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ABSTRACT
Modern ASIC placement tools encompass three categories of region
constraints: default regions, fence regions, and guide regions. Re-
gion constraints pose significant challenges to existing placement al-
gorithms, compromising the versatility and robustness required for
diverse placement workloads. In this work, we propose MORPH, a
more robust ASIC placer designed for hybrid region constraints. We
integrate hybrid region constraints into a unified multi-electrostatic
formulation that features a shared electrostatics model and a binary-
lifting-based region pruning algorithm. We develop a more robust
nonlinear placement framework that includes second-order infor-
mation and a hybrid-region-aware legalization algorithm to address
convergence issues. Experiments on the ISPD 2015 benchmark suite
demonstrate 5.6-14.3% HPWL improvement and 10-24% overflow
reduction compared to state-of-the-art region-aware placers. Fur-
ther experiments on the ISPD 2015 benchmark suite and its variants
show that the proposed techniques can achieve over 30% HPWL
improvement and up to a twofold reduction in overflow with more
stable convergence.

1 INTRODUCTION
Region constraints are an essential feature in contemporary ASIC
CAD tools [1], allowing chip designers to allocate macros or stan-
dard cells to specified areas on the chip layout based on their domain
knowledge. This leads to different instances having different place-
able areas, making the region-aware placement problem extremely
challenging. Moreover, contemporary ASIC CAD tools are also re-
quired to manage hybrid types of region constraints simultaneously,
such as fence regions, default regions, and guide regions, further
increasing the difficulty of the region-aware placement problem.
Therefore, a placement framework that can manage hybrid region
constraints to achieve high-quality solutions is urgently needed.

The region-aware placement algorithms proposed in recent years
are predominantly based on analytical approaches [13, 16, 19, 21].
Analytical placers use mathematical analysis and optimization tech-
niques to efficiently and effectively achieve a placement solution.
NTUPlace4dr [21] proposes handling fence region constraints
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Figure 1: The three sub-figures respectively display the in-
stance layout constraints under the default region (red), fence
region (purple), and guide region (green). Each region con-
sists of several rectangular sub-boxes. Solid cloud shapes
represent instances subject to the region constraint; dashed
cloud shapes represent other instances not subject to the
region constraint.

through fence region-aware clustering, along with fence-region-
aware density and wirelength models. Eh?Placer [16] and Rip-
pleDR [13] suggest using an upper-bound-lower-bound optimiza-
tion method in conjunction with look-ahead region-aware rough
legalization to manage fence regions. DREAMPlace 3.0 [19] in-
troduces a multi-electrostatics-based placement model for fence
region constraints, achieving superior placement results in wire-
length optimization. This technique can also be adapted to FPGA
placement with similar region constraints [4, 35, 36, 39, 47, 48].
However, existing analytical placers can only manage fence regions
and fail to support complex designs with hybrid region constraints.
Furthermore, existing analytical placers still need to resort to ran-
domization to address robustness issues, which can reduce solution
quality and requires parameter tuning when facing newly released
benchmarks with more complex region constraints and stricter
density requirements.

In this work, we propose MORPH, a more robust ASIC placer
for managing hybrid region constraints. We address region-aware
placement by considering hybrid region constraints through an in-
novative shared electrostatics formulation. Our placement method-
ology enhances the solution quality of multi-electrostatic-based
algorithms, ensuring robust convergence and superior stability. The
key contributions of our work are as follows:
• We propose a shared electrostatics model coupled with a
binary-lifting-based region pruning algorithm that effec-
tively integrates hybrid region constraints into a unified
electrostatics formulation.
• We propose a wirelength-prioritized penalty method for
guide regions to ensure balanced optimization without com-
promising the critical aspect of wirelength minimization.
• We propose a modified Nesterov’s accelerated LBFGS al-
gorithm with second-order information that significantly
improves the solution quality and the stability of the place-
ment process with minor runtime overhead.

Experimental results on the ISPD 2015 benchmark suite [5] demon-
strate that our proposed algorithm adeptly addresses hybrid region
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Figure 2: A schematic diagram showing how to construct the shared electrostatics model (Section 3.1.3) along with the shrinked
Neumann boundary to minimize memory usage (Section 3.1.4). Each Electrostatics system is constructed solely within the
Neumann boundary. All electrostatic field systems share the same bin sizes and have aligned bin textures (dashed line) to ensure
consistency in the calculation of contributions to density and overflow when the same instance is in different electrostatic
systems.

constraints with high quality and stability. We achieve a 5.6-14.3%
improvement in Half-Perimeter Wirelength (HPWL) and a 10-24%
reduction in overflow when compared to the state-of-the-art fence
region-aware placers. Moreover, further experiments indicate that
our proposed optimization techniques outperform those from pre-
vious works, achieving over a 30% improvement in HPWL and up
to a 2-fold reduction in overflow with more stable convergence.

2 PRELIMINARIES
In this section, we introduce the specification of region constraints,
the outline of the multi-electrostatics-based placement algorithm
for fence regions, and the background of unconstrained optimiza-
tion algorithms.

2.1 Region Constraints
ASIC CAD tools provide region constraints to assist designers in
restricting the placement locations of certain instances [2]. A region
constraint consists of 1) a region composed of several rectangu-
lar sub-box areas on the chip layout (these rectangular sub-box
areas can be non-adjacent), and 2) an instance group subject to
this constraint. There are three types of region constraints, namely
default regions, fence regions, and guide regions. Specifically, the
differences among the three are as follows:
• Default Region (hard constraint): All instances subject to
this constraint must be placed inside the region boundaries,
and other instances can also be placed inside the region.
• Fence Region (hard constraint): All instances subject to
this constraint must be exclusively placed inside the region
boundaries. No other instances are permitted inside the re-
gion.
• Guide Region (soft constraint): All instances subject to this
constraint should be placed inside the region boundaries.
However, it is a preference, not a hard constraint. Other
constraints, such as wire length and timing, can override
this preference.

Figure 1 illustrates the differences between these three types of
region constraints. Generally, an instance is subject to at most one

region constraint. Fence regions must not overlap1, while default
and guide regions can overlap.

2.2 Multi-Electrostatics-based Placement
Algorithm for Fence Region Constraint

The electrostatic-based placement algorithm is one of the best-
performing placement algorithms in recent years, achieving state-
of-the-art placement effects on many workloads [12, 19, 30, 32–
34]. This algorithm has subsequently been extended to a multi-
electrostatics-based placement algorithm [19, 35–37, 39, 47, 48].

The multi-electrostatics-based placement algorithm aims to min-
imize the wirelength cost while adhering to multiple density con-
straints in an optimization problem framework. A density constraint
is relaxed to a density penalty term, analogous to the potential en-
ergy of an electrostatic system, where instances are modeled as
electric particles, as in DREAMPlace 3.0 [19]. The relaxed opti-
mization formulation is as follows:

min
𝒙,𝒚

𝑊 (𝒙,𝒚) +
∑︁
𝑠∈𝑆

𝜆𝑠Φ𝑠 (𝒙 (𝑠) ,𝒚 (𝑠) ), (1)

where 𝒙 and 𝒚 denote the locations of instances, 𝑊 (·) denotes
the wirelength objective, 𝑆 is the set of electrostatic systems, 𝒙 (𝑠)
and 𝒚 (𝑠) denote the locations of instances assigned to electrostatic
system 𝑠 ∈ 𝑆 , and Φ𝑠 (·) and 𝜆𝑠 denote the electrical potential
energy of electrostatic system 𝑠 ∈ 𝑆 and the corresponding density
multiplier, respectively. The density constraints can be satisfied by
gradually increasing the density weights during the optimization
process.

The multi-electrostatics-based placement algorithm is suitable
for scenarios with various placeable area requirements for different
instances. The fundamental idea of this algorithm is that instances
with the same placeable area requirement are assigned to the same
electrostatic system; in each electrostatic system, illegal placement
areas are blocked by artificial placement blockages, ensuring that
instances assigned to this electrostatic system can only be placed
within legal placement areas. The artificial placement blockages
for different electrostatic systems may vary, allowing instances
1Otherwise, by definition, no instance can be placed at the overlapping area.
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i .

-
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+ Instances assigned to any default region or guide region.
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Figure 3: The instance subsets and artificial placement blockages for different objective terms in Eq. (3).

assigned to different electrostatic systems to have distinct legal
placement areas.

Such scenarios commonly occur in FPGA placement problems [3,
6, 7, 9, 11, 17, 18, 23–29, 35–39, 44–48, 51, 52, 55] (where instances
are categorized into types such as LUT, FF, DSP, and BRAM, with
each type of instance having different placeable areas) as well as
in fence region-aware placement problems [19]. It should be noted
that the formulation in [19] assumes that instances assigned to dif-
ferent electrostatic systems have orthogonal placeable areas, which
cannot handle the default regions and guide regions described in
Section 2.1.

2.3 Unconstrained Optimization Algorithms
In global placement problems, we typically transform constrained
optimization problems into unconstrained ones and solve them
through multiple iterations [12, 13, 30, 32, 53] as follows:

min
𝑥

𝑓 (𝑥). (2)

Let 𝑔 (𝑘) = ∇𝑓 (𝑘) (𝑥) and 𝐻 (𝑘) = ∇2 𝑓 (𝑘) (𝑥) denote the gradient
and Hessian matrix at the 𝑘-th iteration, respectively. Common al-
gorithms for solving unconstrained optimization problems include
the gradient method, Newton’s method, and the Quasi-Newton
method [41, 42, 50].

Gradient Method: 𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝛼 (𝑘)𝑔 (𝑘) , where 𝛼 (𝑘) is the
step size. Common gradient methods include the steepest descent,
the momentum method, and Nesterov’s accelerated gradient [40],
among others. Most previous works [12, 19–22, 30, 32] are based
on gradient methods that fundamentally rely solely on the first-
order derivative information of the function to select the descent
direction.

Gradient methods are easy to implement, have low computa-
tional complexity, and minimal memory requirements. However,
they can be sensitive to the choice of the initial solution and learn-
ing rate, potentially getting stuck in local minima or saddle points
in non-convex optimization landscapes, such as those found in
electrostatics-based placement algorithms. Especially in hybrid re-
gion placement problems, the non-convexity of the optimization
landscape is more pronounced, making it more challenging for gra-
dient methods to converge (as demonstrated by the experiments in
Section 4.2).

Newton’s Method: 𝑥 (𝑘+1) = 𝑥 (𝑘) − [𝐻 (𝑘) ]−1𝑔 (𝑘) . Newton’s
method constructs an iterative framework using second-order gra-
dient information. The derivation of Newton’s method involves
neglecting the higher-order terms of the second-order Taylor ex-
pansion and setting the right side of the expansion as a function
concerning the descent direction 𝑑 (𝑘) , thereby obtaining 𝑑 (𝑘) =
−[𝐻 (𝑘) ]−1𝑔 (𝑘) when 𝐻 (𝑘) is non-singular2. Note that the step size
is always 1 here, meaning that the selection of the step size does
not need to be considered additionally. Because it utilizes more
2We omit the derivation details here.

information, Newton’s method can outperform gradient methods
in actual performance. However, it also imposes higher demands
on the function 𝑓 (𝑥).

Quasi-Newton Method: 𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝛼 (𝑘)𝑑 (𝑘) . Newton’s
method has achieved good results both theoretically and in prac-
tice. However, for large-scale problems, calculating the Hessian
matrix is either particularly expensive or difficult to obtain, and
even if obtained, solving a large-scale system of linear equations is
necessary.

To address the drawbacks of Newton’s method, quasi-Newton
methods construct approximations to the Hessian matrix (denoted
as 𝐵 (𝑘) ; 𝑑 (𝑘) = [𝐵 (𝑘) ]−1𝑔 (𝑘) ) or approximations to its inverse (de-
noted as 𝑇 (𝑘) ; 𝑑 (𝑘) = 𝑇 (𝑘)𝑔 (𝑘) ) to perform Newton-like iterations.
They can generate an approximate matrix at each step at a lower
computational cost, and the iterative sequence produced by using
the approximate matrix instead of the Hessian matrix still maintains
the property of superlinear convergence. Quasi-Newton methods
generally require a line search to determine an appropriate step
size 𝛼 (𝑘) .

3 ALGORITHMS
In this section, we further detail our proposed algorithm.

3.1 Unified Multi-Electrostatics Formulation for
Hybrid Region Constraints

3.1.1 Overview. Let the default regions, fence regions, and guide
regions be represented by the sets 𝑅𝐷 , 𝑅𝐹 , and 𝑅𝐺 , respectively. We
construct 𝐾 = 1 + |𝑅𝐷 | + |𝑅𝐹 | + |𝑅𝐺 | instance subsets (denoted as
𝑉 (0) ,𝑉 (1) , . . . ,𝑉 (𝐾−1) ), and denote the locations of the instances
belonging to the 𝑘-th instance subset as (𝒙 (𝑘) ,𝒚 (𝑘) ). The construc-
tion method for the instance subsets will be provided in subsequent
sections. We construct 𝐾1 = 1 + |𝑅𝐷 | + |𝑅𝐹 | electrostatic systems
and 𝐾2 = |𝑅𝐺 | guide region penalty terms to model the hybrid
region constraints. We extend the first-order density penalty term
in Eq. (1) by leveraging a modified Lagrangian formulation [53],

min
𝒙,𝒚

L(𝒙,𝒚) =𝑊 (𝒙,𝒚) +
𝐾1−1∑︁
𝑘=0

𝜆𝑘D𝑘 +
𝐾1+𝐾2−1∑︁
𝑘=𝐾1

𝜂𝑘Γ𝑘 (𝒙 (𝑘) ,𝒚 (𝑘) ),

(3)

D𝑘 = Φ𝑘 (𝒙 (𝑘) ,𝒚 (𝑘) ) +
1
2C𝑘Φ

2
𝑘
(𝒙 (𝑘) ,𝒚 (𝑘) ), (4)

where Γ𝑘 and 𝜂𝑘 are the guide region penalty term and the cor-
responding guide multiplier, respectively. We adopt a normalized
subgradient-based method [19] to initialize and update the density
multiplier 𝜆𝑘 and the density multiplier preconditioner C𝑘 . The
initialization and updating of 𝜂𝑘 and Γ𝑘 are detailed in Section 3.1.5.

3.1.2 Initial Solution. The initial solution for the optimization prob-
lem is as follows:
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• For instances not subject to any region constraints, their
positions are normally distributed with a mean at the center
of the chip layout and standard deviations of 2.5% of the in-
stance’s own width and height in the horizontal and vertical
directions, respectively.
• For instances subject to a constraint by a certain region,
their positions are normally distributed with a mean at the
center of the minimum bounding box of the rectangular sub-
boxes within that region, and standard deviations of 2.5% of
the instance’s own width and height in the horizontal and
vertical directions, respectively.

3.1.3 Shared Electrostatics Model. As mentioned in Section 3.1.1,
we construct 𝐾1 = 1 + |𝑅𝐷 | + |𝑅𝐹 | electrostatic systems. The corre-
sponding instance subsets for these 𝐾1 electrostatic systems, i.e.,
𝑉 (0) ,𝑉 (1) , . . . ,𝑉 (𝐾1−1) , and the artificial placement blockages are
depicted in the first three content rows of Figure 3. Note that these
𝐾1 instance subsets are not mutually exclusive; an instance can
belong to multiple instance subsets, and different instance subsets
can share the same instance.

Figure 2 illustrates a schematic diagram of three electrostatic
systems with one default region and one fence region. When the
optimization algorithm reduces the potential energy of each elec-
trostatic system to a sufficiently low level, we achieve the following
placement effects:
• For instances not constrained by any fence region or default
region, they are ultimately placed outside the fence region
areas. Note that they can be placed within the areas where
the default regions are located.
• For instances constrained by the fence region, they are ulti-
mately placed inside the fence region.
• For instances constrained by the default region, they are
ultimately placed inside the default region.
• In the area of the default region, the overlap between in-
stances constrained by this default region and those not
constrained by this default region can be reduced.

The first three correspond to the effects of artificial placement
blockages in each electrostatic system. The last item is because
instances assigned to any default region are also necessarily within
the instance subset𝑉 (0) . This indicates that our proposed algorithm
can simultaneously optimize the degree of overlap between them
in the 0-th electrostatic system, thereby allowing instances not
constrained by any default region to be placed within the areas
where the default regions are situated without overlapping with
instances assigned to any default region.

3.1.4 Binary-Lifting-based Region Pruning Algorithm. The area
within the Neumann boundary of an electrostatic system is di-
vided into a two-dimensional bin grid. The electric field on each
bin is calculated in backward propagation via the spectral method,
for which the grid size is generally a power of two [32].

The boundary is intuitively located at the boundary of the chip
layout [19]. However, for the electrostatic systems related to regions,
i.e., the 1-st to (𝐾1 − 1)-th electrostatic systems in Eq. (3), there
are two drawbacks to this method. 1) Firstly, there is a waste of
footprint. Let the area of the chip layout be𝐴. The space complexity
of this method is 𝑂 (𝐴 × (|𝑅𝐷 | + |𝑅𝐹 |)), which can easily lead to
memory overflow when there are many regions. 2) Secondly, there
is a waste of runtime. Affected by artificial placement blockages, the

Algorithm 1 Binary-Lifting-based Region Pruning Algorithm for
Φ0

1: Input: Layout boundary (𝑥𝑙,𝑦𝑙, 𝑥ℎ,𝑦ℎ), target densty 𝜌 , num-
ber of movable instance areas 𝑁𝑚 , and total movable instance
area 𝐴𝑚 .

2: Output:(𝑥𝑙 (0) , 𝑦𝑙 (0) , 𝑥ℎ (0) , 𝑦ℎ (0) ), (𝑛 (0)𝑥 , 𝑛
(0)
𝑦 )

3: 𝑥𝑙 (0) , 𝑦𝑙 (0) , 𝑥ℎ (0) , 𝑦ℎ (0) ← 𝑥𝑙,𝑦𝑙, 𝑥ℎ,𝑦ℎ

4: 𝑤,ℎ ← 𝑥ℎ − 𝑥𝑙,𝑦ℎ − 𝑦𝑙
5: 𝑎𝑏 ← 𝐴𝑚

𝑁𝑚 ·𝜌 ⊲ 𝑎𝑏 denotes ideal bin area

6: �̂�𝑏 ← max(128, ⌊𝑤×ℎ
𝑎𝑏
⌋) ⊲ �̂�𝑏 denotes ideal bin number

7: 𝑟 ← ℎ
𝑤 if ℎ > 𝑤 else 𝑤

ℎ
⊲ 𝑟 denotes the aspect ratio

8: 𝑟 ← 2 ⌊log2 𝑟 ⌉
9: 𝑛 ← 2
10: while 𝑛 ≤ 4096 do
11: 𝑛′ ← 𝑟𝑛2

12: if 𝑛′ > �̂�𝑏
2 and 𝑛′ ≤ 2�̂�𝑏 then

13: break
14: end if
15: 𝑛 ← 𝑛 × 2
16: end while
17: if ℎ > 𝑤 then
18: 𝑛

(0)
𝑥 , 𝑛

(0)
𝑦 ← 𝑛, 𝑟𝑛

19: else
20: 𝑛

(0)
𝑥 , 𝑛

(0)
𝑦 ← 𝑟𝑛, 𝑛

21: end if

instance usually does not deviate too far from the region, hence the
electric field at locations that are relatively distant from the region
is essentially not utilized during the backpropagation process.

We propose an innovative binary-lifting-based region pruning
algorithm to address these issues, as illustrated in Algorithm 1 and
Algorithm 23. Denote (𝑥𝑙 (𝑘) , 𝑦𝑙 (𝑘) , 𝑥ℎ (𝑘) , 𝑦ℎ (𝑘) ) and (𝑛 (𝑘)𝑥 , 𝑛

(𝑘)
𝑦 ) as

the boundary and the grid size of the electrostatic system associated
with Φ𝑘 (𝑘 = 0, 1, . . . , 𝐾1 − 1) 4, respectively. Algorithm 1 solves
for the boundary and grid size of Φ0. Since instances in Φ0 that are
not subject to any region constraints can be placed anywhere on
the layout, the boundary of Φ0 should be the chip layout boundary
(line 3). The bin area should neither be too large nor too small. Ide-
ally, we expect that on average, one movable instance is contained
within a bin given the target density 𝜌 , which implies �̂�𝑏 · 𝜌 =

𝐴𝑚
𝑁𝑚

,
leading to line 5. From this we can further determine the ideal num-
ber of bins (line 6). And finally we approximate the grid size on the
horizontal and vertical coordinates based on the aspect ratio of the
boundary, aiming to make the bin number as close as possible to
the ideal bin number (lines 7-21).

Algorithm 2 solves for the boundary and grid size of Φ𝑘 (𝑘 =

1, 2, . . . , 𝐾1 − 1). The bin size and bin texture of Φ𝑘 are consistent
with Φ0 (line 3) (see Figure 2). This is to ensure consistency in the
calculation of contributions to density and overflow when the same
instance is in different electrostatic systems. The boundary width
𝑤
(𝑘)
𝑥 of Φ𝑘 is at least twice the size of the smallest bounding box

of the rectangles (lines 4-10), representing a trade-off between the

3We only discuss Algorithm 2 on the 𝑥 direction, and that on the 𝑦 direction is
analogous.
4For brevity, we abbreviate the electrostatic system associated with Φ𝑘 as Φ𝑘 in the
following context.
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Algorithm 2 Binary-Lifting-based Region Pruning Algorithm for
Φ𝑘 (𝑘 = 1, . . . , 𝐾1 − 1) (on 𝑥 direction)

1: Input: Layout boundary (𝑥𝑙,𝑦𝑙, 𝑥ℎ,𝑦ℎ), (𝑛 (0)𝑥 , 𝑛
(0)
𝑦 ), and the

rectangular sub-boxes coordinates of the corresponding region
{(𝑥𝑙 (𝑘)

𝑖
, 𝑦𝑙
(𝑘)
𝑖

, 𝑥ℎ
(𝑘)
𝑖
, 𝑦ℎ
(𝑘)
𝑖
) |0 ≤ 𝑖 < 𝑁 (𝑘) }

2: Output:(𝑥𝑙 (𝑘) , 𝑦𝑙 (𝑘) , 𝑥ℎ (𝑘) , 𝑦ℎ (𝑘) ), (𝑛 (𝑘)𝑥 , 𝑛
(𝑘)
𝑦 )

3: 𝑠𝑥 ← 𝑥ℎ−𝑥𝑙
𝑛
(0)
𝑥

⊲ Φ𝑘 has the same bin size 𝑠𝑥 as Φ0.

4: 𝑥𝑙𝑚𝑏𝑏 , 𝑥ℎ𝑚𝑏𝑏 ← min0≤𝑖<𝑁 (𝑘 ) 𝑥𝑙
(𝑘)
𝑖

,max0≤𝑖<𝑁 (𝑘 ) 𝑥ℎ
(𝑘)
𝑖

5: 𝑛 ← 128
6: while 𝑛 · 𝑠𝑥 ≤ 𝑥ℎ𝑚𝑏𝑏 − 𝑥𝑙𝑚𝑏𝑏 do
7: 𝑛 ← 𝑛 × 2
8: end while
9: 𝑛 ← 𝑛 × 2
10: 𝑤 (𝑘)𝑥 ← min(𝑥ℎ − 𝑥𝑙, 𝑛 · 𝑠𝑥 ) ⊲ 𝑤

(𝑘)
𝑥 is the boundary width of

Φ𝑘 .

11: 𝑛 (𝑘)𝑥 ← 𝑤
(𝑘 )
𝑥

𝑠𝑥
⊲ grid size of Φ𝑘 .

12: 𝑖𝑥𝑐 ← ⌊ (𝑥ℎ𝑚𝑏𝑏+𝑥𝑙𝑚𝑏𝑏 )/2−𝑥𝑙𝑠𝑥
⌋

13: 𝑖𝑥𝑏 ← max(0, 𝑖𝑥𝑐 − 𝑛 (𝑘)𝑥 /2)
14: 𝑥𝑙 (𝑘) , 𝑥ℎ (𝑘) ← 𝑥𝑙 + 𝑖𝑥𝑏 · 𝑠𝑥 , 𝑥𝑙 + (𝑖𝑥𝑏 + 𝑛

(𝑘)
𝑥 ) · 𝑠𝑥

15: if 𝑥ℎ (𝑘) > 𝑥ℎ then
16: 𝑥𝑙 (𝑘) , 𝑥ℎ (𝑘) ← 𝑥𝑙 (𝑘) − (𝑥ℎ (𝑘) − 𝑥ℎ), 𝑥ℎ
17: end if

range of instance movement and spatial complexity. Finally, the
range of the boundary is determined based on the boundary width
and length of Φ𝑘 (lines 11-17).

3.1.5 Wirelength-Prioritized Penalty Method for Guide Regions. As
stated in Section 2.1, wirelength constraints take precedence over
guide region constraints. To prevent wirelength from becoming
excessively high due to overly restrictive guide regions, we propose
a wirelength-prioritized penalty method for guide regions. Each
instance 𝑖 that is subject to a guide region constraint has a target
rectangular region 𝐵𝑖 , and the guide region penalty is calculated
based on 𝐵𝑖 . 𝐵𝑖 is initialized to the minimum bounding box of
the corresponding guide rectangular sub-boxes. Let 𝑁𝑚𝑎𝑥 be the
maximum number of rectangular sub-boxes in all guide regions,
and let the stop overflow for Φ0 be 𝑜𝑠𝑡𝑜𝑝 (e.g., 0.1). We set 𝑁𝑚𝑎𝑥
thresholds 𝛿𝑖 = 1.0 − (𝑖 + 1) × 1.0−𝑜𝑠𝑡𝑜𝑝

𝑁𝑚𝑎𝑥+1 , for 𝑖 = 1, . . . , 𝑁𝑚𝑎𝑥 . When
the overflow of Φ0 reaches a threshold, we re-evaluate the trade-off
between the wirelength objective and the guide region objective
and update 𝐵𝑖 . We leverage the median region algorithm [43] to
find an optimal region 𝜉𝑖 for instance 𝑖 , and consider the following
cases:

(1) If there is more than one rectangular sub-box within the
current 𝐵𝑖 , we discard the one that is farthest from 𝜉𝑖 in
Manhattan distance, and use the minimum bounding box of
the remaining rectangular sub-boxes as the new 𝐵𝑖 .

(2) If there is exactly one rectangular sub-box within the current
𝐵𝑖 , and 𝐵𝑖 intersects with 𝜉𝑖 , then we keep 𝐵𝑖 unchanged.

(3) Otherwise, we cancel 𝐵𝑖 , and instance 𝑖 will not be penalized
for the guide region in the subsequent iterations.

Given 𝐵𝑖 , we define a barrier function Γ𝑖 (·) for instance 𝑖 as
follows:

Γ𝑖 (𝑥𝑖 , 𝑦𝑖 ) = 𝑔(𝑥𝑖 , 𝐵𝑥𝑙𝑖 , 𝐵
𝑥ℎ
𝑖 , 𝑥𝑙, 𝑥ℎ) + 𝑔(𝑦𝑖 , 𝐵𝑦𝑙𝑖 , 𝐵

𝑦ℎ

𝑖
, 𝑦𝑙,𝑦ℎ), (5)

where 𝑔(𝑥, 𝐵𝑙 , 𝐵𝑟 , 𝑙, 𝑟 ) is defined as

𝑔(𝑥, 𝐵𝑙 , 𝐵𝑟 , 𝑙, 𝑟 ) =


0 if 𝐵𝑙 ≤ 𝑥 ≤ 𝐵𝑟 ,
𝜁

(
𝑥−𝑙
𝐵𝑙−𝑙 ;

1
2

)
, if 𝑥 < 𝐵𝑙

𝜁

(
𝑟−𝑥
𝑟−𝐵𝑟 ;

1
2

)
, if 𝐵𝑟 < 𝑥

(6)

and 𝜁 (𝑡 ; 𝑠) is a second-order differentiable function that is mono-
tonically decreasing on [0, 1] with the steepest slope at 𝑡 = 𝑠 .

𝜁 (𝑡 ; 𝑠) =
{
1 − 1

𝑠 𝑡
2, if 0 ≤ 𝑡 ≤ 𝑠

1
1−𝑠 (𝑡 − 1)

2, if 𝑠 < 𝑡 ≤ 1
(7)

The Γ𝑘 in Eq. (3) is the sum of all instances’ Γ𝑖 (·) within 𝑉 (𝑘) . We
use the following method to initialize 𝜂𝑘 :

𝜂𝑘 =
∥∇𝑊 ∥1
∥∇Γ′

𝑘
∥1

𝛼

𝜇𝛽
, (8)

where 𝛼 = 10−4, 𝜇 = 2, and 𝛽 = 10. Every 100 iterations, 𝜂𝑘 is mul-
tiplied by 𝜇. 𝛽 is an estimate of the number of times 𝜂𝑘 is updated,
and 𝛼 controls the ratio of the wirelength gradient to the guide
region penalty gradient upon convergence. Γ′

𝑘
=
∑
𝑖∈𝑉 (𝑘 ) Γ

′
𝑖
(𝑥𝑖 , 𝑦𝑖 )

is used to estimate the gradient of the guide region penalty during
the iteration process as follows:

Γ′𝑖 (𝑥𝑖 , 𝑦𝑖 ) = 𝑔
′(𝑥𝑖 , 𝐵𝑥𝑙𝑖 , 𝐵

𝑥ℎ
𝑖 , 𝑥𝑙, 𝑥ℎ) + 𝑔′(𝑦𝑖 , 𝐵𝑦𝑙𝑖 , 𝐵

𝑦ℎ

𝑖
, 𝑦𝑙,𝑦ℎ) (9)

where 𝑔′(𝑥, 𝐵𝑙 , 𝐵𝑟 , 𝑙, 𝑟 ) is defined as

𝑔′(𝑥, 𝐵𝑙 , 𝐵𝑟 , 𝑙, 𝑟 ) =

𝜁

(
𝑥−𝑙
𝑚−𝑙 ;

𝐵𝑙−𝑙
𝑚−𝑙

)
if 𝑥 ≤ 𝑚 = 𝐵𝑙+𝐵𝑟

2

𝜁

(
ℎ−𝑥
ℎ−𝑚 ; ℎ−𝐵ℎ

ℎ−𝑚

)
if𝑚 < 𝑥

(10)

3.2 Preconditioning for Hybrid Region
Constraints

Inspired by the Jacobi preconditioner method [32], we propose a
hybrid region-aware precondition technique to address the gradient
deviation issue. We have found that gradient deviation can occur in
any electrostatic system, thus we apply divergence-aware gradient
preconditioning to all instances. The second-order derivative of the
wirelength objective𝑊 is approximated by the number of pins of
the instance [32]; the second-order derivative of the augmented-
Lagrangian-based density penaltyD𝑘 can be approximated using
the instance area [39]; and the second-order derivative of the guide
region penalty Γ𝑘 can be directly computed. Therefore, the precon-
ditioner P ∈ R2×|𝑣 | is given as follows 5,

P0,𝑖 = max
{
1, [ 𝜕

2L

𝜕𝑥2
𝑖

]−1
}

(11)

= max
1, [

𝜕2𝑊

𝜕𝑥2
𝑖

+
𝐾1−1∑︁
𝑘=0

𝜆𝑘
𝜕2D𝑘
𝜕𝑥2
𝑖

+
𝐾1+𝐾2−1∑︁
𝑘=𝐾1

𝜂𝑘
𝜕2Γ𝑘
𝜕𝑥2
𝑖

]−1
 (12)

= max
1, [#pins(𝑣𝑖 ) + 𝜏

𝐾1−1∑︁
𝑘=0

𝜆𝑘 I𝑘 (𝑣𝑖 )area(𝑣𝑖 ) +
𝐾1+𝐾2−1∑︁
𝑘=𝐾1

𝜂𝑘
𝜕2Γ𝑘
𝜕𝑥2
𝑖

]−1


(13)

5We only discuss the gradient on 𝑥 direction and that on 𝑦 direction is the same.
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Algorithm 3 A Modified Nesterov’s Accelerated LBFGS Algorithm

1: Input: major solution 𝑢 (𝑘) , reference solution 𝑣 (𝑘) , optimiza-
tion parameter 𝑎 (𝑘) , LBFGS memory length𝑚.

2: Output: 𝑢 (𝑘+1) , 𝑣 (𝑘+1) , 𝑎 (𝑘+1) .
3: 𝑔 (𝑘) , 𝑔 (𝑘−1) ← ∇𝑓 (𝑣 (𝑘) ),∇𝑓 (𝑣 (𝑘−1) )
4: 𝑠𝑘−1 ← 𝑣 (𝑘) − 𝑣 (𝑘−1) ⊲ solution difference
5: 𝑦𝑘−1 ← 𝑔 (𝑘) − 𝑔 (𝑘−1) ⊲ gradient difference
6: 𝜌𝑘−1 ← 1

𝑦𝑇
𝑘−1𝑠𝑘−1

7: store 𝑠𝑘−1, 𝑦𝑘−1, 𝜌𝑘−1
8: if 𝑘 > 𝑚 then
9: remove 𝑠𝑘−𝑚−1, 𝑦𝑘−𝑚−1, 𝜌𝑘−𝑚−1 from memory
10: end if
11: 𝑇𝑘−𝑚 ←

𝑦𝑇
𝑘−1𝑠𝑘−1
𝑦𝑇
𝑘−1𝑦𝑘−1

𝐼 ⊲ approximation of [𝐻 (𝑘−𝑚) ]−1

12: 𝑑 (𝑘) ← LBFGS(𝑔 (𝑘) ,𝑇𝑘−𝑚) ⊲ descent direction
13: 𝛼0 ← 1 ⊲ initial step size
14: 𝛼 (𝑘+1) ← LINESEARCH (𝑣 (𝑘) , 𝑑 (𝑘) , starts from 𝛼0)
15: 𝑢 (𝑘+1) ← 𝑣 (𝑘) − 𝑎 (𝑘)𝑑 (𝑘)
16: 𝑎 (𝑘+1) ←

(
1 +
√
4𝑎 (𝑘) + 1

)
/2

17: 𝑣 (𝑘+1) ← 𝑢 (𝑘+1) + 𝑎 (𝑘+1)−1
𝑎 (𝑘+1)

(𝑢 (𝑘+1) − 𝑢 (𝑘) )
18: return 𝑢 (𝑘+1) , 𝑣 (𝑘+1) , 𝑎 (𝑘+1)
19: /* LBFGS Dual Loop Recursive Algorithm */
20: function LBFGS(𝑔 (𝑘) ,𝑇𝑘−𝑚)
21: initialize 𝑞 ← 𝑔 (𝑘)

22: for 𝑖 = 𝑘 − 1, 𝑘 − 2, . . . , 𝑘 −𝑚 do
23: 𝛼𝑖 ← 𝜌𝑖𝑠

𝑇
𝑖
𝑞

24: 𝑞 ← 𝑞 − 𝛼𝑖𝑦𝑖
25: end for
26: 𝑟 ← 𝑇𝑘−𝑚𝑞
27: for 𝑖 = 𝑘 −𝑚,𝑘 −𝑚 + 1, . . . , 𝑘 − 1 do
28: 𝛽𝑖 ← 𝜌𝑖𝑦

𝑇
𝑖
𝑟

29: 𝑟 ← 𝑟 + (𝛼𝑖 − 𝛽𝑖 )𝑠𝑖
30: end for
31: return 𝑟 ⊲ approximation of [𝐻 (𝑘) ]−1𝑔 (𝑘)
32: end function

I𝑘 (𝑣𝑖 ) is an indicator function that equals 1 if and only if 𝑣𝑖 ∈ 𝑉 (𝑘) .
Otherwise, it equals 0. The setting of 𝜏 is the same as in [19], and it
is intended to slow down the movement of large-sized instances.
Then we give the preconditioned gradient ∇L̂ = ∇L ⊙ P to the
optimizer.

3.3 Robust Optimization via a Modified
Nesterov’s Accelerated LBFGS Algorithm

Multi-electrostatics-based placementwith hybrid region constraints
needs to handle multiple optimization objectives simultaneously,
which can lead to local optimal solutions. First-order optimization
methods often require randomization techniques to escape local
optima or saddle points to achieve robustness [19], but this can
somehow degrade the quality of the algorithm’s outcomes.

In our framework, we propose a modified Nesterov’s accelerated
Limited Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm along with Wolfe line search [15], as depicted in Algorithm 3.
LBFGS is a type of quasi-Newton method, which approximates the
Hessian matrix without computing it fully. Unlike the full-memory

Table 1: Statistics of ISPD2015-FR benchmarks [5] and its
variant ISPD2015-HR.

Design #Cells #Nets
ISPD2015-FR ISPD2015-HR

#Fence #Fence #Default #Guide
mgc_des_perf_a 108K 115K 4 1 2 1
mgc_des_perf_b 113K 113K 12 4 4 4
mgc_edit_dist_a 127K 134K 1 0 0 1

mgc_matrix_mult_b 146K 152K 3 1 1 1
mgc_matrix_mult_c 146K 152K 3 1 1 1
mgc_pci_bridge32_a 30K 34K 4 1 2 1
mgc_pci_bridge32_b 29K 33K 3 1 1 1
mgc_superblue11_a 926K 936K 4 1 1 2
mgc_superblue16_a 680K 697K 2 0 2 0

BFGS method, LBFGS does not store the entire history of the Hes-
sian matrix approximations. Instead, it maintains only a limited
number (𝑚 in Algorithm 3) of the most recent𝑚 vectors and scalars
(solution difference 𝑠 ( ·) , gradient difference 𝑦 ( ·) , and 𝜌 ( ·) in Algo-
rithm 3) that represent the approximation (lines 4-10). This makes
LBFGS more memory-efficient.

LBFGS uses a two-loop recursion to update the inverse Hessian
approximation (line 20). We use the diagonal matrix 𝛾𝑘 𝐼 to approx-
imate the inverse Hessian matrix [𝐻 (𝑘−𝑚) ]−1 at the (𝑘 −𝑚)-th
iteration [31] (line 11)6, where

𝛾𝑘 =
𝑦𝑇
𝑘−1𝑠𝑘−1

𝑦𝑇
𝑘−1𝑦𝑘−1

(14)

The two loops generate an approximation to the descent direction,
i.e., [𝐻 (𝑘) ]−1𝑔 (𝑘) , at the 𝑘-th iteration (lines 21-30). For the sake of
brevity, we omit the derivation details here.

The time-space complexity of the LBFGS algorithm is 𝑂 (𝑚𝑛),
mainly determined by the memory length𝑚 and the dimensionality
of the problem 𝑛. Since𝑚 is usually much less than 𝑛 7, the LBFGS
algorithm is very efficient for large-scale optimization problems.

Applying Nesterov’s acceleration technique to the LBFGS algo-
rithm (lines 15-17) results in the modified Nesterov’s accelerated
LBFGS algorithm. This algorithm not only leverages the memory
efficiency of the LBFGS algorithm in dealing with large-scale prob-
lems but also enhances the convergence speed through Nesterov
acceleration. It can be proven that our proposed algorithm has
a quadratic convergence rate and can derive robustness through
second-order information.

3.4 Hybrid-Region-aware Legalization
Hybrid region constraints present a complex challenge in the le-
galization process. For fence region constraints, the placeable area
and the instance subset within the fence region are orthogonal.
This means that several independent legalization sub-problems can
be constructed each consisting of a placeable area, artificial place-
ment blockages, and the corresponding instance subset for each
fence region constraint. These can then be converted into standard
legalization sub-problems [8, 19, 21, 54]. However, for default re-
gions, the placeable areas of instances not subject to any region
constraint and instances assigned to any default region overlap and
influence each other. This makes it impossible to divide them into

6Although the multipliers in Eq. (3) will change during the iterative process, the
approximation remains valid due to the small magnitude of changes in the most recent
iterations.
7We empirically set𝑚 to be 3 in our placer.
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Table 2: HPWL (×105), overflow (×103), and runtime (seconds) comparison on ISPD2015-FR and ISPD2015-HR.

Design
NTUplace4dr (8 threads) DREAMPlace 3.0 (GPU) MORPH (GPU) MORPH (GPU)

(on ISPD2015-FR) (on ISPD2015-FR) (on ISPD2015-FR) (on ISPD2015-HR)
HPWL Overflow RT HPWL Overflow RT HPWL Overflow RT HPWL Overflow RT

mgc_des_perf_a 27.018 14.51 288.47 25.564 17.36 16.73 25.309 17.67 24.01 24.387 11.32 20.92
mgc_des_perf_b 22.237 3.47 309.12 20.821 1.11 39.83 19.231 0.91 41.06 18.677 0.52 31.24
mgc_edit_dist_a 53.754 157.73 265.80 47.114 108.94 12.92 46.875 109.16 15.90 47.428 88.85 4.36
mgc_matrix_mult_b 41.342 18.83 244.71 38.024 26.77 17.15 36.606 24.31 22.42 34.009 17.76 19.99
mgc_matrix_mult_c 39.128 17.54 302.19 36.789 22.72 16.82 35.027 19.35 23.13 33.939 16.88 19.86
mgc_pci_bridge32_a 6.942 5.05 60.22 5.937 3.48 18.04 5.381 2.92 20.68 5.182 2.60 16.96
mgc_pci_bridge32_b 8.444 1.20 44.72 8.765 3.82 14.24 7.756 4.21 16.14 7.007 2.15 12.43
mgc_superblue11_a 432.685 216.37 11462.82 402.197 223.14 39.23 390.249 178.28 60.68 395.421 182.44 98.08
mgc_superblue16_a 341.991 1027.67 3815.06 300.326 309.16 39.89 284.606 274.92 28.73 280.084 266.85 31.22

Ratio 1.143 1.24 15.21 1.056 1.10 0.84 1.000 1.00 1.00 0.967 0.76 0.81

independent legalization sub-problems as with fence region con-
straints. The fact that default regions can also overlap adds further
complexity to the legalization process.

To address this issue, we propose a two-stage hybrid region-
aware legalization algorithm. In the first stage, we relax the default
region constraint, treating instances constrained by the default
region constraint as if they had no region constraints. In this sce-
nario, only the fence region constraint remains a hard constraint.
We decompose the legalization problem into 1 + |𝑅𝐹 | independent
legalization sub-problems for solving, following the suggestion of
[19].

In the second stage, we extract the currently illegal instances.
These instances must have violated the default region constraints
because we relaxed the default region constraints in the first stage.
We treat the instances that are currently legally placed as placement
blockages, the instances violating the default region constraints as
legalization subjects, and the default region as a fence region. Simi-
larly to the first stage, we construct |𝑅𝐷 | legalization sub-problems
and solve them using the greedy legalizer [10] and the Abacus
legalizer [49].

4 EXPERIMENTAL RESULTS
We implement our proposed algorithm in C++ and achieve GPU
acceleration. We conduct experiments on a Linux system equipped
with two Intel(R) Xeon(R) Platinum 8358 CPUs (2.60GHz, 32 cores),
1024GB of RAM, and one NVIDIA A800 GPU. All experimental
data are run on our server. We use Cadence Innovus 2022 [1] to
measure the HPWL 8 and the global routing overflow of the place-
ment results. All the ratios in the experimental tables are geometric
means.

We conduct experiments on the ISPD 2015 benchmark suite [5]
(denoted as ISPD2015-FR) to evaluate our placer’s performance
under fence region constraints only. To test the performance of our
proposed algorithm under hybrid region constraints, we modify
the ISPD 2015 benchmarks by converting some of the fence regions
into default and guide regions, denoted as ISPD2015-HR. The
statistics for the two benchmark suites are shown in Table 1. We
compare our results with those of state-of-the-art region-aware plac-
ers, NTUplace4dr [21] and DREAMPlace 3.0 [19], using the
same target utilization limit. It should be noted that both DREAM-
Place 3.0 and our placer focus on wirelength optimization with-
out explicitly enhancing routability, which justifies a comparison
8The HPWL values reported in Innovus differ from those in [19] reported by
NCTUgr [14], but they still reflect the relative magnitude of HPWL.

of HPWL between the two. However, NTUplace4dr considers
detailed routability and design rule checks, which may make a di-
rect HPWL comparison less informative. Therefore, we also present
the global routing overflow reported by Innovus as an indicator of
routability. As our placer does not explicitly optimize routability,
we mainly compare the wirelength metric.

4.1 HPWL and Overflow Evaluation
The second to fourth columns of Table 2 show the comparison
results with NTUplace4dr [21] and DREAMPlace 3.0 [19] on
ISPD2015-FR with fence region constraints only. We can ob-
serve that our placer consistently achieves better HPWL than NTU-
place4dr and DREAMPlace 3.0 across all designs. Compared
to NTUplace4dr, our placer has improved HPWL by 14.3% and
overflow by 24% with 15.21× speedup. Our placer can achieve an
average improvement of 5.6% HPWL and a 10% reduction in over-
flow compared to DREAMPlace 3.0. Additionally, our algorithm
is slightly 16% slower than DREAMPlace 3.0, due to the larger
computational workloads required by the quasi-Newton’s method.
This indicates that our proposed algorithm can significantly en-
hance solution quality without a substantial time overhead.

The last column of Table 2 shows the HPWL, overflow, and
runtime of our placer on ISPD2015-HR with hybrid region con-
straints. It should be noted that there is no existing work that
considers both default regions and guide regions; NTUplace4dr
and DREAMPlace 3.0 treat all regions as fence regions, and the
comparison results here serve as a reference. Experimental results
show that our proposed algorithm can stably converge to better re-
sults under hybrid region constraints compared to NTUplace4dr
and DREAMPlace 3.0. Compared to NTUplace4dr, our placer
achieves an 18.2% reduction in HPWL and a 64% decrease in over-
flow with 18.7× speedup. Our placer also delivers a 9.2% enhance-
ment in HPWL and a 45% reduction in overflow, with a runtime
similar to that of DREAMPlace 3.0.

4.2 Robustness Evaluation
We evaluate the HPWL, overflow, number of iterations, and run-
time on the ISPD2015-HR and ISPD2015-FR benchmarks. We
validate the effectiveness of our proposed techniques by replacing
specific optimization techniques as follows:

• The preconditioning algorithm described in Section 3.2 is re-
placedwith the one from [19], denoted asMORPH-precond;

7
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Table 3: HPWL (×105), overflow (×103), number of iterations, and runtime (seconds) comparison on ISPD2015-HR.

Design
MORPH-precond-GD (GPU) MORPH-precond (GPU) MORPH-GD (GPU) MORPH (GPU)

HPWL Overflow #Iters RT HPWL Overflow #Iters RT HPWL Overflow #Iters RT HPWL Overflow #Iters RT
mgc_des_perf_a-HR 24.681 12.18 1500† 18.13 24.097 11.26 1500† 33.25 * * 1500† 17.71 24.387 11.32 1009 20.92
mgc_des_perf_b-HR * * 1500† 26.19 18.393 0.47 940 34.00 18.137 0.44 941 17.22 18.677 0.52 944 31.24
mgc_edit_dist_a-HR 47.336 87.25 602 2.44 47.428 88.85 596 4.36 47.336 87.25 602 2.41 47.428 88.85 596 4.36
mgc_matrix_mult_b-HR 35.872 24.97 1500† 15.79 34.289 18.66 1088 20.23 41.278 45.02 1500† 16.07 34.009 17.76 1082 19.99
mgc_matrix_mult_c-HR * * 1500† 16.72 33.967 16.01 1103 22.80 34.131 17.26 1500† 15.44 33.939 16.88 1093 19.86
mgc_pci_bridge32_a-HR 5.501 2.64 1500† 16.53 * * 1500† 35.63 5.087 2.28 1074 11.75 5.182 2.60 965 16.96
mgc_pci_bridge32_b-HR 7.105 2.22 1500† 12.51 7.032 2.31 1500† 22.58 7.041 2.24 848 8.61 7.007 2.15 847 12.43
mgc_superblue11_a-HR 482.200 1074.49 1500† 82.18 393.247 185.48 1140 97.58 * * 1500† 78.57 395.421 182.44 1136 98.08
mgc_superblue16_a-HR * * 1500† 23.93 280.165 269.02 993 27.56 * * 1500† 25.66 280.084 266.85 1018 31.22

Ratio 1.058 1.45 1.43 0.82 0.998 1.00 1.17 1.24 1.026 1.12 1.22 0.72 1.000 1.00 1.00 1.00
† Stopped after reaching their maximum iteration. The same for Table 4.
∗ Diverged. The same for Table 4.

Table 4: HPWL (×105), overflow (×103), number of iterations, and runtime (seconds) comparison on ISPD2015-FR.

Deisgn
MORPH-precond-GD (GPU) MORPH-precond (GPU) MORPH-GD (GPU) MORPH (GPU)

HPWL Overflow #Iters RT HPWL Overflow #Iters RT HPWL Overflow #Iters RT HPWL Overflow #Iters RT
mgc_des_perf_a 28.199 31.36 1500† 28.91 25.353 17.15 969 22.13 40.913 73.83 1500† 28.91 25.309 17.67 988 24.01
mgc_des_perf_b * * 1500† 38.01 19.190 1.12 990 38.51 * * 1500† 38.01 19.231 0.91 1000 41.06
mgc_edit_dist_a 48.673 110.29 1084 9.87 46.774 107.33 1500† 20.33 46.884 111.14 1084 9.87 46.875 109.16 1034 15.90

mgc_matrix_mult_b 54.654 113.24 1500† 36.06 37.421 29.14 1500† 38.05 66.285 218.31 1500† 36.06 36.606 24.31 1067 22.42
mgc_matrix_mult_c * * 1500† 34.17 40.691 39.34 1500† 39.71 43.854 52.16 1500† 34.17 35.027 19.35 1086 23.13
mgc_pci_bridge32_a 10.532 9.57 1500† 18.94 5.565 3.48 1500† 35.40 5.568 3.10 1500† 18.94 5.381 2.92 1006 20.68
mgc_pci_bridge32_b 9.087 4.15 860 14.87 8.323 4.39 824 13.49 7.683 3.84 860 14.87 7.756 4.21 830 16.14
mgc_superblue11_a * * 1500† 45.64 394.611 190.97 1132 59.71 528.591 1493.16 1500† 45.64 390.249 178.28 1140 60.68
mgc_superblue16_a 392.796 1738.36 1500† 22.50 284.325 281.72 995 27.49 * * 1500† 22.50 284.606 274.92 993 28.73

Ratio 1.327 2.35 1.34 0.98 1.032 1.16 1.17 1.18 1.262 2.61 1.34 0.98 1.000 1.00 1.00 1.00

• The optimization algorithm in Section 3.3 is replacedwith the
first-order gradient method used in [30], denoted as MORPH-
GD;
• These two techniques are combined to form a baseline, de-
noted as MORPH-precond-GD.

Table 3 and Table 4 respectively present comparative experimen-
tal results on ISPD2015-HR and ISPD2015-FR. Our proposed
Nesterov’s accelerated LBFGS optimization algorithm is found to
bring the greatest improvement to wirelength when comparing
our placer with MORPH-GD, and MORPH-precond with MORPH-
precond-GD on the two tables.MORPH-precond-GD andMORPH-
GD, which employ the first-order gradient method, diverge on three
designs on the ISPD2015-HR benchmark. Compared to MORPH-
precond-GD, the number of diverged designs forMORPH-precond
is reduced by two, and our placer experiences no divergence. Similar
observations are made on ISPD2015-FR. This suggests that the
gradient method does not effectively handle complex hybrid region
constraints. Instead, the LBFGS algorithm’s limited-memory ap-
proximation to the Hessian matrix makes it an efficient and robust
choice for solving large-scale optimization problems, balancing the
quality of solutions with the computational resources required.

Comparative experiments also demonstrate the effectiveness
of our proposed preconditioning technique. On the ISPD2015-
HR benchmark, MORPH-precond reaches the maximum iteration
limit on three designs. Our proposed preconditioning technique
enables convergence for one design that MORPH-precond di-
verges on. Moreover, on designs where MORPH-precond does
not diverge, our placer achieves similar results in terms of HPWL
and overflow, while also reducing the number of iterations by 17%
and the runtime by 24%. On ISPD2015-FR, our proposed pre-
conditioning technique optimizes wirelength, overflow, number of
iterations, and runtime by 3.2%, 16%, 17%, and 18%, respectively,
compared to MORPH-precond. This indicates that our proposed

preconditioner stabilizes global placement iterations and enables
better solution quality upon convergence.

5 CONCLUSION
In this work, we propose MORPH, an innovative ASIC placer specif-
ically designed to manage hybrid region constraints with enhanced
robustness and efficiency. We propose a shared electrostatics model
and a binary-lifting-based region pruning algorithm that integrate
these constraints into a unified multi-electrostatic formulation.
Additionally, the application of a wirelength-prioritized penalty
method for guide regions ensures that wirelength constraints are
not unduly compromised by restrictive guide regions. Our Nes-
terov’s accelerated LBFGS algorithm provides a robust optimization
strategy, effectively navigating the complex landscape of multiple
optimization objectives. This optimization strategy, when combined
with our preconditioning techniques, not only improves solution
quality but also enhances the stability of the placement process.
The incorporation of second-order information into our nonlinear
placement backbone, along with a hybrid region-aware legalization
algorithm, allows for better management of convergence issues. Ex-
perimental results demonstrate that on the ISPD 2015 benchmarks,
we achieve a 5.6-14.3% HPWL improvement and a 10-24% over-
flow reduction compared to previous state-of-the-art region-aware
placers. Further ablation experiments indicate that our proposed op-
timization techniques can achieve over 30% improvement in HPWL
and more than 2× reduction in overflow compared to the optimiza-
tion techniques in previous works with more stable convergence.
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