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Abstract—Modern backend design flow for very-large-scale-
integrated (VLSI) circuits consists of many complicated stages
and requires long turn-around time. Among these stages, VLSI
placement plays a fundamental role in determining the physical
locations of standard cells. Due to increasingly large design sizes,
placement algorithms usually require long execution time to achieve
high-quality solutions. Meanwhile, developing a placer often needs
huge coding effort and tedius tuning, raising the bar of further
researches. In this work, we present an open-source placement
framework, DREAMPlace 2.01, with deep learning toolkit-enabled
GPU acceleration for both global and detailed placement optimiza-
tion to tackle the issues of efficiency and development overhead.

I. INTRODUCTION

Placement plays critical role to design closure of the VLSI
backend flow. It decides the physical locations of standard cells
in the layout, which will significantly affect the solution space
of the succeeding routing stages.

The placement problem takes a circuit netlist and a standard
cell library as input. It needs to place the cells in a fixed-
outline layout region with no overlaps between cells and all
the design rules satisfied. In modern designs, cells have to be
placed in discrete placement sites. The objective of placement
includes wirelength, routability, timing, and so on. As the
problem is NP-hard [1], [2], placement is often divided into
three optimization steps: global placement (GP), legalization
(LG), and detailed placement (DP). GP relaxes the discrete cell
locations to continuous ones and roughly distributes cells in the
layout. LG removes all the overlaps between cells and clean all
design rule violations. DP is a refinement step to improve the
objective with incremental movement of cells.

As a classic problem, there are many existing efforts. The
algorithms for GP can be categorized into quadratic placement
and nonlinear placement. Quadratic placement iterates between
two phases: an unconstrained quadratic programming phase to
minimize wirelength, and a heuristic spreading phase to remove
overlaps. Typical quadratic placers include FastPlace [3], Polar
[4], [5], Ripple [6], SimPL/ComPlx [7], [8], etc. Nonlinear
placement formulates a nonlinear optimization problem and
tries to directly solve it with gradient descent methods. There
are many nonlinear placers such as mPL6 [9], APlace [10],
NTUplace families [11]–[13], ePlace/RePlAce families [14],
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[15]. Generally speaking, nonlinear placement can achieve better
solution quality, while quadratic placement is more efficient.

As GP takes a majority of the runtime in placement, there are
also works to accelerate GP algorithms such as POLAR 3.0 [5]
and UTPlaceF 3.0 [16] with multi-threading. The acceleration
ratio is around 5× with 2 − 6% quality degradation. Cong et
al also explored GPU acceleration for multi-level GP algorithms
[17], where 15× speedup was achieved with less than 1% quality
degradation.

Besides GP, algorithms for DP are mostly based on heuris-
tic approaches with local searching. Widely used DP algo-
rithms include independent set matching, local reordering, global
swap/move, row-based techniques [11], [12], [18]–[20], etc.
Dhar et al [21] explored GPU acceleration for a row-based
interleaving algorithm.

Despite the previous works, current placement engines suffer
from following issues: 1) poor quality-efficiency tradeoff; 3) high
development effort. As mentioned, multi-threading on CPU can
only achieve limited speedup with high quality gradation [5],
[16]. GPU acceleration requires huge development effort and
lacks systematic frameworks [17], [21].

To tackle these challenges and stimulate researches on place-
ment, we present an open-source DREAMPlace 2.0 frame-
work with GPU acceleration enabled by deep learning toolkit
PyTorch for both global and detailed placement. The major
contributions can be summarized as follows.

• We develop the placement algorithms with deep learning
toolkit to decouple the algorithmic design and the kernel
operator development with reduced coding overhead.

• We present a full placement flow including GP, LG, and
DP with both multi-threading and GPU acceleration.

• Experimental results demonstrate that the framework can
accelerate the entire placement flow by 14×, while match-
ing the state-of-the-art solution quality [11], [15].

Meanwhile, the framework offers an easy way to explore new
solvers developed in the deep learning toolkit, e.g., Adam [22],
and stochastic gradient descent (SGD) with momentum. The rest
of the paper is organized as follows. Section II explains the
formulation of placement and the DREAMPlace framework in
details. Section III validates the framework with experimental
results. Section IV concludes the paper.
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II. DREAMPLACE FRAMEWORK

A. Placement Problem

In this work, we consider wirelength as the objective.

Problem 1. Given a netlist, a standard cell library, and a fixed-
outline layout, determine the physical locations of movable cells
with minimum wirelength.

In the GP step, we solve a nonlinear placement problem,
min
x,y

WL(x,y),

s.t. Di(x,y) ≤ td, ∀i ∈ B,
(1)

where x,y denote the coordinates of cells in the layout, which
is divided into a set of bins B uniformly. WL(·) denotes the
wirelength cost, Di(·) denotes the density at bin i, and td is
a given target density. Intuitively, if the density constraints are
satisfied at all bins, it indicates that cells have already spread
out with very small overlaps. The LG step then legalizes the
solution and removes all overlaps between cells. The DP step
further refines the solution while maintaining the legality.

B. Software Architecture

As the placement framework is developed with deep learning
toolkit, we adopt the same software architecture that separates
high-level optimization algorithms with low-level operators, as
shown in Figure 1. The algorithms are developed and assembled
in Python, while low-level operators are highly optimized in
C++/CUDA.

For GP, we rely on two important operators, wirelength and
density, with forward and backward functions to compute the
cost and the gradients, respectively. We propose both multi-
threading and GPU accelerations for these operators. The gra-
dient descent solvers can be implemented in Python with the
automatic gradient derivation package in PyTorch. Solvers in
PyTorch like Adam [22] and SGD can be used for optimiza-
tion. We further develop a custom solver based on Nesterov’s
method with line search [15], which is among the state-of-the-art
optimization techniques for placement.

For LG and DP, each technique is developed as an operator in
C++/CUDA and assembled in Python. For LG, we implement
a greedy legalization technique in NTUplace3 [11] and a row-
based Abacus algorithm [23] on CPU. For DP, three techniques
have been developed, independent set matching, local reordering,
and global swap [11], [19]. To accelerate the techniques, we
propose parallel variations based on batch execution for multi-
threading and GPU.

C. Main Features

As an open-source project, we are actively incorporating new
features. With the release of DREAMPlace 2.0, the main features
so far are summarized as follows.
• Multi-threading and GPU accelerated GP and DP for

weighted wirelength minimization.
• Movable macros supported in GP and LG.
• Bookshelf and LEF/DEF formats supported.

Users can specify whether running on CPU only or GPU only
according their machines. In other words, GPU is not mandatory.
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Fig. 1 Software architecture of DREAMPlace. The circles and
rectangles with blue boundaries denote the portions we need to
implement, while those with green boundaries are offered by
PyTorch.

D. Global Placement Algorithm

The GP algorithm adopts the state-of-the-art family of placers
ePlace/RePlAce, which model the layout as an electrostatic
system [14], [15]. It uses the weighted average wirelength for
the WL(·) term to approximate the nonsmooth half-perimeter
wirelength (HPWL) [24], [25].

WAe =

∑
i∈e xie

xi
γ∑

i∈e e
xi
γ

−
∑

i∈e xie
− xiγ∑

i∈e e
− xiγ

, (2)

where γ is a parameter to control the smoothness and accuracy
of the approximation.

Its density term D(·) comes from the analogy to an elec-
trostatic system, where cells are modeled as charges, density
penalty is modeled as potential energy, and density gradient is
modeled as the electric field. By solving Poisson’s equation, the
electric potential and field distribution can be computed from
the charge density distribution.

∇ · ∇ψ(x, y) = −ρ(x, y), (3a)
n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂R, (3b)∫∫

R

ρ(x, y) =

∫∫
R

ψ(x, y) = 0, (3c)

where R denotes the placement region, ∂R denotes the boundary
to the region, n̂ denotes the outer normal vector of the placement
region, ρ denotes the charge density, and ψ denotes the electric
potential. To solve the constrained optimization in Equation (1),
we relax the constraints into the objective with λ as the La-
grangian multiplier,

min
x,y

WL(x,y) + λD(x,y), (4)

where by gradually increasing the λ, the overlaps between cells
can be eliminated.

E. Legalization Algorithm

In the LG step, we first perform macro legalization by
ignoring the standard cells. Two macro legalization techniques
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Fig. 2 Three DP techniques: (a) independent set matching; (b)
local reordering; (c) global swap.

are developed. The first one is based on greedy spiral search
of legal locations for movable macros. Once the overlaps be-
tween macros are resolved, we perform min-cost flow based
refinement to minimize the displacement following the relative
orders between macros [26]. After macro legalization, we fix
the movable macros and legalize standard cells based on the
Tetris-like approach in NTUplace3 [11], where cells are sorted
from left to right and we find spaces to host cells one by one.
Once a legal solution is found, we perform row-based Abacus
refinement to shift cells for minimum displacement subjecting
to the relative orders [23].

F. Detailed Placement Algorithm

In the DP step, three batch-based concurrent detailed place-
ment techniques are proposed: independent set matching, local
reordering, and global swap. Figure 2 illustrates the sequential
version of the techniques [11], [19]. Independent set matching
extracts a small set of cells that are independent (do not share
common nets) to each other and perform permutation to the
locations with bipartite matching. Local reordering slides a small
window within each row and enumerates all the permutations
for the best cost. Global swap performs pair-wise swapping of
cells to improve the objective. As cells are connected, these
techniques can only work on a small set of cells each time,
assuming all other cells fixed. Thus, it is difficult to parallelize
them.

In DREAMPlace, we modify the algorithms by incorporating
batched execution to enable massive parallelization. For indepen-
dent set matching, instead of extracting independent cells within
a small window, we extract a maximal independent set from the
entire netlist and partitions the set into many small subsets based
on locality. Then, the bipartite matching problems of all the sub-
sets can be solved independently. Be aware that the partitioning
is not constrained by any physical window. For local reordering,
instead of sliding a window within a row sequentially, we first
construct a dependency graph for all rows, where two rows are
dependent if any cell in a row is connected with another cell
in the other row. With the dependency graph, we can extract
independent sets of rows and perform the algorithm on these
rows in parallel. For global swap, instead of finding a swap
pair of cells one by one, we simultaneously search for swap
candidates for a batch of cells and compute the best swapping

candidates without considering any conflict. When realizing the
swap, we adopt sequential execution with a predetermined order
and omit the swap candidates that have conflicts with previous
swaps. In this way, we avoid possible data race in parallelization.

III. EXPERIMENTAL RESULTS

The framework was developed in Python with PyTorch
for optimizers and API, and C++/CUDA for low-level operators.
OpenMP was adopted to support multi-threading on CPU. All
experimental results are collected from a Linux machine with
two Intel 20-core Gold 6230 CPUs @ 2.10GHz (40 cores in
total) and one NVIDIA RTX 2080Ti GPU. Due to page limit,
we only show the experiments on ISPD 2005 contest benchmarks
[27]. More results can be found in [28].

We compare with the state-of-the-art placer RePlAce [15]
(use NTUplace3 [11] for legalization and detailed placement)
in Table I. Results of 40 threads and GPU with different solvers
are reported. Without any quality degradation, DREAMPlace can
achieve 1.3× speedup over RePlAce with 40 threads on CPU,
and 14× speedup on GPU. The major speedup comes from the
GP step. Solvers like Nesterov, Adam and SGD with momentum
are also compared, where Nesterov can provide similar solution
quality to Adam, but around 2× faster in GP. SGD momentum
leads to 1.2% worse wirelength than the other two.

Table II shows the lines of code summarized from cloc [29]
under Linux. As RePlAce only implemented GP and NTUplace3
is not open-source, we can only compare the lines of code for
GP. We can see that DREAMPlace-GP only requires two-third
of lines of code compared with RePlAce, while we support both
CPU and GPU. It needs to mention that among the 20K lines in
DREAMPlace-GP, more than 8K lines are for IO and database
construction. Although we count these lines into DREAMPlace-
GP for fair comparison with RePlAce, it indicates that the lines
for core algorithms are actually even fewer.

IV. CONCLUSION

In this work, we present DREAMPlace 2.0, an open-source
placement framework with multi-threading and GPU accelera-
tion enabled by the deep learning toolkit PyTorch. Experimen-
tal results demonstrate that with GPU acceleration, more than
14× speedup over the state-of-the-art RePlAce using 40 CPU
threads can be achieved on the entire placement flow. With the
decoupled algorithmic design and kernel operator development,
we not only show reduced coding effort, but also easy adoption
of new solvers from the deep learning community. Future work
includes routability and timing consideration.
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