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Abstract—Placement plays a critical role in VLSI physical
design, particularly in optimizing routability. With continuous
advancements in semiconductor manufacturing technology, in-
creased integration, and growing design complexity, managing
routing congestion during placement has become increasingly
challenging. Despite the widespread techniques to improve
routability, these methods often lack theoretical guidance or
sever the intrinsic connection between placement and routing
optimization. In this paper, we propose RUPlace, an ADMM-
based placer for unified optimization of placement and routing.
Leveraging Wasserstein distance and bilevel optimization, our ap-
proach provides a unified framework for congestion optimization
by alternately running global routing and incremental placement.
Furthermore, we introduce a simple yet effective model for cell
inflation-based global placement, where convex programming is
employed to determine the optimal inflation ratio. Experimental
results on a diverse set of open-source industrial benchmarks
from CircuitNet and Chipyard demonstrate that our method
achieves superior congestion reduction compared to widely used
tools such as OpenROAD, Xplace 2.0, and DREAMPlace 4.1,
while maintaining competitive wirelength and runtime.

I. INTRODUCTION

Routability optimization in Placement plays a significant
role in determining the overall performance and manufac-
turability of a chip. As semiconductor technology advances,
increased complexity and high integration make congestion
management more challenging. Routability placement usually
consists of two components: routing congestion evaluation and
congestion optimization.

Routing congestion evaluation is essential in routability-
driven placement. Global routing [1], [2], [3], assigns tem-
porary routing paths to estimate congestion, offering high
accuracy. Statistical methods [4] predict congestion using
probabilistic models, trading some accuracy for faster com-
putation. Machine learning [5] approaches use data-driven
models, though they may struggle with generalization.

For congestion optimization, there are three common ap-
proaches to addressing routing congestion: node inflation [1],
[3], [6], [7], [8] based on tile congestion, where cell sizes
are increased to spread them out; force-based placement [1],
[8], ntuplace4h, which shifts cells to less congested areas; and
machine learning-based methods [9], [10], which use data-
driven models to predict and mitigate congestion.

However, node inflation methods often rely on heuris-
tic approaches to adjust nodes based on congestion maps
generated by global routing [1], [3] or statistical models
[6], [7], [8]. These approaches depend heavily on human
experience, lack theoretical modeling, and fail to capture
the underlying connections between placement and routing
outcomes. Force-based methods attempt to integrate routing

considerations into placement modeling, such as introducing
density constraints for route utilization [11] or incorporating
congestion-weighted wirelength models [8]. However, to make
such models tractable for optimization, they typically rely
on simple statistical models to estimate routing outcomes,
which limits their ability to embed precise routing predictions
into placement. Machine learning-based methods [9], [10], on
the other hand, aim to predict accurate routing results using
neural networks and integrate them into placement optimiza-
tion. However, these methods treat routing as a black box,
disregarding the structural properties of the routing problem
itself and lacking theoretical guidance.

To overcome these limitations, in this work, we propose
RUPlace, a novel unified framework that seamlessly inte-
grates mathematical models of both placement and routing.
We formulate a unified placement and routing optimiza-
tion problem that simultaneously minimizes congestion while
maintaining placement quality. Rather than treating routing as
a black box, this unified formulation explicitly models routing
constraints and objectives alongside placement considerations.
We enhance an alternating direction method of multipliers
(ADMM) framework with Wasserstein distance metrics and
bilevel optimization techniques to solve the problem. We
further develop a principled approach to node inflation by
reformulating traditional heuristic methods into a rigorous con-
vex programming model, providing a mathematically sound
and structured mechanism for congestion reduction. The key
contributions of this work are summarized as follows:

• We propose a unified placement and routing formulation
for routability optimization, which enables fine-grained
congestion minimization.

• We propose an ADMM-based framework to solve the
unified formulation leveraging Wasserstein distance and
bilevel programming.

• We introduce a convex programming-based node infla-
tion method, incorporating modularity-based clustering
to automatically determine the relationship between the
inflation ratio and tile congestion.

Experimental results on open-source industrial benchmarks
demonstrate that our proposed algorithm can significantly
reduce congestion in terms of both occurrence frequency and
severity levels. Compared to the widely-used open-source
EDA tool OpenROAD [12], our algorithm achieves 4.74×
(3.47×) smaller horizontal (vertical) congestion with 7% better
wirelength and a 3.67× speedup in runtime, demonstrating
that our proposed algorithm significantly improves routability
while achieving better wirelength with reduced runtime.



The rest of the paper is organized as follows. Sec. II
introduces the basic background and problem formulation;
Sec. VI explains the details of the proposed algorithm; Sec. IV
validates the algorithm with experimental results; Sec. V
concludes the paper.

II. PRELIMINARIES

In this section, we provide an overview of key concepts
which form the basis of our approach.

A. Analytical Placement
Analytical placement typically involves three stages: global

placement (GP), legalization (LG), and detailed placement
(DP). Global placement spreads instances across the layout, le-
galization resolves overlaps, and detailed placement refines the
solution. Given the importance of GP to the overall placement
quality, we focus on the GP stage. Global placement minimizes
wirelength under density constraints, as in ePlace [13] and
NTUPlace [11]:

BP : minx WL(x), (1a)
s.t. di(x) ≤ dt,∀i ∈ B, (1b)

where x is the instance coordinate, WL(·) is a wirelength
cost function, and d(·) is the density function, B is the set of
bins, and dt is the whitespace in each bin.

B. Wasserstein Distance
The Wasserstein distance is used to measure the distance

between two probability distributions. It is particularly useful
when distributions have minimal or no overlap. Let a and b
be two discrete distributions defined on a 2-dimensional grid
M ×N . The Wasserstein distance of order p between a and
b is defined as:

Wp(a, b) =

 inf
π∈Π(a,b)

∑
(xa,xb)∈M×N

∥xa − xb∥p dπ(xa, xb)


1/p

,

(2)
where Π(a, b) represents the set of all possible transport plans
π that match the distributions a and b, ∥xa − xb∥p is the cost
of transporting mass from point xa to point xb raised to the
power of p. In other words, the Wasserstein distance repre-
sents the minimum cost required to transform one probability
distribution into another through mass transportation.

C. Hypergraph Modularity
Hypergraph modularity quantifies the quality of partition-

ing or clustering in hypergraphs by evaluating how well
the clusters are separated while maintaining strong internal
connections [14]. Consider a hypergraph G = (V,E), where
V represents the set of nodes and E denotes the set of
hyperedges. For a given clustering result A, the hypergraph
modularity Q is defined as:

Q =
1

|E|

(
EC −

D∑
d=2

Ed

∑
Ai∈A

|Vol(Ai)|
|Vol(V )|

d
)
, (3)

where EC represents the number of nets contained within a
single cluster, Ed denotes the set of hyperedges with degree d,
D is the maximum net degree in G, and |Vol(V )| represents
the sum of degrees of all nodes in set V .

III. ALGORITHM

In this section, we will further detail our algorithm.

Initial Global Placement

Gcell-based Local Cell Area Adjustment (Sec. III E)

Clustering-based Convex Global Inflation (Sec. III D)

ADMM-based Routability Refinement (Sec. III C)

Netlist

Output

Legalization and Detailed Placement

Algo. 3

Fig. 1: The overall flow of our method.

A. Overview
The overall flow is shown in Fig. 1. The proposed algorithm

initiates with a base global placement engine. When the
density overflow is lower than a predefined threshold during
GP, we perform cell inflation based on a convex optimiza-
tion formulation for coarse-grained routability enhancement
(see Sec. III-D). As the cells are inflated, the density overflow
will increase again, we invoke the GP engine to perform
incremental placement to spread cells. Once the density con-
straints are satisfied, we perform ADMM-based routability
refinement for fine-grained improvement via a unified place-
ment and routing formulation. The final stage involves legal-
ization and detailed placement, which are performed using
DREAMPlace [15].

B. Unified Placement and Routing Formulation
Given the placement solution x of Eq. (1), the routing

problem can be formulated as an Integer Linear Programming
(ILP) problem, denoted as problem R [16]:

R : minf

∑
e∈E

∑
n∈N

cefn,e, (4a)

s.t.
∑
n

fn,e ≤ cape,∀e ∈ E, (4b)

Af = h(x) (4c)
fn,e ∈ {0, 1},∀n ∈ N, e ∈ E, (4d)

In this formulation, E represents the routing grid edges, e
is a specific routing edge, and N is the set of all nets. The
variable cape represents the routing capacity of edge e, and
the binary variable fn,e indicates whether net n routes through
edge e (fn,e = 1) or not (fn,e = 0). The constraint Af = h(x)
represents the flow conservation constraints for the nets, where
A is a coefficient matrix for the flow conservation constraints
and h(x) is defined as:

h(x)n,u =

{
+1, if the source pin of net n in gcell u,
−1, if the sink pin of net n in gcell u,
0, otherwise,

(5)
As the solution f is likely to be infeasible due to congestion,

we define a congestion function as the total violation of
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Fig. 2: Comparison of Wasserstein distance and KL divergen-
cel. KL Divergence remains constant when two distributions
have no overlap.

capacity constraints in Eq. (4b):

CONG(f) = ∥max(
∑
n

fn,e − cape, 0)∥. (6)

Thus a final form of the Eq. (4) should be written as follows,

R : minf R(f) =
∑
e∈E

ce
∑
n∈N

fn,e + µCONG(f), (7a)

s.t. Af = h(x), (7b)
fn,e ∈ {0, 1},∀n ∈ N, e ∈ E, (7c)

where µ is a large weighting factor.
In routability-driven placement, we aim to optimize the

post-routing result in the placement stage. Here we solve
placement and routing concurrently so the objective function
should follow Eq. (7a). Now we can define the concurrent
placement and routing problem CP:

minx,fR(f). (8)
We expand problem CP considering the constraints in

problem BP and problem R to obtain problem UCP:
UCP : minx,f R(f), (9a)

s.t. di(x) ≤ dt,∀i ∈ B, (9b)
Af = h(x), (9c)
fn,e ∈ {0, 1},∀n ∈ N, e ∈ E, (9d)

Eq. (9c) is the only constraint that couples x and f . This
problem is the unified format of routability optimization for
placement and routing.

C. ADMM-based Routability Refinement

Note that given x, the UCP is reduced to R. Writing the
optimal objective function value of R as q(x), i.e., q(x) =
R(f∗(x);x), then adding q(x) to the objective of UCP will
not change the optimal solution of UCP . Let x = t, D =
{x|di(x) ≤ dt}, S = {(f, t)|Af = h(t)} and ID, IS be the
indicator function of D,S, respectively, meaning ID(x) = 1
if and only if x ∈ D, and IS(x) = 1 if and only if x ∈ S.
Then we can rewrite UCP to the following form,

minx,f q(x) + ID(x) +R(f) + IS(f, t), (10a)
s.t. x = t, (10b)

fn,e ∈ {0, 1},∀n ∈ N, e ∈ E, (10c)
The augmented Lagrangian function is,
L(x, t, f, λ, σ) = q(x) + ID(x) +R(f) + IS(f, t) (11a)

+ λ†(x− t) +
σ

2
(x− t)2. (11b)

Fig. 3: Examples of how unified placement and routing resolve
congestion under different scenarios. From left to right, the
cases shown are the L shape net, Z shape net, 3-bend net, and
long-wire congestion. Solid lines denote global routing paths.
Arrows denote the intended directions of movement. The red
area represents the congested region.

We can leverage the alternating direction method of multipliers
(ADMM) [17] to solve the problem,

tk+1, fk+1 = argminf,t L(xk, t, f, λk, σ) (12a)

xk+1 = argminx L(x, tk+1, fk+1, λk, σ) (12b)

λk+1 = λk + σ(xk+1 − tk+1) (12c)
Approximating q(x) by WL(x) (note that WL(x) ≤ q(x)),
we can expand Eq. (12b) to an analytical placement problem
with new penalty terms,

minx WL(x) + λk†(x− tk+1) +
σ

2
(x− tk+1)2,

s.t. di(x) ≤ dt,∀i ∈ B. (13)
For problem Eq. (12a) its exact formulation is,

tk+1, fk+1 = argminAf=h(t)R(f) + λk†(xk − t) +
σ

2
(xk − t)2

(14)
which yields a problem in finding a new placement solution
near xk to minimize the routing objective. Given t, define the
routing problem as R(t) and its solution as Ψ(t) = {f |f =
argminAf=h(t)R(f)}. We can reformulate the Eq. (14) as
following,

tk+1 = argmint R(t) + λk†(xk − t) +
σ

2
(xk − t)2 (15)

which is a bilevel optimization problem [18]. Thus it can be
decomposed into two subproblems,
fk+1 = Ψ(tk), (16a)

tk+1 = argmint R̂(fk+1, t) + λk†(xk − t) +
σ

2
(xk − t)2

(16b)

where R̂(fk+1, t) serves as an linear approximation of R(t)
in the Neighborhood of fk+1. In the approximation function,
we assume h(t) is close to h(tk) and we only move t along
the routed wires fk+1 so that the routed wires Ψ(t) keeps
the same topological structure as fk+1. With this assumption,
R̂(fk+1, t) is a linear function of t because if we move pins
along the routed wire, the wirelength and congestion would
be linearly reduced.

To ensure that h(t) remains close to h(tk), a regularization
penalty is required. It is important to note that a simple
quadratic term, such as (t − tk)2, cannot be directly applied.
This is because when certain cells are near the gridlines, even
a small variation in t can lead to significant changes in h(t).
Since each item in h(t) is in {−1, 0, 1}, we can view h(t)
as a distribution if we depart h(t) to the positive part and
negative part h+(t), h−(t). However, certain distance metrics



Algorithm 1 ADMM-based Routability Refinement

1: Input: Initial position x0

2: Output: Optimized position x
3: λ← 0
4: while Not Converge do
5: Set tk ← xk

6: Solve global routing for fk+1 ▷ Eq. (16a)
7: Compute tk+1 via gradient descent ▷ Eq. (17)
8: Solve analytical placement for xk+1 ▷ Eq. (13)
9: Update λk+1 ▷ Eq. (12c)

10: k ← k + 1
return Final xk

between distributions, such as KL divergence, are not suitable
in this context. As illustrated in Fig. 2, when two distributions
have no overlap, the penalty remains unchanged, resulting
in a meaningless guiding measure. Hence, we introduce a
Wasserstein distance regularization penalty to penalize the
distance between h(t) and h(tk), that is,

tk+1 = argmint R̂(fk+1, t) + ηW2(h
+(t), h+(tk))2

+ ηW2(h
−(t), h−(tk))2 + λk†(xk − t) +

σ

2
(xk − t)2 (17)

We know for each net n, the positive part hn(x) (the supply
of n), written as h+

n (x), is a discrete Dirac distribution δ(x−
xn, y − yn) where the source pin is located at grid (xn, yn).
So Wasserstein distance can be easily calculated,

W2(h
+
n (t), h

+
n (t

k))2 = (xn − xk
n)

2 + (yn − ykn)
2 (18)

which is a quadratic penalty term aware of the discrete
structure of h(·). Thus Eq. (17) is an unconstrained quadratic
programming. Instead of solving it directly, we perform a
single optimization step using gradient descent. The overall
flow is written in Algo. 1. The entire optimization process
is intuitively illustrated in Fig. 3. It can be understood as
moving cells along the routed wires, enabling the cells and
nets to shift away from congested regions. This also enables
the unified framework to mitigate global congestion caused by
long wires.

Although a unified placement and routing framework can
optimize routability in various scenarios, it faces challenges
when an entire net resides within a congested region, as the
router cannot bypass the congested area. Consequently, this
method struggles to move cells out of the congested region.
To address such situations, particularly those involving large
congested areas, we further propose a cell inflation technique
to mitigate local congestion.

D. Clustering-based Convex Global Inflation

In this section, we globally detect the clusters with high con-
nectivity which is likely to cause highly congested area, then
uniformly inflate the nodes within same module to achieve
global inflation. It is important to note that this clustering
result is only used for cell inflation purposes and is not utilized
during the global placement process. After detecting clusters,
we assign an inflation ratio to each cluster. Following the
inflation, we apply incremental placement to spread the cells.
The overall flow of the Clustering-Based Convex cell inflation
process is outlined in Algo. 3 line 3∼8.

TOP
A B

DC

U2U1 U4U3

Level 1

Level 2

Level 0

Level 3

Fig. 4: Example of virtual clustering based on hypergraph
modularity and logical hierarchy. We merge cells with high
connectivity (red dashed lines) incrementally, level by level.

Algorithm 2 Modularity-Based Hierarchical Clustering
1: Input: Cell Position x, Hierarchy tree T , netlist H
2: Output: Clustering results
3: Construct initial clustering result P using the leaf nodes of T .
4: Compute initial modularity Q(P,H)
5: for each level l in T do
6: while nodes can be merged do
7: for each leaf node v in T do
8: v belongs to module m in level l
9: for each leaf nodeu in the module m do

10: Compute ∆Q for merging v and u in P
11: if ∆Q > 0 and dist(v, u) < 4 row height then
12: Merge node v and u in P and T
13: Update modularity Q(P,H)

return P

1) Vritual Clustering Based on Hypergraph Modularity and
Logical Hierarchy

We first construct a logical hierarchy tree like that in [19],
shown in Fig. 4. Note [19] does not consider routability
optimization and we only follow the method of construct-
ing the logical hierarchy tree. To detect modules with high
connectivity, we then proceed to merge leaf nodes level by
level, guided by the hypergraph modularity. At each level, leaf
nodes within the same module are merged if the modularity
gain is positive and the distance betwee them lower than 4
row height. Every merge operation is executed to ensure an
increase in the overall modularity. The complete algorithm is
presented in Algo. 2.

2) Convex Global Inflation
Let x be the coordinates, let dmde(x) represent the routing

demand distribution contributed by a net e, and let Dg(x)
denote the routing demand distribution contributed by a cluster
g. To ensure that the overall routing demand distribution
remains unchanged, we assume the relationship between the
two distributions is governed by the equation,

Dg(x) =
∑
e∈E

p(e, g)

|e|
dmde(x), (19)

where p(e, g) denotes the number of pins shared by net e and
cluster g, and |e| is the total number of pins in net e.

Introducing an inflation ratio lg to cluster g leads to a
modified routing demand distribution D′

g(x). Assuming uni-
form inflation across the cluster, the relationship between the
original distribution Dg(x) and the new distribution D′

g(x) is
given by

D′
g(x) =

1

lg
Dg(

x

lg
). (20)



Algorithm 3 Global Inflation and Local Area Adjustment
1: Input: Cell Positions, Congestion Map
2: Output: Cell Inflation Ratios
3: // Global inflation once
4: Modularity-based clustering ▷ Algo. 2
5: Compute congestion distribution for each cluster ▷ Eq. (19)
6: Compute intra-cluster wirelength
7: Solve Eq. (22) using the augmented Lagrangian method
8: Inflate cells and perform incremental placement
9: // Local area adjustment

10: while #inflate < 6 and congestion larger than 1% do
11: Adjust cell area ▷ Eq. (23b)
12: Incremental placement

Here, the value of D′
g(x) decreases, but the affected area

expands. Assume that the routing demand contribution of
gcell b after inflation originates from the same gcell b′ before
inflation. Then the new total routing demand Demand′(b) for
a gcell b after inflation as follows:

Demand′(b) =
∑
g∈G

D′
g(b) ∼

∑
g∈G

1

lg
Dg(b

′), (21)

To ensure that the routing demand does not exceed the
available routing capacity, we can formulate the cell inflation
problem as a convex optimization problem:

F : min
v

∑
g

WLg

vg
, (22a)

s.t.
∑
g

Dg(b) · vg ≤ cap(b), (22b)

where vg = 1
lg

, WLg is the intra-cluster wirelength. The
objective is to minimize the total wirelength and the constraints
are designed to manage congestion by ensuring that the
demand in each gcell does not exceed its capacity. Each
subterm of the objective function WLg/vg is convex, and the
constraints are linear, making this problem convex.

To solve this convex optimization problem, we apply the
augmented Lagrangian algorithm, a well-established numerical
method for handling constraints in optimization tasks.

E. Gcell-based Local Cell Area Adjustment

Convex global inflation assumes uniform scaling across
clusters, which may mismatch routing demand and capacity.
Some regions face residual congestion requiring inflation,
while others have excess capacity needing shrinking. To ad-
dress this, node areas are adjusted using the local demand
ldmd(b) and global demand gdmd(b) for each gcell b. Here,
gdmd(b) represents the demand from nets crossing gcell b,
while ldmd(b) accounts for intra-gcell nets. If ldmd(b) +
gdmd(b) > cap(b), additional inflation is applied. Conversely,
if ldmd(b) + gdmd(b) < cap(b), the area is reduced.

For cells in gcell b, let lc(b) denote the inflation ratio
produced by convex global inflation or the previous iteration
of cell area adjustment, and let l̂c(b) denote the cell inflation
ratio for the current iteration of node area adjustment. The
new inflation ratio can be computed as follows:

TABLE I: Benchmark Statistics [20], [21].

Design #Macros #Cell / K #Nets / K #Pins / K Utilization
OPENC910 33 735 751 3029 0.50
NVDLA_S 45 113 123 442 0.40
NVDLA_L 376 1021 1098 3900 0.43
VORTEX_S 108 269 289 1051 0.42
VORTEX_L 80 1539 1695 6036 0.43
GEMMINI 737 926 981 3540 0.63
LARGEBOOM 636 737 756 2918 0.56

l′c(b) = max(1,
ldmd(b)

cap(b)− gdmd(b)
), (23a)

l̂c(b) = (1− γ)lc(b) + γmin(max inflate, l′c(b)), (23b)
Where γ is a fixed weighting factor controlling the balance

between the old and newly computed inflation ratio l′c(b). In
experiments we set γ = 0.2. We iteratively perform node
area adjustments until the congestion lower than 1% or reach
max iteration. The overall flow of the gcell-Based cell area
adjustment process is outlined in Algo. 3 line 10∼12.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings
We implement our proposed algorithms based on

DREAMPlace [15] and use HeLEM-GR [23] as the global
router for a full GPU acceleration flow. Our experiments were
conducted on a 64-bit Linux workstation equipped with an
Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz (32 cores)
and an NVIDIA A800 GPU with 80GB memory.

We compared our proposed algorithm with three state-
of-the-art placers: OpenROAD (CPU) 1 [12], Xplace 2.0
(GPU) 2 [3], and DREAMPlace 4.1 (GPU) 3 [22]. Ta-
ble I presents a comprehensive overview of our diverse
benchmark suite, comprising open-source industrial designs
from CircuitNet [20] and Chipyard [21]. All designs
were synthesized and implemented using an advanced com-
mercial 14nm Process Design Kit (PDK). The benchmark
suite features two notable designs: NVDLA, a sophisticated
deep learning accelerator, and VORTEX, an advanced RISC-
V based GPGPU architecture. Each design comes in two
variants - large versions (NVDLA_L, VORTEX_L) optimized
for maximum performance, and small versions (NVDLA_S,
VORTEX_S) tailored for energy efficiency in resource-limited
environments. The inclusion of these diverse implementations
underscores the comprehensive nature and versatility of our
benchmark suite.

We demonstrate the effectiveness and efficiency of our
proposed algorithm by evaluating three critical aspects: hori-
zontal/vertical congestion, routed wirelength, and runtime. The
metrics are reported using the industry-standard commercial
tool Innovus [24] and its earlyGlobalRoute command
to obtain accurate measurements.
B. Results and Analysis

Table II presents the comparison results of our proposed
algorithm with three state-of-the-art placers. We can see that
our proposed algorithm consistently and significantly achieves
better congestion metrics than other placers, i.e., reducing

1With routability-driven placement enabled.
2With cell inflation enabled.
3With RUDY-based routability optimization enabled.



TABLE II: Routed Wirelenth (rWL/um), Horizontal Congestion (CH /%), Vertical Congestion (CV /%), and Runtime (RT/min)
comparison with state-of-the-art placers.

Design OpenROAD [12] Xplace 2.0 [3] DREAMPlace 4.1 [22] RUPlace
rWL CH CV RT rWL CH CV RT rWL CH CV RT rWL CH CV RT

OPENC910 1.34e7 7.17 4.18 20.4 1.47e7 7.27 2.68 2.8 1.22e7 10.56 5.47 1.6 1.56e7 2.02 0.72 4.3
NVDLA_S 4.98e6 0.90 0.26 4.1 4.67e6 1.01 0.37 0.7 4.43e6 1.54 0.49 0.8 4.95e6 0.09 0.09 1.8
NVDLA_L 3.92e7 3.67 0.55 28.0 3.80e7 3.78 0.69 4.3 3.58e7 4.78 1.36 3.3 4.43e7 1.36 0.23 7.1
VORTEX_S 2.63e6 2.42 0.94 5.8 1.64e6 0.85 0.34 0.5 1.59e6 1.22 0.59 0.3 1.71e6 0.28 0.16 0.8
VORTEX_L 1.17e7 0.17 0.08 12.6 1.12e7 0.24 0.14 1.6 1.10e7 0.60 0.29 2.2 1.09e7 0.13 0.10 4.9
GEMMINI 1.68e7 2.56 1.78 10.7 9.38e6 0.10 0.21 1.1 9.04e6 0.08 0.10 2.0 1.04e7 0.01 0.01 4.6
LARGEBOOM 1.20e7 0.06 0.02 10.5 1.00e7 0.97 0.51 1.4 9.78e6 1.55 0.93 1.7 1.17e7 0.31 0.11 4.0
Geo. Mean 1.07 4.74 3.47 3.67 0.93 4.11 3.88 0.45 0.88 5.91 5.80 0.43 1.00 1.00 1.00 1.00

OpenROAD Xplace 2.0

DREAMPlace 4.1 RUPlace

7

-3

0

Fig. 5: Comparison of congestion distribution and severity
across different placers on VORTEX_S. The colors indicate
routing overflow, defined as the difference between routing
demand and routing capacity. White regions represent severe
congestion (demand exceeds capacity by more than 7), while
blue regions indicate low congestion levels.

horizontal (vertical) congestion by 4.74× (3.47×) compared to
OpenROAD, by 4.11× (3.88×) compared to Xplace 2.0,
and by 5.91× (5.80×) compared to DREAMPlace 4.1. This
demonstrates that our proposed algorithm can significantly
reduce congestion across all test cases. Furthermore, compared
to OpenROAD, our algorithm achieves 7% better routed wire-
length, 4.74× smaller horizontal congestion, 3.47× smaller
vertical congestion, and a 3.67× speedup in runtime, demon-
strating that our proposed algorithm significantly improves
routability while achieving better wirelength with reduced
runtime.

Although our proposed algorithm achieves higher routed
wirelength compared to Xplace 2.0 and DREAMPlace
4.1, the evaluation of placement quality requires consider-
ing both congestion and wirelength metrics. For cases with
low congestion (< 1%), further reduction does not provide
significant improvement. However, for high congestion cases
(> 1%), lower congestion values are highly desirable. Our
algorithm successfully maintains congestion values below 1%
in almost all cases, except for hard cases like OPENC910
and NVDLA_L. Take the highly congeted case OPENC910 as
an example. Our algorithm performs significantly better than
the results of OpenROAD (7.17% and 4.18%), Xplace 2.0

(7.27% and 2.68%), and DREAMPlace 4.1 (10.56% and
5.47%). This demonstrates that our proposed algorithm can ef-
fectively reduce congestion even in highly congested designs.
Additionally, our peak congestion values across all cases are
significantly lower than those of other placers, demonstrating
the practical viability of our approach in production workflows
with acceptable runtime overhead.
C. Congestion Map Visualization

Fig. 5 visualizes congestion maps, highlighting differences
across placers. We observe that OpenROAD exhibits more
scattered overflow regions across the layout. In contrast,
Xplace 2.0 and DREAMPlace 4.1 show more concen-
trated congestion areas with higher peak overflow values. No-
tably, Xplace 2.0 and DREAMPlace 4.1 share similar
locations for their peak congestion regions, indicating these
areas are inherently prone to congestion. The congestion map
of our proposed algorithm demonstrates that it significantly
alleviates congestion overall, achieving good results even in
regions where previous placers struggled with severe conges-
tion. This indicates that our algorithm effectively reduces both
the occurrence and severity of congestion across the layout.

V. CONCLUSION

In this paper, we propose RUPlace, a unified framework
for routability-driven placement in VLSI design, leveraging
ADMM, Wasserstein distance, and bilevel optimization to
jointly optimize placement and routing. Our approach provides
a theoretically guided solution for congestion reduction, over-
coming the limitations of traditional heuristic and probabilistic
methods. Additionally, we introduced a convex programming-
based cell inflation technique, incorporating modularity-based
clustering to determine inflation ratios effectively, enhanc-
ing congestion mitigation beyond conventional heuristics. In
experiments on CircuitNet and Chipyard benchmarks,
our algorithm reduces horizontal (vertical) congestion by
4.74× (3.47×) compared to OpenROAD, 4.11× (3.88×) com-
pared to Xplace 2.0, and 5.91× (5.80×) compared to
DREAMPlace 4.1. It also achieves 7% lower wirelength and
a 3.67× runtime speedup over OpenROAD, demonstrating its
superiority in wirelength, efficiency, and routability optimiza-
tion.
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