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ABSTRACT

Placement is critical to the timing closure of the very-large-scale inte-
grated (VLSI) circuit design flow. This paper proposes a differentiable-
timing-driven global placement framework inspired by deep neural
networks. By establishing the analogy between static timing analysis
and neural network propagation, we propose a differentiable timing ob-
jective for placement to explicitly optimize timing metrics such as total
negative slack (TNS) and worst negative slack (WNS). The framework
can achieve at most 32.7% and 59.1% improvements on WNS and TNS
respectively compared with the state-of-the-art timing-driven placer,
and achieve 1.80x speed-up when both running on GPU.

1 INTRODUCTION

Placement is critical to timing closure in the VLSI design flow. It deter-
mines the physical locations of standard cells and thus has significant
impacts on later stages like routing, post-routing optimization, and
signoff timing verification. With the continuous growth of design com-
plexity, achieving timing closure becomes increasingly challenging due
to complicated timing models and expensive design iterations. As accu-
rate timing information cannot be evaluated until post-routing stages,
commercial design flows often need to run core placement and routing
many times for timing closure, thus slowing down design iterations.
Although timing-driven optimization in placement can reduce design
iterations, turning on such optimization can slow down the algorithm
by hundreds of times due to the large-scale numerical optimization in
placement and the long feedback loop for timing evaluation. There-
fore, high-performance and efficient timing-driven placement is always
desired for design closure.

Placement can be divided into three steps: global placement (GP),
legalization (LG), and detailed placement (DP). Global placement deter-
mines the rough locations of cells, legalization removes the overlaps
between cells, and detailed placement refines the placement with lo-
cal perturbation. Among these steps, global placement is crucial to
the eventual placement quality, as it determines the global distribu-
tion of cells. Current state-of-the-art placers are based on analytical
global placement algorithms [1-16]. They essentially formulate the core
wirelength-driven placement into a nonlinear optimization problem
with a wirelength term and a density penalty term in the objective. The
wirelength term minimizes the length of nets and the density penalty
minimizes the overlaps between cells. Various methods have been pro-
posed to model the density penalty term, such as the NTUplace family
[4, 5] and the ePlace family [6-8, 16], while most placers only focus on
wirelength minimization without considering timing.

Timing-driven placement aims at optimizing timing metrics such
as total negative slack (TNS) and worst negative slack (WNS). Typical
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timing-driven placement techniques can be categorized into net-based
approaches and path-based approaches. Net-based approaches exploit
timing analysis tools to obtain the timing information and update the
weights of nets according to timing slack or critical paths [17-24].
These approaches do not directly optimize the timing metrics but try to
minimize the delays of critical nets through net weighting and weighted
wirelength minimization. Such an idea is naturally compatible with
existing wirelength-driven placers, so they are widely adopted in global
placement. Path-based approaches aim at minimizing the delay of
critical paths by formulating mathematical programming problems [25—
28]. They have precise control over the path delay and hence can achieve
high-quality solutions, but they are not scalable with the number of
paths. Thus, path-based approaches are usually adopted in detailed
placement for local perturbation.

Despite the previous efforts, timing optimization in placement still
follows indirect approaches to improve timing metrics, i.e., minimizing
delays of specific nets or paths. With the increase of design complexity,
such approaches are reaching their limitations for timing optimization.
In this work, we propose a differentiable-timing-driven global place-
ment framework inspired by deep neural networks. By establishing the
analogy between static timing analysis and deep neural networks, we
propose a differentiable timing objective for explicit optimization of
timing metrics. The key contributions are summarized as follows.

e We propose a new paradigm for timing-driven placement based

on a differentiable timing engine inspired by deep neural net-

works, which can directly optimize global timing metrics such
as TNS and WNS.

We design a holistic framework for differentiable delay and signal

arrival time propagation that is highly extensible to various

timing models.

We develop high-performance GPU-accelerated kernels for the

differentiable timing engine to boost the efficiency.

e Compared with the state-of-the-art timing-driven placer [24]
based on net weighting, we can achieve at most 32.7% and 59.1%
improvements on WNS and TNS, respectively, as well as 1.80x
speed-up when both placers run on GPU.

We believe this work shall open up new directions for timing opti-
mization in the VLSI design flow. The rest of the paper is organized as
follows. Section 2 introduces the background and motivation; Section 3
explains the detailed algorithms; Section 4 demonstrates the results;
Section 5 concludes this paper.

2 PRELIMINARIES

In this section, we introduce basic concepts of STA, nonlinear placement,
as well as prior work on timing-driven global placement.

2.1 Static Timing Analysis

Static timing analysis (STA) is the central step for analyzing the circuit
timing performance [29]. As shown in Figure 1, STA models the circuit
as a directed acyclic graph (DAG) with net arcs and cell arcs indicating
the signal propagating directions. Arcs introduce delay and slew when
signals propagate through them. The delays are accumulated to the
earliest and latest signal arrival times on pins, by performing min and
max operations on the arrival times of fan-in signals. The arrival times
are used to model the worst-case timing scenarios and perform setup
and hold checks.
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Figure 1: An example placement stage with STA.

Machine Learning Placement

Train a neural network
Neural network weights

Solve global placement
Cell locations

Dataset Net instances
Loss function Wirelength objective
Regularization Density constraint

Table 1: The analogy between ML training and placement [16].

The worst-case circuit performance is quantified by setup slack and
hold slack, which are computed from the arrival times and the required
arrival times at timing endpoints.

sl‘lcksetup (p)=ra Learly (p) — attate (p).
slackpola(p) = atearly (p) — ratiaee (p)-

In Equation (1), slacksetup (p) and slackpoq(p) are respectively the setup
and hold slack values at timing endpoint p. Generally, a positive slack
means that the signal meets the timing constraints, and a negative slack
indicates a timing violation.

In timing-driven optimization tasks, our goal is to minimize the ab-
solute value of worst negative slack (WNS), as well as the total negative
slack (TNS) among all timing endpoints, as defined in Equation (2).

M

Wssetup/hold = min SIaCksetup/hold (p)s
endpoint p

. 2
INSsetup/hold = Z L (0, SIaCksetup/hold (P)) . @

endpoint p

2.2 Wirelength-driven Nonlinear Placement

Global placement determines the locations of cells in the placement
layout, as illustrated in Figure 1. The cell locations determine the pin lo-
cations, which affect the wirelength and delay of the nets. In wirelength-
driven global placement, the goal is to minimize the total net wirelength,
under the cell density constraint. The density constraint is usually trans-
formed into a density penalty term in the objective function,

min Z WL(e;x,y) + AD(x,), 3)

X,
y net e

where x,y are cell locations and A is the density penalty weight. In
analytical placement, this optimization problem is solved by gradient
descent on the objective function. The placement engine controls A by
gradually increasing it to encourage cell spreading.

2.3 Timing-driven Placement by Net Weighting

To achieve circuit correctness and performance, it is critical to include
timing metrics into the placement objective. The problem formulation
for timing-driven global placement is presented below.

Problem (Timing-driven Global Placement). Given a set of cells and
a placement layout, determine the cell locations x, y to minimize the
absolute value of total negative slack and worst negative slack, i.e.,
TNS(x,y) and WNS(x,y).

Level 3 Layer1 Layer2 Layer3
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Figure 2: The analogy between an STA engine and a deep neural
network marks the potential for differentiable timing.

However, timing is usually handled by an external STA engine due
to its complexity compared to simple objectives like wirelength. STA is
complex because it evaluates the global features of the circuit, instead
of concentrating on local features such as the wirelength of a single net.
In STA, we need to have a whole view of the circuit to find the nets that
lie on timing-critical paths, and the length of such paths may exceed
300 [30].

To bridge the gap between the global view of an STA engine and the
local view of wirelength objectives, prior works have used a technique
called net weighting. The idea is to repeatedly invoke an STA engine
on the current placement solution, and analyze the timing report to
find timing-critical nets. Then, the relative weights of these nets in the
wirelength objective are increased by a small amount. The objective is
to minimize the weighted sum of net wirelength, as shown below.

min we - WL(e;x,y) + AD(x,y). 4)

X,
y net e

The guidance from an STA engine is then incorporated in the frequent
update of net weights. However, net weighting is still an inefficient and
artificial approximation to the WNS and TNS metrics.

3 ALGORITHMS

In this section, we propose our timing-driven placement algorithm
based on a differentiable STA engine. Section 3.1 presents an inspira-
tion from deep neural networks. Section 3.2 gives the timing objective
function with smoothing. Section 3.3 presents an overview of our differ-
entiable timer. Section 3.4 and Section 3.5 present our differentiable wire
delay model and delay propagation model. Finally, Section 3.6 presents
the overall timing-driven placement flow with GPU acceleration.

3.1 Differentiable Timing Inspired by Deep Neural
Networks

In light of the theory and practice development of machine learning
(ML), prior work has raised the analogy between the global place-
ment problem in Equation (3) and the training of a machine learning
model [16]. The detailed analogy is listed in Table 1. In this context, the
wirelength objective can be regarded as a single-layer neural network
with a receptive field of only 1 hop, as it is only related to the distance
between pins in every single net. On the other hand, STA can be re-
garded as a neural network as deep as the length of the longest path in
the circuit, e.g., > 300 layers [30]. As a result, net-weighting-based tim-
ing optimization essentially tries to approximate a deep neural network
with a shallow one.

In reality, we note that deep neural networks can be efficiently trained
with backpropagation (BP) [31]. Backpropagation accumulates and
propagates partial derivatives with respect to intermediate variables in
the reverse topological order of computation. The result is the gradients
to the loss function with respect to all model weights. Inspired by this,
we intend to perform a similar backpropagation in STA to obtain the



gradients of slacks with respect to all cell locations, as shown in Figure 2.
We call this a differentiable STA engine.

In this work, we design and implement such a differentiable timing
engine that directly computes the TNS(x, y) and WNS(x,y), and their
gradients with respect to x, y. Compared to prior works based on net
weighting, our differentiable model enables direct optimization of global
timing metrics in placement.

3.2 The Smoothed Objective Function

One key challenge in differentiable STA compared to neural networks
is that STA functions are highly non-smooth. This is because the arrival
time updates in STA include max and min operations on the fan-in
arrival times. Regardless of the number of fan-in nodes, only 1 of the
fan-in node receives a non-zero gradient value. As a result, a direct
gradient descent on WNS only updates the single most critical path.
Such a pattern is known to introduce oscillation and instability to the
optimization process.

To solve this issue, we replace the max and min operations in STA
with their smoothed approximations. Similar smoothing techniques
have been widely used in placers to approximate wirelength objectives
such as HPWL [4]. Specifically, we replace max with Log-Sum-Exp
(LSE) smoothing stated as follows,

n
LSEY(xl, X2, ..., Xpn) = ylog (Z exp %) . (5)
i=1
We transform min to the max of the inverse value of operands. In Equa-
tion (5), y controls the degree of smoothing. A larger y makes the result
more smooth, at the cost of lower accuracy. We denote the smoothed
TNS and WNS objective functions as TNS, (x,y) and WNS) (x,y), re-
spectively. The smoothed objective function is thus,

min Z WL(e;x,y) + AD(x,y) + t1 INS, (x,y) + 2 WNS, (x,y), (6)

X,
Y net e

where t; and t, are weights of the TNS and WNS objectives.

3.3 The Overview of Our Differentiable Timer

Figure 3 shows an overview of our differentiable STA engine consisting
of the following stages:

(1) We first initialize the pin levels by a topological sorting. This
needs to be done only once as logical levels of pins do not change
along with the movement of pin locations.

(2) Given a set of pin locations, we compute rectilinear Steiner min-
imal trees (RSMTs) of nets and apply the Elmore delay model
to get net delay, impulse values (i.e. slew components), and net
capacitive loads. We split these outputs according to pin levels.

(3) Given the Elmore delay information at each level, we propagate
the arrival times and slews level by level.

(4) Given the arrival times (ATs), we compute the required arrival
times (RATs) and WNS/TNS based on timing constraints. The
slacks are computed by subtracting ATs and RATs.

(5) Finally, we compute the gradient with respect to pin locations by
going backward according to the blue edges shown in Figure 3.
Specifically, we first compute the gradient of WNS and TNS to pin
arrival times. Then, we compute the gradient to the Elmore delay
information by back-propagating through pin levels. Finally, we
compute the gradient to pin locations by taking the derivative
of the Elmore delay model.

3.4 Differentiable Wire Delay Model

3.4.1 Rectilinear Steiner Tree Generation. To compute wire delay with
the given pin locations, we should first compute an RSMT for each net as
a rough routing result. This is usually accomplished using FLUTE [32]
in timing-driven placement works [24, 33, 34]. We note that FLUTE can
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Figure 3: The overall flow of our differentiable timer from pin
locations to WNS and TNS, and back to the gradients of pin
locations.
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be replaced by other RSMT generation algorithms in our framework.
The problem with these algorithms, including FLUTE, is that they are
not differentiable. Specifically, our delay model computes gradients of
all points on the Steiner tree, including both pins and router-inserted
Steiner points. We have to deal with gradients on Steiner points to
consider the routing effect in the backpropagation process.

To solve the problem, we analyze the generation of the Steiner tree
under small perturbations to pin locations. As illustrated in Figure 4,
we note that the Steiner points move along with the movement of
horizontal and vertical tree “branches”. As long as the pin displacement
is small enough, the positions of Steiner points are determined by pins
related to their branches. As a result, we apply the gradients on Steiner
points to pins on their branches to ensure their gradients are correctly
computed.

3.4.2 Differentiable Elmore Delay Model. Given the net routing tree,
we compute the net delay, impulse, and capacitive load using the Elmore
delay model. The model computation can be described by the following
recursive equations [30],

Load(u) = Cap(u) + Z Load(v), (72)
child v

Delay(u) = Delay(fa(u)) + Res(fa(u) — u) - Load(u), (7b)

LDelay(u) = Cap(u) - Delay(u) + Z LDelay(v), (7¢)

child v
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Beta(u) = Beta(fa(u)) + Res(fa(u) — u) - LDelay(u), (7d)

Impulse(u) = \/2 - Beta(u) — Delay? (u), (7e)

where fa(u) denotes the parent node of u, and LDelay(u), Beta(u) are
intermediate values in slew/impulse computation.

Using basic calculus and the chain rule of partial derivatives, we can
write the gradient form of Equation (7) as follows, with VF denoting

the gradient of the objective function f with respective to F, i.e., g—];.

VBeta(u) =2 - Vimpulse*(u) + »  VBeta(0) (8a)
child v
VLDelay(u) =Res(fa(u) — u) - VBeta(u) + VLDelay(fa(u))  (8b)

VDelay(u) =Cap(u) - VLDelay(u) + Z VDelay(v)
child o (8¢)
+2 - Delay(u) - VlmpulseZ (u)
VLoad(u) =Res(fa(u) — u) - VDelay(u) + VDelay(fa(u))  (8d)
VCap(u) =VLoad(u) + Delay(u) - VLDelay(u) (8e)
VRes(fa(u) — u) =Load(u) - VDelay(u) + Beta(u) - VLDelay(u) (8f)

By computing according to Equation (8) given the gradients of El-
more delay, impulse, and load, we obtain the gradient to the pin capaci-
tance and edge resistance, which are directly computed from distances
between two pins. We then obtain the gradients with respect to pin
locations.

In an STA engine, the Elmore delay Equation (7) is implemented by
4 passes of dynamic programming on trees [35], alternating between
bottom-up and top-down updates. As shown in Figure 5, we implement
Equation (8) by another 4 passes of dynamic programming on trees, in
the reverse order of the forward passes.

While we give the derivation of the Elmore delay model as an exam-
ple, we note that our algorithm is generalizable to other more complex
interconnect delay models, such as IT model and coupling effects as
long as the model can be written in analytical form like Equation (7).

3.5 Differentiable Delay Propagation

Delay propagation computes the arrival time and slew of pins level by
level, as shown in Figure 3. Corresponding to net arcs and cell arcs, there
are two types of propagation, for net delay and cell delay respectively.
We apply the two propagation types alternately to push forward the
arrival time computation. To compute the gradient of propagation, we
propagate backward on the pin levels.

3.5.1 Net Delay Propagation. In this step, we compute the arrival time
and slew of net sinks given their Elmore delay and impulse. For other
wire delay models, we have different specific forms of net delay propa-
gation, but the basic idea remains the same. We denote the net driver as
u and a net sink as v, and the net delay propagation rule can be written
as follows [30],

AT (v) = AT(u) + Delay(v), (9a)
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Figure 6: LUT interpolation and gradient computation. A 2D
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Slew(v) = \/Slew2 (w) + Impulse? (v). (9b)
We similarly write down the gradients of Equation (9) as follows,
of 9AT(v) _

9AT(0) 9AT() ~ " AT (10)
VDelay(v) = VAT (v) (10b)
of  9Slew(v) _ Slew(u)
dSlew(v) dSlew(u) ~ Slew(v) - VSlew(v) (10¢)
1
2 - .
Vimpulse® (v) = 2 Slew(0) VSlew(v) (10d)

As there is at most 1 fan-in net arc for each pin, we do not need max or
min operations to aggregate arrival time corners. Instead, we simply
follow Equation (9) to compute arrival time and slew, and Equation (10)
to compute the gradient components for arrival time and slew from
previous levels, as well as Elmore delay and impulse gradients for the
current level.

3.5.2 Cell Delay Propagation. The delay and timing constraint of logic
cells are characterized by a cell library (.1ib file) included in the
process design kit (PDK). Different from wire delay models, cell delay
and slew do not take analytical forms. Instead, they are modeled by
point values in the form of a matrix, which we call look-up tables (LUTs).
ALUTis an N X N matrix 0;;,i =0...N —1,j=0...N — 1 with 2N
associated values xq ... xXN-1,Y0 - - - yN—1, as shown on the left side of
Figure 6. A query to the LUT is a 2D point (x,y) and the result is a
linear interpolation or extrapolation in a 2 X 2 submatrix in the LUT
where the query point lies.

The widely-used non-linear delay model (NLDM) defines cell delay,
slew, and constraints directly using LUTs. We note that other cell delay
models such as the current source model also use LUTs to model DC
current and other parameters. In NLDM, there are 4 LUTs for each
timing arc, named cell_rise,cell_fall, rise_transition,
and fall_transition. The first two LUTs characterize the cell
delay, while the latter two LUTs are for the cell slew. Depending on
the function of the logic cell, the timing arcs might be positive unate
or negative unate, so one of the two LUTs would be used in certain
signal edges. To simplify the discussion, we omit the rise and fall
settings in the following equations.

We denote the cell output pin as v, its related cell input pins as u,
and the LSE smoothing hyperparameter as y. The NLDM delay, slew,
and arrival times are defined as follows,

Delay,, (v) = LUT ¢el] y—o (Slew(u), Load (v)), (11a)
Slewy, (v) = LUT yransition u—o (Slew(u), Load(v)), (11b)
AT(0) = LSE} ™" “{AT(u) + Delay,, (v) }, (11¢)
Slew(v) = LSE?,ll inputs u {Slewy, (0v) }. (11d)

We write down the gradients of Equation (11) as follows,
VAT (1) =Vinput uLSEy {AT (u) + Delay,, (v) } - VAT (v), (12a)
VDelay,, (v) =Vinput uLSEy {AT(u) + Delay, (v) } - VAT (0), (12b)
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Figure 7: Our GPU-accelerated timing-driven placement flow.

VSlewy, (0) =Vinput uLSEy {Slew,, (v) } - VSlew(v), (12¢)
VSlew(u) =V LUT cell y—o (Slew(u), Load(v)) - VDelay,, (v)+

Vo LUT transition u—o (Slew(w), Load (v)) - VSlew,, (v) (12d)

VLoad(v) =V yLUT cell y—o (Slew(u), Load(v)) - VDelay,, (v)+ (12¢)

Vy LUT transition u—o(Slew(u), Load(v)) - VSlewy (v)

Computing Equation (12) requires the gradient of a LUT query. We
compute the LUT gradient by linear interpolation similar to a forward
LUT query, as shown in Figure 6. We first find the corresponding LUT
cell to the query (x, y). Then, we do two 1D linear interpolations on one
dimension. Finally, the gradient of 2D interpolation can be transformed
into the gradient of a final 1D interpolation.

3.6 GPU-Accelerated Placement Framework

Global placement is a very time-consuming design step. It consists
of hundreds to thousands of iterations that take hours on CPU for
a large design. To ensure reasonable placement runtime, there have
been GPU-accelerated placement engines with efficient GPU kernels
for wirelength and density gradient computation. However, in a timing-
driven placement flow, the runtime is dominated by repeated calls to
the STA engine [24]. To this end, we propose GPU-accelerated kernels
for timing analysis and gradient computation. Our differentiable STA
engine is fully GPU-accelerated for both forward computation and
backward gradients.

Figure 7 shows our placement flow. The only CPU kernel is the
Steiner tree computation with FLUTE, which we accelerate by multi-
threading on CPUs. We call FLUTE to update the Steiner tree period-
ically every 10 iterations and store the Steiner points for use in the
next 9 iterations. In these 9 iterations, coordinates of Steiner points are
updated according to their related pins (Figure 4), instead of recom-
puted from scratch. In this way, we maximize the performance of our
placement engine with a small loss in the accuracy of gradients.

4 EXPERIMENTAL RESULTS

We implement our differentiable timing engine as C++ and CUDA
kernels on top of the open-source placer DREAMPlace [16]. We evaluate
the performance of our timing-driven placer on large industrial designs
from the ICCAD 2015 contest [33]. The benchmark statistics are listed
in Table 2. Our test environment is a 64-bit Linux machine with 24-
cores Intel Xeon CPU at 2.20 GHz, 1 NVIDIA Titan RTX GPU, and
256GB RAM. We set t1, t2, y hyperparameters to tune the benchmark
performance, where y is set to around 100, #; is set to around 0.01, and
t7 is set to around 0.0001. We start our timing optimization from around

Table 2: ICCAD 2015 contest benchmark statistics.

Benchmark #Cells #Nets #Pins
superbluel 1209716 1215710 3767494
superblue3 1213253 1224979 3905321
superblued 795645 802513 2497940
superblueb 1086888 1100825 3246878
superblue? 1931639 1933945 6372094
superbluel0 1876103 1898119 5560506
superbluel6 981559 999902 3013268
superbluell 768068 771542 2559143

the 100th iteration where cells have been initially spread out. We then
increase t; and t; by 1% after each iteration. We compare our work with
the original DREAMPlace [16], and the state-of-the-art timing-driven
placer [24] based on net weighting.

Table 3 shows the overall comparison on WNS, TNS, half-perimeter
wirelength (HPWL), and runtime. Our differentiable-timing-driven
placer outperforms the state-of-the-art timing-driven placer [24] by a
huge amount, setting new records on these benchmarks. The most no-
table result on the benchmark superbluel8 improves WNS and TNS
by 32.7% and 59.1%, respectively. On most other benchmarks, 10-30%
WNS improvement and 20-40% TNS improvement have been obtained.
On average, the WNS and TNS results of [24] are 28.2% and 47.2% worse
compared to us.

Meanwhile, our WNS results are consistently better in all bench-
marks. Optimizing WNS is much more important than TNS, as WNS
represents the global timing bottleneck in the design which is directly
related to circuit correctness and performance. However, prior works
like [24] have stated the extreme difficulty in optimizing WNS in the
global placement stage. In this work, we have overcome that difficulty
and brought timing-driven global placement to a new milestone. We
ascribe this to our differentiable timing engine that directly computes
the gradient of global timing metrics. Note that our timing-driven placer
does not degrade wirelength compared to the original DREAMPlace
without timing optimizations. As shown in Table 3, we obtain almost
identical HPWL results given the same stop criterion on density over-
flow. In other words, the improvements on WNS and TNS are obtained
almost “for free”.

Our timing-driven placer also has decent efficiency. We achieve 1.80%
speed-up on average compared to the state-of-the-art net weighting
placer [24], which also runs on GPU. By adding timing objectives, we
use 3.14X the runtime of DREAMPlace compared to 5-6x in [24]. We
ascribe this efficiency to our fully GPU-accelerated timing engine with
both forward and backward CUDA kernels, and our strategy to reuse
Steiner tree results to reduce the number of FLUTE calls.

Figure 8 draws the HPWL, density overflow, WNS, and TNS along
with a placement run. The added timing objectives do not influence the
HPWL and density optimization and the two curves overlap. However,
the timing objectives have improved WNS and TNS in later iterations.
This shows the effectiveness of our timing objective gradients in the
optimization flow.

5 CONCLUSION

In this paper, we propose a new paradigm for timing-driven global
placement based on a differentiable STA engine inspired by deep neural
networks. By directly analyzing and optimizing global timing metrics,
we improve TNS by 32.7% and WNS by 59.1% at most compared with
state-of-the-art timing-driven placers based on net weighting. We also
improved the overall efficiency of timing-driven placement by imple-
menting efficient GPU kernels for our differentiable timer. Our work is
a general differentiable timing analysis framework that is widely appli-
cable to different STA models. Our future work shall focus on designing



Table 3: Comparing WNS, TNS, HPWL and runtime with the original DREAMPlace [16] and the state-of-the-art net-weighting-based
timing driven placer [24]. The best results on WNS, TNS and runtime are bold-faced, and the second-best ones are colored brown.

DREAMPlace [16]
Benchmark WNS  TNS HPWL Runtime | WNS

superbluel -18.866 -262.441 422.0 79.48 | -14.103
superblue3 -27.648 -76.644 478.2 72.96 | -16.434
superblued -22.041 -290.881 312.0 52.21 | -12.781
superblueb -48.918 -157.816 488.3 116.69 | -26.760
superblue? -19.751 -141.548 604.3 125.57 | -15.216
superbluell | -26.099 -731.941 935.9 205.92 | -31.880
superbluel6 | -17.711 -453.566 435.8 63.59 | -12.112
superbluel8 | -20.288  -96.756 243.0 27.55 | -11.871

Avg. Ratio 1.897 3.125 0.987 0.318 1.282

Net Weighting [24] Ours
TNS HPWL* Runtimef | WNS TNS HPWL Runtime
-85.032 443.1 471.77 | -10.770 -74.854 423.8 268.31
-54.742 482.4 451.22 | -12.374 -39.430 478.4 266.65
-144.380 335.9 283.64 -8.492 -82.924 312.2 156.36
-95.782 556.2 772.75 | -25.212  -108.076 488.7 259.26
-63.863 604.0 774.32 | -15.216 -46.426 602.1 450.85
-768.748 1036.7 859.28 | -21.974 -558.054 934.4 465.24
-124.181 448.1 335.10 | -10.854 -87.026 485.1 217.65
-47.246 253.6 174.07 -7.987 -19.314 243.6 156.99
1.472 1.043 1.807 1.000 1.000 1.000 1.000

WNS: in (x10%)ps. TNS: in (x10°)ps. HPWL: half-perimeter wirelength (x10%). “We acquired the DEF result from authors of [24] to evaluate.

1 The runtime of [24] is scaled to reflect machine difference: compensated runtime = reported runtime in [24] X

HPWL Overflow
6x10° 7 100§
5% 108 || ’
4x10° { | \
; 1071 4 \
3x10°4, e ——
0 200 400 600 0 200 400 600
WNS TNS
‘ 10°
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Figure 8: Optimization iterations for benchmark superblue4.
The blue curve is DREAMPlace, and the orange one is our work.

dynamic updating strategies for timing weights and preconditioning
for timing gradients to achieve even better performance and efficiency.
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