
ment of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX, USA.
His research interests include cross-layer nanometer
IC design for manufacturability, reliability, security,
machine learning and hardware acceleration, design/CAD for analog/mixed
signal designs and emerging technologies. He has published over 375 journal
articles and refereed conference papers, and is the holder of 8 U.S. patents.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems (TCAD), IEEE Transactions on Very Large Scale Integration Sys-
tems (TVLSI), IEEE Transactions on Circuits and Systems PART I (TCAS-I),
IEEE Transactions on Circuits and Systems PART II (TCAS-II), IEEE Design
& Test, Science China Information Sciences, Journal of Computer Science
and Technology, IEEE CAS Society Newsletter, etc. He has served in the
Executive and Program Committees of many major conferences, including
DAC, ICCAD, ASPDAC, and ISPD. He is the ASPDAC 2017 Program
Chair, ICCAD 2019 General Chair, DAC 2014 Tutorial Chair, and ISPD
2008 General Chair

He has received a number of prestigious awards for his research contribu-
tions, including the SRC Technical Excellence Award in 2013, DAC Top 10
Author in Fifth Decade, DAC Prolific Author Award, ASP-DAC Frequently
Cited Author Award, 19 Best Paper Awards at premier venues (ISPD 2020,
ASPDAC 2020, DAC 2019, GLSVLSI 2018, VLSI Integration 2018, HOST
2017, SPIE 2016, ISPD 2014, ICCAD 2013, ASPDAC 2012, ISPD 2011,
IBM Research 2010 Pat Goldberg Memorial Best Paper Award, ASPDAC
2010, DATE 2009, ICICDT 2009, SRC Techcon in 1998, 2007, 2012 and
2015) and 15 additional Best Paper Award finalists, Communications of the
ACM Research Highlights (2014), UT Austin RAISE Faculty Excellence
Award (2014), Cadence Academic Collaboration Award (2019), and many
international CAD contest awards, among others. He is a Fellow of IEEE
and SPIE.

