
Ultrafast CPU/GPU Kernels for Density Accumulation in Placement

Zizheng Guo*

CECA, CS Department
Peking University
Beijing, China
gzz@pku.edu.cn

Jing Mai*
CECA, CS Department

Peking University
Beijing, China

magic3007@pku.edu.cn

Yibo Lin†
CECA, CS Department

Peking University
Beijing, China

yibolin@pku.edu.cn

Abstract—Density accumulation is a widely-used primitive operation
in physical design, especially for placement. Iterative invocation in the
optimization flow makes it one of the runtime bottlenecks. Accelerating
density accumulation is challenging due to data dependency and workload
imbalance. In this paper, we propose efficient CPU/GPU kernels for density
accumulation by decomposing the problem into two phases: constant-time
density collection for each instance and a linear-time prefix sum. We develop
CPU and GPU dedicated implementations, and demonstrate promising
efficiency benefits on tasks from large-scale placement problems.

I. INTRODUCTION

Density accumulation is a widely-used operation in physical design,
such as placement and routing. It can be used for characterizing the
density distributions of rectangular shapes on an M ×N grid system.
There are two typical variations of density accumulation: the forward
accumulation to compute the density map from a set of rectangular
shapes, and the backward one to accumulate the weights from a density
map to the shapes. As a primitive operation, it can take a significant
portion of the optimization time due to iterative calls.

Density accumulation is a required kernel in many placers such as
POLAR [1], NTUplace series [2], [3], and ePlace series [4], [5]. For
example, in nonlinear placement, it is used in each gradient descent
iteration of the following optimization problem [2]–[9],

min
x,y

WL(x, y) + λD(x, y), (1)

where x, y are cell locations, the first term
∑
WL(·) models the

total wirelength of nets, and the second term describes the density
penalty to avoid overlaps between cells. In each iteration, computing
the penalty D(·) needs the density map of cells, i.e., the forward
density accumulation; computing ∂D

∂x ,
∂D
∂y needs the backward density

accumulation to obtain the density gradient of each cell. Our profiling
of a recent open-source GPU-accelerated placer [8] indicates around
60% of the runtime taken by density computation for each gradient
descent iteration on million-cell designs [10], most of which lies
within density accumulation. As nonlinear placement typically requires
hundreds or thousands of iterations to converge, the performance of
density accumulation plays a critical role in the overall efficiency.

Density accumulation is also a primitive operation in routability
estimation models like RISA and RUDY [11], [12]. These models divide
the layout into M×N grids and distribute the routing demands of each
net into the grids covered by net bounding boxes, which is essentially
a forward density accumulation. As net bounding box computation is
fully parallelized, over 95% of the runtime is taken by density accumu-
lation on GPU for million-cell designs [8], [13]. In routability-driven
placement algorithms based on cell inflation, forward accumulation is
used in routability estimation and backward accumulation is involved
in computing the inflation ratios for each cell [5], [8].

While density accumulation is widely-used in various physical design
stages, its performance is often limited and becomes the runtime
bottlenecks in iterative optimization. There are several challenges in
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accelerating this operation with a manycore system or a GPU platform.
1) Its primitive task of updating one rectangular shape is too small to
afford the large threading overhead. 2) The workload can be very im-
balanced due to heterogeneous-sized shapes. 3) Writing to the resulting
density map in the forward density accumulation needs to avoid data
race between threads.

Existing work has investigated parallelization of forward density
accumulation on both CPU [9], [14] and GPU [8], [9]. Lin et al [9]
accelerate forward accumulation by exploring efficient CPU atomic
primitives, and reproducible GPUs kernel using fixed-point numbers.
They also overlap data transfers with computations considering a
heterogenous CPU-GPU scenario. Gessler et al [14] accelerate forward
accumulation on CPU and achieve 3.2× speedup with 12 threads by
allocating thread-local copies of data to avoid synchronization overhead
at the cost of more memory. Lin et al tried to assign multiple threads
for updating each shape on GPU [8]. They achieve ∼2× speedup over
the implementation using one thread per shape. All these experiments
are based on a standard cell placement flow, where the size of each
cell is comparable to the grid size. However, the performance of the
aforementioned techniques degrades at large shapes covering many
grids, like the bounding boxes of nets in the routability modeling or
large macros in mixed-sized placement problems, as the number of
primitive operations is correlated to how many grids a shape covers.

To overcome the challenges, in this paper, we propose a generic
and ultrafast algorithm for both variations of density accumulation,
naturally supporting CPU and GPU platforms. We decompose the
problem into two phases: a constant-time density collection phase for
each instance and a linear-time prefix sum phase. In this way, we can
achieve significant speedup over the existing implementations and the
performance of our algorithm is insensitive to the heterogeneous-sized
shapes. Experiments on ISPD 2005 & 2015 [10], [15] benchmarks
demonstrate up to 22× speedup on CPU and up to 64× speedup on
GPU compared with the state-of-the-art implementations [8], [14] on
the same platforms, respectively.

The rest of the paper is organized as follows. Section II introduces
the problem formulations. Section III explains the algorithms in de-
tail. Section IV validates the algorithm with experimental results and
Section V concludes the paper.

II. PRELIMINARIES

Density accumulation deals with a set of rectangular instances V
and an M ×N grid system G. The instance here refers to rectangular
objects like cells or nets in placement. We consider two variations
in this work: forward and backward density accumulation, which are
essentially inverse problems of each other. Figure 1 gives examples of
the two variations. Forward accumulation computes the density map
of instances on the grid system, and backward accumulation sums the
weights on grids that overlap with an instance. To formally define the
problems, we introduce the notations in Table I.

Problem 1 (Forward Density Accumulation). Given a set of instances
V , an M × N grid system G, and the weight winst

v of each instance978-1-6654-3274-0/21/$31.00 c©2021 IEEE



TABLE I: Notations

Notation Description

V The set of instances
Boxv The bounding box of the instance v ∈ V
areainst

v The area of the bounding box Boxv

winst
v The weight of the instance v ∈ V

G The set of grids in the M ×N grid system
gx,y The grid indexed by (x, y), x ∈ {1, 2, . . . ,M}, y ∈ {1, 2, . . . , N}
wgrid

x,y The weight of the grid gx,y ∈ G

areagridx,y The area of the grid gx,y

g3,3

v3

v2

v1

(a)

g3,2

g4,3   g4,4

  g3,4

g4,2

g3,3

v

(b)

Fig. 1: An illustration on forward and backward density accumulation.
(a) Forward accumulation computes the density of grids. The density
of g3,3 is denoted as ρgrid3,3 , which is computed from its intersections
with 3 instances: v1, v2, and v3. (b) Backward accumulation computes
the density of instances. The density of instance v is denoted as ρinst

v ,
which is computed from its intersections with 6 grids: g3,2, g3,3 ,g3,4,
g4,2, g4,3 and g4,4.

v, compute the density map ρgrid on the grid system. Density ρgridx,y for
each grid gx,y ∈ G is defined as follows:

ρgridx,y =
∑
v∈V

winst
v × OA(Boxv, gx,y)

areagridx,y

, ∀gx,y ∈ G, (2)

where winst
v is the weight of instance v, areagridx,y is the area of the

grid gx,y , and OA(Boxv, gx,y) is the overlapping area between the
bounding box of instance v and grid gx,y .

Problem 2 (Backward Density Accumulation). Given a set of instances
V , an M ×N grid system G, and the weight wgrid

x,y of each grid gx,y ,
computes the density array ρinst for all instances. Density ρinst

v for
each instance v is defined as follows:

ρinst
v =

∑
gx,y∈G

wgrid
x,y ×

OA(Boxv, gx,y)

areainst
v

, ∀v ∈ V, (3)

where wgrid
x,y is the weight of grid gx,y , areainst

v is the area of instance
v, and OA(Boxv, gx,y) is the overlapping area between the bounding
box of instance v and grid gx,y .

Equation (2) takes the weights of instances and accumulates density
for each grid, while Equation (3) takes the weights of grids and accu-
mulates density for each instance. A typical approach to solve them is
to enumerate the overlapping grids and collect results for each instance
[8], [14]. To parallelize the computation, multiple threads are allocated
to simultaneously loop through instances. However, heterogeneous-sized
instances cause imbalanced workloads between threads, resulting in low
performance and poor scalability of the algorithm.

III. ALGORITHMS

We overcome the challenge of accelerating density accumulation
problem by transforming forward/backward problems into equivalent

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 P =


1 3 6 10
6 14 2424 36
15 33 54 78
28 60 96 136


Sum

Fig. 2: An example of 2D prefix sum on a 4× 4 matrix.
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1 3 6 10
6 14 24 3636
15 33 54 78
28 60 96 136


Sum
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Fig. 3: Illustration of row sum followed by column sum. This is
equivalent to a 2D prefix sum.

forms, consisting of two phases: a linear-time two-dimensional (2D)
prefix sum phase and a density collection phase whose time complexity
is irrelevant to the sizes of instances.

In this section, we first introduce the 2D prefix sum phase, which is
used in solving both forward/backward problems. Then, we explain the
details of the forward/backward algorithms. In the end, we illustrate the
GPU-specific implementation.

A. 2D Prefix Sum

Both our forward and backward algorithms require to compute 2D
prefix sum on a matrix A. The result matrix P has the same dimension
as matrix A, with element Pi,j equals to the sum of all values in A
which are above it or on left of it. Figure 2 shows an example of 2D
prefix sum on a 4× 4 matrix. Each element in matrix P can be written
as,

Pi,j =

i∑
x=1

j∑
y=1

Ax,y, (4)

where i = 1, 2, . . . ,M, j = 1, 2, . . . , N , A ∈ RM×N , and P ∈
RM×N .

Figure 3 shows that 2D prefix sum can be computed by performing
one-dimensional (1D) prefix sum along rows and then along columns.
Based on this fact, we develop our algorithm for computing 2D prefix
sum in Algorithm 1, which first computes sum along rows (lines 3-5)
and then columns (lines 6-8). We can see that the time complexity of
Algorithm 1 is O(MN), which is linear in the size of the matrix.

B. Forward Density Accumulation

In this section, We will discuss our algorithm for forward density
accumulation (Problem 1). To make it easy to explain, we normalize
the size of a grid to 1 × 1. Therefore, we simplify our equation to
ρgridx,y =

∑
v∈V w

grid
v ×OA(Boxv, gx,y), ∀gx,y ∈ G.

Algorithm 1: compute2DPrefixSum(A)

1 m,n← A.size;
2 P ← M ×N zero matrix;
3 for i = 1 to M do
4 for j = 1 to N do
5 Pi,j ← Pi,j−1 +Ai,j ; . Define Pi,0 = 0
6 for j = 1 to N do
7 for i = 1 to M do
8 Pi,j ← Pi−1,j + Pi,j ; . Define P0,j = 0
9 return P;



D =


0 0 0 0
0 11 0 0
0 0 0 0
0 0 0 0

 P =


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1


Fig. 4: If we add a value 1 to D2,2, and let P denote the 2D prefix
sum of D, we will get that value propagated to the bottom-right region
in P .
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Fig. 5: An instance v is decomposed to 4 bottom-right instances
v′0, v

′
1, v
′
2, v
′
3. The increment w on instance v is equivalent to v′0+=w,

v′1-=w, v′2-=w, v′3+=w.

One straightforward method to compute forward accumulation is to
find the overlapping grids for each instance and increment the grids
one by one according to the overlapping areas. We denote this method
as the Naı̈ve method. One drawback of the Naı̈ve method is that the
number of increments is linear in the size of an instance. As a result,
the Naı̈ve method is extremely slow on large instances.

We show that the increments can be done more efficiently by making
use of 2D prefix sum. Specifically, we can equivalently achieve the
increment on a bottom-right submatrix by first incrementing a single
value in a matrix and then computing the 2D prefix sum, as shown in
Figure 4.

Based on this idea, we develop a two-phase algorithm consisting of
density collections for instances and a 2D prefix sum. We decompose
the forward density accumulation into a set of increments on bottom-
right submatrices in two steps. The first step is shown in Figure 5, where
we decompose an instance into 4 bottom-right instances (i.e., instances
at the bottom-right corner of the grid system). It is easy to show the
equivalence of the increment on the original instance and the respective
increments/decrements on the 4 bottom-right instances. If the resulting
bottom-right instances have integer coordinates, then it is a bottom-right
submatrix. Otherwise, we further decompose the bottom-right instances
through the second step shown in Figure 6, in which the bottom-right
instance is split into 4 instances, each can be represented as increments
on bottom-right submatrices, or on a single grid that can be handled
individually.

We present our algorithm for increments on a bottom-right instance
in Algorithm 2, which is essentially the implementation of Figure 6.
Lines 1 and 2 computes px and py , which correspond to the respective
0.4 and 0.6 in Figure 6. Line 3 computes instance v′′1(1). Line 4 computes
instance v′′2(1). Line 5 computes instance v′′0 , v′′1(2) and v′′2(2) together
because they cover the same submatrix. Finally, line 6 computes
instance v′′3 by adding it directly to the grid in the result matrix.

Based on Algorithm 2, Algorithm 3 provides the full procedure for
forward density accumulation. The definitions of matrices A and D are
provided in Algorithm 2. We perform the increments on bottom-right
instances at lines 6-9 for respective v′0-v′3 in Figure 5. After processing
all instances, we obtain matrices A and D. A stores the individual
increment on single grids, and D stores the increments on bottom-right
submatrices prior to the 2D prefix sum. We obtain the final result by
adding A with the 2D prefix sum of D.

One drawback for the proposed prefix sum method is that it makes
more increments for small instances than the Naı̈ve method does, as
a small instance may cover only a few grids. Hence, we introduce an

(x, y)
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Fig. 6: An increment w on a bottom-right instance v′ is split into four
instances v′′0 , v′′1 , v′′2 , v′′3 . Of them, v′′0 is itself a bottom-right submatrix
increment; v′′1 and v′′2 can be each split into two bottom-right submatrix
increments; v′′3 consists of a single grid and can be handled individually.

Algorithm 2: addToRect(A, D, x, y, w)
Input: A, result matrix
Input: D, temporary matrix storing increments on bottom-right

submatrices
Input: (x, y), the top-left coordinates of the bottom-right

instance
Input: w, instance weight

1 px ← dxe − x;
2 py ← dye − y;
3 Ddxe,dye−1 += pyw;
4 Ddxe−1,dye += pxw;
5 Ddxe,dye += (1− px − py)w;
6 Adxe−1,dye−1 += pxpyw;

Threshold to choose between the two methods based on the areas of
instances.

Algorithm 3 runs in O(MN + |V |), where |V | is the number of
instances. In other words, it is linear in both the size of the grid and
the number of instances. For each instance, we break the problem into
4 calls to addToRect, independent to the size of the instance or how
many grids covered by the instance. Therefore, our algorithm has a
balanced workload for each instance.

C. Backward Density Accumulation

In this section, we propose our algorithm for backward density
accumulation (Problem 2). Similar to the forward density accumulation,
We also normalize the size of the grid to 1 × 1, and rewrite the
Equation 3 as ρinst

v × areainst
v =

∑
gx,y∈G w

grid
x,y ×OA(Boxv, gx,y).

We simplify this problem and denote the left-hand-side of this equation
as Rinst

v = ρinst
v × areainst

v , ∀v ∈ V .
Backward density accumulation sums the weights of grids covered

by each instance weighted the overlapping area ratio. We denote P as
the 2D prefix sum of grid weight matrix wgrid ∈ RM×N . Different
from the procedure of the forward algorithm, here we first compute the
prefix sum and then perform density collection on the prefix sum matrix.
A similar idea was proposed by Crow et al [16] for integral images,
but 1) their method only supports backward accumulation while we
generalize the idea to forward accumulation, and 2) they cannot deal
with non-integer coordinates, where an instance can partially cover a
grid, i.e., not overlapping a full grid. The key idea of our algorithm is
to decompose the summation into some combinations of the elements
of 2D prefix sum matrix P and grid weight matrix wgrid.



Algorithm 3: forwardAccumulation(M , N , V )

1 A← M ×N zero matrix;
2 D ← M ×N zero matrix;
3 for each instance v ∈ V do
4 (x1, y1, x2, y2)← Boxv;
5 if Area of Boxv ≥ Threshold then

/* PrefixSum method */
6 addToRect(A,D, x1, y1, winst

v );
7 addToRect(A,D, x1, y2,−winst

v );
8 addToRect(A,D, x2, y1,−winst

v );
9 addToRect(A,D, x2, y2, winst

v );
10 else

/* Naı̈ve method */
11 for i = bx1c to bx2c do
12 for j = by1c to by2c do
13 Denote gi,j as region (i, j),(i+ 1, j + 1);
14 Ai,j+=winst

v OA(Boxv, gi,j)
15 P ←compute2DPrefixSum(D);
16 return A + P ;

= - - +

Fig. 7: A instance v can be decomposed to four top-left instances: v′0,
v′1, v′2, and v′3.

As illustrated in Figure 7, we decompose an instance v into four
independent top-left instances: v′0, v′1, v′2, and v′3, each of which is
a rectangle starting at (0, 0). There are two scenarios to consider for
top-left instances v′. In one case, if the coordinates of the bottom-right
corner (x, y) of v′ happens to be integers, it is exactly the element Px,y

in P . Otherwise, we further decompose the top-left special box sum v′

into four terms: v′′0 , v′′1 , v′′2 , and v′′3 as illustrated at Figure 8. Each term
can be computed from the prefix sum matrix P or grid weight matrix
wgrid. Similar to that in forward density accumulation, v′′0 itself is a
prefix sum element in P ; v′′1 and v′′2 can be further decomposed into
a weighted subsection of two prefix sum elements in P ; v′′3 is within
one grid and can be computed from grid weight matrix wgrid.

The routine for computing top-left instance is summarized in Al-
gorithm 4 corresponding to Figure 8. Line 1 and 2 computed the
overlapping area ratio px and py , which correspond to 0.6 and 0.5 in
Figure 8. Line 3-6 compute for term v′′0 , v′′1 , v′′2 , and v′′3 , respectively.
Finally, we combine all these four terms and get the result of a top-left
instance.

Based on Algorithm 4, we present our algorithm for solving the
backward density accumulation in Algorithm 5. We first compute the 2D
prefix sum of wgrid (line 1), and then compute the results for 4 top-left
instances (line 5). Similarly to that in the forward density accumulation,
we introduce a Threshold for small instances, as the Naive method has
a lower overhead to compute them (lines 7-11). Algorithm 5 runs in
O(MN + |V |), the same as Algorithm 3 for the forward case.

D. Parallelization and GPU Acceleration

In this section, we introduce our CPU and GPU parallelization for the
algorithms. we parallelize 2D prefix sum (Algorithm 1) by allocating
threads for each row (lines 3-5) to finish the 1D prefix sum at rows,
and each column (lines 6-8) for 1D prefix sum at columns.

(x, y) (x, y) (x, y) (x, y) (x, y)
= + + +

(x, y) (x, y)
-0.6×( ) 0.5×( )

0.6

0.
5

(x, y) (x, y)
-

Fig. 8: A top-left instance is equivalent to the sum of 4 terms: v′′0 , v′′1 ,
v′′2 , and v′′3 . Given the grid weight matrix wgrid and 2D prefix sum
matrix P , each term can be further computed in constant time.

Algorithm 4: topLeftSum(wgrid, P , x, y)

1 px ← x− bxc;
2 py ← y − byc;
3 v

′
0 ← Pbxc,byc;

4 v
′
1 ← px(Pbxc+1,byc − Pbxc,byc);

5 v
′
2 ← py(Pbxc,byc+1 − Pbxc,byc);

6 v
′
3 ← pxpyw

grid
bxc+1,byc+1;

7 return v
′
0 + v

′
1 + v

′
2 + v

′
3

For the density collection phase of both forward and backward density
accumulation, we can parallelize the processing of instances as they
are mostly independent. However, as one grid may be simultaneously
updated by multiple threads in the forward accumulation, we need the
atomicAdd primitive to avoid data race. We sketch the kernels for the
forward accumulation in Algorithm 6 for GPU. The implementation for
the backward accumulation is similar, so we skip it for brevity.

IV. EXPERIMENTAL RESULTS

We implement our density accumulation kernels in C++ and CUDA
and evaluated the performance using large designs from ISPD 2005 &
2015 contests [10], [15]. We undertake experiments on a 64-bit Linux
machine with 20 cores Intel Xeon CPU at 2.10GHz, 256GB RAM and
1 GeForce RTX 2080 GPU. We adopt double-precision floating-point
numbers when running the kernels, and measure the time using an
average of ten runs for each setting. The number of threads in a GPU
block is set to T=64, and the Threshold in Section III is set to 4.

We compare our density accumulation kernel with four kernels:
SEQ, Naive, Gessler, and MTPerInst, some of which are used in the
state-of-the-art placers. SEQ stands for the Naive method running at a
single thread, which is equivalent to the sequential implementation. For
forward accumulation, Gessler [14] introduces thread-local copies of
resulting matrices to eliminate synchronization on CPU; MTPerInst [8]
introduces instance-level parallelization on a GPU target by allocating
4 threads for each instance. For backward accumulation, we compare
our implementation with Naive only, because Gessler and MTPerInst
are designed specifically for forward accumulation.

We validate our kernels on two scenarios: bounding boxes of cells
and nets (corresponding to small and large instances). We dump the
bounding boxes and the grid settings from different global placement
iterations of an open-source nonlinear placement engine [8], i.e., {0, 50,
100, 200, 300, · · · , 800}, as the global placement usually finishes at
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Fig. 9: The elapsed time of forward/backward density accumulation w.r.t. the number of threads on bigblue3 with different accumulation
strategies. Forward on (a) net and (b) cell instances; backward on (c) net and (d) cell instances
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Fig. 10: The elapsed time of forward density accumulation at different placement iterations on bigblue3 with different accumulation strategies.
Net instances on (a) CPU and (b) GPU; cell instances on (c) CPU and (d) GPU.

Algorithm 5: backwardAccumulation(wgrid, V )

1 P ←compute2DPrefixSum(wgrid);
2 for each instance v ∈ V do
3 (x1, y1, x2, y2)← Boxv;
4 if Area of Boxv ≥ Threshold then

/* PrefixSum method */
5 Rinst

v ←topLeftSum(wgrid, P, x2, y2) -
topLeftSum(wgrid, P, x1, y2) -
topLeftSum(wgrid, P, x2, y1) +
topLeftSum(wgrid, P, x1, y1);

6 else
/* Naı̈ve method */

7 Rinst
v ← 0;

8 for i = bx1c to bx2c do
9 for j = by1c to by2c do

10 Denote gi,j as region (i, j),(i+ 1, j + 1);
11 Rinst

v += wgrid
i,j OA(Boxv, gi,j);

12 return Rinst
v , ∀v ∈ V ;

around 800 iterations. The runtime values are averaged to one iteration
for each benchmark if not specially mentioned.

Table II lists the benchmark statistics for net boxes and the overall
performance comparison. On average, our CPU kernel for forward
density accumulation is faster than Naive and Gessler by 51.90×
and 22.95×, respectively. Our GPU kernel achieves 8.62× speedup
compared to our CPU kernel, and 181.19×, 64.83× compared to GPU
kernels of Naive and MTPerInst, respectively. For backward density
accumulation, we achieve 41.55× speedup on CPU compared to Naive,
and 209.35× on GPU. We ascribe the large runtime gains on net boxes
to our constant time processing for each instance, which is very suitable
for computing density accumulation on large boxes; e.g., the table shows

Algorithm 6: forwardAccumulation on GPU

1 function forwardInstKernel(A, D, Box , winst, L):
2 j ← blockIdx.x× blockDim.x+ threadIdx.x+ 1;
3 if j > L then return;
4 v ← the jth instance in V ;
5 (x1, y1, x2, y2)← Boxv;
6 Compute density of v, same as Algorithm 3 lines 4-14;
7 A,D ← M ×N zero matrices;
8 Call forwardInstKernel(A, D,Box , winst, |Box |) with
d |Box |

T
e blocks and T threads;

/* Call 2D prefix sum on GPU */
9 P ←compute2DPrefixSum(D);

10 return A+P ;

that the size of a net box is equivalent to around 1000 grids on average.
Table III lists the performance comparison on cell boxes. Our CPU

kernel is 1.24× faster than Gessler, but 0.94× slower than Naive.
This is because cell boxes are much smaller than net boxes, the sizes
of which typically take 2-3 grids. For such kind of small instances,
the Naive method requires fewer operations for each instance than
our method. In addition, computing the prefix sum usually takes 20%
of the runtime for cell instances, which is an additional overhead.
However, our algorithm is highly parallelizable on GPU because of
its constant balanced workload for instances, while the Naive method
has an imbalanced workload for different box sizes. For example, we
achieve 15.91× speedup by migrating our kernels to GPU, making our
kernel 4.49× and 2.15× faster than the GPU implementations of Naive
and MTPerInst. We observe similar patterns in backward case, where
we are 0.74× slower than Naive on CPU but 4.75× faster on GPU
compared to the Naive GPU kernel. Generally, our algorithm is faster for
larger cells, making it more suitable for accelerating macro placement



TABLE II: Runtime comparison on nets. SEQ runs with 1 thread; other CPU kernels run with 20 threads.

Benchmark
Statistics

CPU Forward GPU Forward CPU Backward GPU Backward
#Nets

Box Size†
Avg Max SEQ Naı̈ve Gessler Ours Naı̈ve MTPerInst Ours SEQ Naı̈ve Ours Naı̈ve Ours

bigblue1 284K 1.78K 1048K 2018.75 626.62 295.21 11.59 440.57 92.46 1.73 527.74 142.69 2.25 433.89 1.72
bigblue2 577K 2.23K 1027K 2533.84 466.57 232.12 17.53 204.10 96.85 2.22 661.85 111.99 3.37 329.87 2.05
bigblue3 1123K 5.10K 4018K 9875.79 3559.61 1528.88 56.76 674.42 266.86 4.99 2103.98 435.18 10.39 1005.33 5.64
bigblue4 2229K 6.95K 4158K 26362.47 4499.48 1895.84 93.01 2076.18 731.44 7.81 6654.99 771.46 14.57 2113.05 7.87
superblue12 1293K 0.75K 1495K 3972.19 964.49 451.10 24.29 539.80 199.46 4.22 1400.83 153.78 6.55 693.03 4.16
superblue14 619K 2.01K 580K 3938.26 1258.69 584.47 10.86 463.97 168.80 2.34 1056.26 130.15 3.31 470.23 2.16
superblue16 697K 2.43K 316K 4370.09 717.17 321.55 15.88 463.68 187.66 2.66 1294.14 154.46 3.95 630.35 2.37
superblue19 511K 0.78K 300K 843.77 211.32 132.84 7.21 120.51 39.44 1.53 245.39 33.83 2.12 121.97 1.72

Avg. Ratio 1960.40 447.38 197.88 8.62 181.19 64.83 1.00 503.54 69.82 1.68 209.35 1.00

TABLE III: Runtime comparison on cells. SEQ runs with 1 thread; other CPU kernels run with 20 threads.

Benchmark
Statistics CPU Forward GPU Forward CPU Backward GPU Backward

#Cells
Box Size†

Avg Max SEQ Naı̈ve Gessler Ours Naı̈ve MTPerInst Ours SEQ Naı̈ve Ours Naı̈ve Ours
bigblue1 636K 2.40 10K 45.91 15.78 22.43 17.55 3.85 2.13 1.73 26.70 1.78 2.80 3.74 2.12
bigblue2 1496K 2.27 5K 104.37 32.05 32.22 29.95 2.67 2.82 2.61 64.78 4.17 5.35 1.80 2.89
bigblue3 2042K 3.42 329K 198.63 78.75 108.52 78.13 63.10 26.66 5.54 122.13 10.17 15.50 59.01 5.25
bigblue4 5062K 2.33 125K 456.73 98.66 144.74 108.37 32.45 13.20 10.13 317.28 20.75 27.75 28.32 7.49
superblue12 1463K 2.03 20K 81.57 87.74 57.50 93.21 5.31 4.29 2.74 49.41 3.41 3.80 5.02 1.85
superblue14 682K 2.12 3K 39.60 27.16 54.13 28.69 2.85 1.84 1.29 23.76 1.88 2.13 2.78 1.34
superblue16 734K 2.13 3K 42.34 41.08 54.82 44.59 2.61 2.38 1.41 25.67 2.04 2.14 2.48 1.35
superblue19 601K 2.21 42K 35.24 21.80 53.40 23.73 7.00 3.93 1.21 21.06 1.60 1.85 8.45 1.21

Avg. Ratio 37.67 15.11 19.79 15.91 4.49 2.15 1.00 27.70 1.95 2.61 4.75 1.00

†Box size is defined as the number of grids a box covers, which is computed by dividing the box area by the area of a grid.

with movable large macros and standard cells.
Figure 9 demonstrates the scalability of different CPU kernels. We

observe that the algorithms gradually saturate at 16-20 threads. Gessler
on cell boxes even experiences slow down on 20 threads, as shown
in Figure 9(b). One possible reason is the heavy memory overhead
for keeping thread-local copies of the resulting matrices. Our method
maintains high performance on both forward/backward accumulation of
net boxes, and forward accumulation on cell boxes. However, we are
slightly slower than Naive on cell boxes in the backward case, as shown
in Figure 9(d), due to the small size of cell instances.

Figure 10 draws the runtime for forward density accumulation w.r.t
the iterations of a placement process. Higher runtimes are observed
at the beginning of the iterations because of the highly overlapping
initial cell placement. With cells gradually spreading out, the runtime
drops quickly. Gessler shows good performance on cell boxes at early
iterations, as it does not require data synchronization, but the benefits
no longer exist at later iterations and the memory overhead becomes
dominating when cells spread out, as shown in Figure 10(c).

V. CONCLUSION

In this paper, we have proposed a set of new kernels for acceler-
ating density accumulation on CPU/GPU. We decompose the problem
into constant-time density collection for each instance and a linear-
time 2D prefix sum, and develop CPU and GPU parallelization for
our algorithms. Compared to kernels used in state-of-the-art placers,
we achieved up to 22× speed-up on CPU and 64× on GPU. Our
future work includes further reducing runtime overhead by introducing
instance-level parallelization, as well as exploring Single Instruction
Multiple Data (SIMD) instructions in 2D prefix sum.
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