
Invited Paper: Accelerating Routability and Timing
Optimization with Open-Source AI4EDA Dataset

CircuitNet and Heterogeneous Platforms

Xun Jiang1†, Zizheng Guo1†, Zhuomin Chai1,2, Yuxiang Zhao1, Yibo Lin1,3,4∗, Runsheng Wang1,3,4, Ru Huang1,3,4
1School of Integrated Circuits, Peking University, Beijing, China

2School of Physics and Technology and the School of Microelectronics, Wuhan University, Wuhan, China
3Institute of Electronic Design Automation, Peking University, Wuxi, China

4Beijing Advanced Innovation Center for Integrated Circuits

Abstract—Routability and timing are two critical metrics for
modern VLSI circuits. With increasing design complexity and
continuous shrinking of technology nodes, optimizing routability
and timing become extremely expensive due to high computa-
tional overhead for analysis. It is reported that conventional CPU-
based parallelization strategies can no longer scale beyond 8-16
threads. In this talk, we introduce how to accelerate routability
and timing optimization leveraging AI-enabled GPU acceleration.
To break the inter-stage information dependency in conventional
physical design flow, we build AI for EDA models with an open-
source dataset, CircuitNet, to enable ultrafast design optimization
on GPU. We hope our study can shed lights to future development
of EDA tools with AI-enabled heterogenity.

I. INTRODUCTION

Due to the relentless technology scaling and ever-increasing
integration, physical design for VLSI circuits needs to go
through a complicated design flow and becomes extremely
time-consuming. For a million-cell design, it takes days to
weeks for a single physical design iteration, and it is common
to run multiple iterations for design convergence. Let alone
the design sizes for modern SoCs scale to tens of millions
of cells. The semiconductor industry urgently calls for faster
solutions for physical design automation.

Unfortunately, it is very challenging to accelerate physical
design. Firstly, physical design follows a long and iterative
design flow consisting of floorplanning, power planning, place-
ment, clock tree synthesis, routing, routability/timing analysis,
etc., as shown in Figure 1. The information dependency
between design stages pushes away the possibility of task-
level parallelism and raises difficulties in fast cross-stage per-
formance analysis. Secondly, the algorithms in each physical
design stage are often combinations of heuristics, which are
sequential and iterative in nature, causing low parallelism
even in fine granularity. It is observed that CPU-based par-
allelization does not scale beyond 8-16 threads [1]. Therefore,
insisting on the existing physical design methodology can no
longer accelerate design closure. New design methodologies
with algorithm reorganization, redesign, and reformulation are
desired for faster physical design automation.

†Equal contribution. *Corresponding author: yibolin@pku.edu.cn

Floorplan

Power plan

Placement

Clock Tree
Synthesis

Routing

Routability/Timing
Analysis

Design
Feedback

Cross-Stage
Modeling

Fig. 1: Example of iterative physical design flow.

Existing studies have explored to accelerate typical physical
design stages, including placement [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], routing [16], [17],
[18], [19], timing analysis [20], [21], [22], [23], [24], and so
on, with heterogeneous computing resources like GPU and
FPGA. These studies move one step forward to reorganize and
redesign the existing algorithms for heterogeneous hardware.
However, they still follow the conventional design iterations,
where each design stage relies on performance feedbacks from
the output of succeeding stages to guide optimization. Such
an iterative procedure can significantly slow down the entire
design optimization.

To speed up cross-stage performance analysis, artificial
intelligence (AI) techniques have been adopted for early-stage
performance prediction [25]. The literature has extensively
explored cross-stage performance modeling for routability
[26], [27], [28], [29], [30], [31], [32], timing [33], [34],
[35], [36], [37], power [38], [39], [40], etc. As typical AI
models like deep neural networks are naturally parallelizable
on GPU, they break the inter-stage information dependency
and significantly reduce the runtime. However, most studies

have been only focused on building accurate models, while
very few studies explore the effectiveness of integrating AI
models into optimization.

In this work, we introduce recent efforts to leverage AI-
enabled GPU acceleration for routability and timing optimiza-
tion in physical design. The main idea lies in two aspects:
1) AI-assisted cross-stage modeling; 2) AI-inspired design
optimization. We take advantages of an open-source AI for
EDA dataset, CircuitNet [41], [42], consisting of more than
20K+ data samples from commercial design flow and PDKs,
to build accurate and efficient deep learning models. Experi-
mental results demonstrate that our AI-enabled heterogeneous
acceleration can contribute to over 18× speed-up with com-
petitive performance compared with conventional CPU-based
algorithms.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III provides a brief introduc-
tion about CircuitNet dataset. Section IV explains AI-enabled
GPU acceleration for routability optimization. Section V ex-
plains AI-enabled GPU acceleration for timing optimization.
Section VI concludes the paper.

II. RELATED WORK

In this section, we review the recent efforts to accelerate
physical design stages on heterogeneous platforms and AI-
assisted cross-stage performance modeling.

A. Heterogeneous Acceleration of Physical Design

In this section, we review the recent efforts to accelerate
physical design algorithms on heterogeneous platforms.

1) Acceleration of Placement: Placement determines the
locations of cells in a circuit, which can be divided into global
placement, legalization, and detailed placement. Global place-
ment roughly determines the locations of cells by numerical
optimization. Legalization removes the overlap between cells
to satisify design rules, as the result of global placement does
not guarantee legality. Detailed placement further refines the
locations of cells by incremental movement. Cong et al [2]
present an early work to accelerate the nonlinear optimiza-
tion part of global placement with GPU, while leaving the
clustering part on CPU. Lin et al [5] discover the analogy
between solving placement and training neural networks, and
then propose DREAMPlace with deep-learning-toolkit-enabled
GPU acceleration. It can achieve more than 30× speedup on
wirelength-driven global placement compared with the recent
CPU-based placer [43] without quality degradation. This work
stimulates many follow-up studies like Xplace [8] for ultra-fast
ASIC placement, and elfPlace [13] and OpenPARF [14], [15]
for GPU-accelerated FPGA placement.

Besides global placement, Yang et al [10] investigate to
accelerate mixed-cell-height legalization on GPU and achieve
2-4× speedup. Lin et al [6] and Dhar et al [11] propose many
GPU-accelerated algorithms for detailed placement, including
independent set matching, global swap, local reordering, and
intra-row interleaving. Over 10× speedup can be achieved
compared with CPU-based detailed placement algorithms [44].

Dhar et al [12] also develop an FPGA-accelerated wirelength
computation kernel for FPGA placement.

Note the above studies mostly focus on wirelength opti-
mization, which have not yet taken routability and timing
optimization into consideration.

2) Acceleration of Routing: Routing needs to find shortest
paths for each net on a large routing grid graph. It is extremely
time-consuming for the expensive search of paths for millions
of nets on million-node grid graphs. Routing involves various
algorithms like pattern routing and maze routing. Pattern
routing constrains the routing topology for a net to be specific
patterns like L-shape or Z-shape to reduce the search space.
Maze routing usually performs exhaustive search to find the
shortest path for a net. A typical global routing algorithm often
performs pattern routing first and then invokes maze routing
iteratively to route nets failed during pattern routing. Liu et
al [16] propose FastGR with GPU-accelerated L-shape and
Z-shape pattern routing based on dynamic programming as
well as an efficient task scheduling algorithm. It is reported
that pattern routing can be accelerated by 10× on GPU, and
the entire global routing ends up with over 2× speedup. Lin
et al [17] propose a GPU-friendly maze routing algorithm
called GAMER based on iterative sweeping on a matrix, and
later they put both pattern routing and maze routing on GPU
with carefully designed scheduling and data structures [18].
Eventually, 10× speedup for global routing can be achieved.
Besides GPU acceleration, Jiang et al [19] investigate to
implement a dijkstra-based maze routing algorithm on FPGA
and report 3× speedup on the routing kernel.

3) Acceleration of Timing Analysis: Timing analysis aims
at evaluating how fast a digital circuit can run. It computes
delay and propagates timing information throughout the circuit
graph to analyze whether timing constraints are satisfied. Static
timing analysis (STA) is a widely adopted approach to perform
corner-based checking, which is often invoked at each design
stage to guide optimization. STA becomes computationally
expensive with growing circuit sizes and complexity of timing
models. Guo et al [24] propose to put both delay calculation
and timing propagation on GPU, and demonstrate up to 4×
speedup on single corner analysis, and up to 25× speedup
on multi-corner analysis. Later, Guo et al [45] propose a
GPU-based critical path generation algorithm that can achieve
25-45× speedup in reporting 100K critical paths compared
with the state-of-the-art CPU-based algorithm. Guo et al [23]
propose HeteroCPPR to resolve a specific kind of timing
exception from common path pessimism. They improve the
theoretical complexity of common path pessimism removal
(CPPR) and report up to 16× speedup with 4 GPUs for
completing the analysis of 10K post-CPPR critical paths in
a million-cell design.

These studies have explored to reorganize and redesign
specific algorithms in each design stage to achieve massive
parallelism on heterogeneous platforms. However, they still
cannot break the inter-stage information dependency and rely
on expensive design iterations for convergence, which is not
enough to fundamentally accelerate the physical design flow.

B. AI-Assisted Cross-Stage Performance Modeling

In this section, we review the recent efforts to AI-assisted
cross-stage performance modeling.

1) Routability Modeling: Many studies have investigated to
build ML models for routability prediction in physical design.
As a layout in physical design can be naturally viewed as an
image, existing studies leverage convolutional neural networks
(CNNs) as the backbone of ML models to learn the geometric
correlation [26], [27], [29], [30]. They extract image-like
features from the layout as the input of ML models and
output congestion maps or distribution maps of DRV hotspots.
Another stream of studies start by viewing the circuit netlist
as a graph, and leverage graph neural networks (GNNs) for
routability prediction [28], [31], [32]. The layout information
like the locations of cells is encoded into the attributes of graph
nodes. The topological correlation can be learned through
message passing between graph nodes. Recent studies also try
to combine CNN and GNN to better capture both geometric
and topological information [46].

2) Timing Modeling: Timing modeling aims at predicting
net delay and slacks at early design stages without full
information for exact timing analysis. A typical problem
formulation in physical design is to predict post-routing timing
information at placement stage. Barboza et al [33] propose to
utilize random forest for net delay prediction. He et al [35]
propose to leverage GNN to predict net delay and integrate into
timing propagation to obtain the global timing information in
static timing analysis. Guo et al [34] propose a level-by-level
GNN to jointly learn net delay and global timing information.
Ye et al [36], [37] explore to leverage GNN to close the gap
between static timing analysis and sign-off timing information.

Most studies have been focusing on building accurate ML
models, while very few work looks into effective performance
optimization with ML models.

III. THE CIRCUITNET DATASET

CircuitNet1 is an open-source dataset for AI applications
in chip design. With the development of AI for EDA in
recent years [25], various machine learning (ML) models are
invented to assist the traditional EDA flow to perform better.
However, most researchers have to sacrifice a large amount of
time to generate private datasets to evaluate the effectiveness
of their ML models, which raises the bar for other people,
especially researchers from the ML community, to conduct
interdisciplinary studies and reproduce existing works.

CircuitNet provides user-friendly image-based and graph-
based data extracted from intermediate chip design stages
for building multi-modal ML models. It includes over 20,000
samples with many kinds of chip designs (e.g., CPU, GPU,
and ML accelerators). The chosen chip designs are from
well-developed open-source hardware projects in academia
and industry, whose design quality has been verified by
many users of the hardware community. The CPU designs
include three types of microcontroller-level CPUs from the

1https://circuitnet.github.io/

Congestion
Prediction

DRV
Prediction

IR Drop
Prediction

Geometric

Features Labels ML Tasks

Sp
at

ia
l

Temporal

Sp
at

ia
l

Sp
at

ia
l

Net Delay
Prediction

Topological

s
a
b

c

Net Delays
s→a, s→b,

s→c

Raw Data

ML Models
FCN, cGAN, Circuit

GNN, RouteNet, J-Net,
MAVIREC, ……

Fig. 2: Example of tasks supported by CircuitNet.

academic PULPino project and one high-performance CPU
from the industrial OpenC910 project. The GPU designs in our
dataset come from the academic Vortex project, where designs
contain massive parallel processing units. The ML accelerator
designs come from the industrial NVDLA project with specific
dataflow for ML algorithms. All the designs can be further
configured to generate different hardware samples. Besides,
two types of widely-used technology nodes, including 28nm
planar CMOS and 14nm FinFET, are applied throughout the
complete commercial design flows to these chip designs.

The generation flow is divided into two parts, including
synthesis and physical design. RTL designs are synthesized
with different frequencies to generate netlists. These netlists
are then put into the physical design flow with various set-
tings, e.g., cell utilization, floorplan mode, etc. Between the
intermediate stages of the physical design flow, we conduct the
analysis procedures to evaluate their outcomes with different
metrics, such as congestion, design rule violation (DRV), IR
drop, timing, and power. These data will be viewed as labels
in the ML optimization flow. The features used for these ML
models are translated into image or graph format from the raw
LEF/DEF files, reports, or netlists. It is worth mentioning that
users have the freedom to generate richer features and labels
based on the raw data provided in the dataset.

CircuitNet support multiple ML for EDA tasks, including
routability prediction, IR drop prediction, and timing predic-
tion, as shown in Figure 2. The routability prediction tasks the
placement results as input to predict the severity of congestion
after global routing and potential DRVs after detialed routing.
The characteristics of these tasks are similar to image-to-image
generation, where some works leverage GAN for prediction.
The IR drop prediction is performed after the stage of CTS,
which utilizes the spatial and temporal power data to predict
the IR drop hotspots in the layout. One important factor in this
task is that 3D CNN architecture can be used to handle the
temporal axis of power data. The timing prediction is a multi-
modal ML task, where the inputs of it include the geometric
layout data and the graph-format netlists. To predict the timing
data, the widely-used GNN model is employed on CircuitNet.

https://circuitnet.github.io/

IV. ROUTABILITY MODELING AND OPTIMIZATION

Routability relates to the potential routing quality provided
by the current design solution, and it is largely affected
by placement solutions. Routability estimation at pre-routing
stages is challenging, as we need to model the complex
heuristics in the routing algorithm. This section demonstrates
our techniques to obtain fast and accurate routability prediction
for guiding routability optimization using CircuitNet dataset
on a heterogeneous platform.

A. Routability Modeling using FCN and CircuitNet

Routing is the notably time-consuming stage which can take
over half of the cycle in physical design. Poor routability
introduces more congestion in global routing or more DRVs in
detailed routing, which must be totally solved before tape-out.
Routability is strongly correlated to placement and cannot be
fully optimized solely in routing stage.

Many routability-driven placement methods [47], [48], [49]
leverage early-stage estimator like RUDY [50], or directly
invoke global routing for congestion estimation, but these
methods have either low accuracy or efficiency. To achieve fast
and accurate routability estimation, ML techniques are adopted
[26], [27], [28], [29], [30], [32]. We extract various features
from placement, like cell density, pin density, RUDY [50],
pin RUDY [26], and macro regions, and build ML models to
predict global routing congestion, which is defined as the ratio
of routing demand over routing resource in each global routing
cell (GCell). As both features and labels can be encoded into
images, as shown in Figure 3, we formulate an image-to-image
translation task and adopt a fully convolutional network (FCN)
with a encoder-decoder structure as the backbone of the ML
model. Note that the congestion labels in CircuitNet come
from global routing using Cadence Innovus.

We use the CircuitNet-ISPD15 dataset for training and eval-
uation, a visualization of the features and the label are shown
in 3. This dataset is constructed based on ISPD 2015 detailed-
routability-driven placement contest benchmarks [51]. We gen-
erate 150 data samples using the 5 million-cell superblue
designs for congestion prediction, 30 for each design, through
changing macro locations and core utilizations. We split the 30
samples of superblue12 into six groups and use each group
as a training set. The rest 120 samples of other superblue
designs are used as testing set. Then we train on each group
for 200 iterations and report the average testing accuracy on
the testing set. As building ML models requires large amount
of training data, we first pre-train a model using 10K+ data
samples in CircuitNet-N28, and then fine-tune to the training
set in CircuitNet-ISPD15 utilizing a teacher-student network
[42]. We compare the results of training from scratch (“from
scratch”) and fine-tuning in Table I. With the knowledge
transferred from CircuitNet-N28, much better performance can
be achieved on the testing set, as shown in Table I, denoted
as “fine-tuning”. Compared with running global routing using
Cadence Innovus for congestion evaluation, our FCN model
can achieve 722,705× speedup on GPU in average with a
stable inference time.

(a) Macro Regions (b) RUDY

(c) pin RUDY (d) Congestion

Fig. 3: Visualization of the features (a-c) and label (d) in
CircuitNet-ISPD15.

B. Heterogeneous Routability Optimization

Cell inflation is a typical strategy for routability-driven
placement [47], [48], [49]. Figure 4 demonstrates our GPU-
accelerated routability-driven placement flow, which performs
cell inflation at congested regions based on the routability pre-
diction model in Section IV-A. We extract features like macro
regions, RUDY, and pin RUDY with GPU-accelerated kernels,
and obtain the congestion map through model inference. The
routability optimization is triggered when the density overflow
is under a certain threshold, when cells have been spread
enough for meaningful routability prediction.

We run the routability optimization flow on ISPD2015
benchmarks, and use Cadence Innovus for global routing to
get congestion and wirelength. We demonstrate the results on
the designs in the testing set in Table II. We evaluate routed
wirelength (WL) and congestion rate (CR), defined as:

H-CR =

∑H
i=1

∑V
j=1 Overflow h(i, j)

HV
, (1a)

V-CR =

∑H
i=1

∑V
j=1 Overflow v(i, j)

HV
, (1b)

where H and V are the numbers of horizontal and vertical
GCells. Overflow h and Overflow v are horizontal and
vertical overflow values for GCell (i, j), respectively.

Our routability-driven placement flow can achieve CR re-
duction in all test designs with an average of 26.0% and
28.4% in both horizontal and vertical directions, respectively,
with slight wirelength degradation, compared with the default
wirelength-driven DREAMPlace. Figure 5 shows the runtime
comparison under different design scales. To show the runtime
benefits from AI-assisted routability optimization, we compare
the results of other routability-driven placers reported from a
previous AI-assisted optimization work [52]. Due to different
experimental settings and benchmarks (we set target density to
0.9 to make challenging congestion), we cannot make direct

TABLE I: Accuracy of routability prediction and runtime comparison between FCN model inference and Innovus flow.

Benchmark from scratch fine-tuning Runtime (s)
NRMSE↓ SSIM↑ NRMSE↓ SSIM↑ Innovus FCN Speed-up

superblue11_a 0.081 0.547 0.042 0.709 13002 0.011 1182000
superblue14 0.089 0.382 0.049 0.534 5455 0.011 495910
superblue16_a 0.082 0.524 0.062 0.611 8722 0.011 792910
superblue19 0.092 0.449 0.046 0.621 4620 0.011 420000

Average 0.086 0.476 0.050 0.619 31799 0.011 722705

comparison on routed wirelength and congestion, but we can
still compare the runtime scalability with problem sizes. Note
that such comparison may not be fair, but just to provide a
sense of the potential speed-up we can get. We can see that
AI-assisted approaches can achieve more than 43× speed-
up on average over CPU-based algorithms like NTUplace4dr
[53], as they rely on global routing for routability evaluation.
Our method is also on average 3.4× faster than [52], as they
leverage the gradient of routability prediction models to guide
placement at each iteration, while we trigger the routability
prediction model much less frequently for cell inflation.

Routability
Optimization

Feature Extraction

Global Placement

Initial Cell Positions

Converge?

Density overflow
< threshold?

Routability
Optimization

Yes

No

Yes
Output

No

Current Cells

Our FCN
Model

Cell Inflation

Inflated Cells

Macro Region

RUDY

Pin RUDY

Placement Iteration

Wirelength
Gradient

Density
Gradient

Update Cell Positions

Fig. 4: The AI-assisted heterogeneous routability-driven place-
ment flow.

V. TIMING MODELING AND OPTIMIZATION

Timing is one of the ultimate goals for physical design
due to its direct connection with circuit correctness and
performance. While there has been plenty of room for cir-
cuit optimization during different design stages, it is highly
nontrivial to place timing as one of our design targets, due to
challenges in both timing modeling techniques and timing op-
timization algorithms. This section introduces our techniques
to solve both challenges using the CircuitNet dataset and a
heterogeneous platform.

A. AI-Assisted Timing Modeling using GNN and CircuitNet

Pre-routing design lacks detailed parasitics information of
nets, which makes it difficult to accurately model net delay and
cell loads. During the pre-routing design stages like placement,
it is impossible to perform routing, parasitics extraction, and
timing analysis on every optimization iteration due to the
unacceptable runtime cost. While analytical timing estimation
models can fail to account for complex interconnect effects,
machine learning techniques have shown to be a promising
way to model the timing of interconnects in a data-driven
manner [55], [56], [57], [34], [36], [58]. This requires a
flexible ML model trained under a large and diverse circuit
dataset to yield enough accuracy.

To demonstrate the usefulness of CircuitNet on timing mod-
eling, we use a graph neural network (GNN)-based model from
a state-of-the-art pre-routing net delay prediction work [34].
Our basic idea is inspired by the calculation of Elmore delay
model, which uses dynamic programming (DP) on net trees.
During DP, the sum of subtree capacitive loads is collected
from bottom to top, and the signal delay is propagated from
top to bottom. We model this message-passing strategy as a
GNN layer which we call the net convolution layer.

The net convolution layer is shown in Figure 6. One layer
consists of a graph broadcast operation followed by a graph
reduce operation. The graph broadcast operation sends the
embedding of the net source to all net sinks, and the graph
reduce operation collects the embeddings of net sinks at the
net source. During the reduction, two independent channels are
used with sum and max operations, respectively. We stack 3 of
the net convolution layers to form our net convolution model.
Our model takes the basic features of the unrouted input net
including pin capacitances, pin directions, and input-output
distances. The output embedding of the model on every sink
is the net delay prediction from the source pin to this sink.

We use 10 samples from each design in CircuitNet-N28
and split them into training and testing sets based on designs.
Our experimental results are shown in Table III. Overall, our
GNN model can successfully learn the routing behavior that
is transferable to test circuit designs. Meanwhile, our GNN is
significantly faster than the traditional EDA flow including
global routing and static timing analysis. For example, we
are 7535–15024× faster than the Cadence Innovus flow. Thus
when used in early placement stages, our AI-assisted timing
model introduces low overhead inside optimization iterations.

TABLE II: Routability improvements on ISPD 2015 contest benchmarks [51] using our AI-assisted placement flow1.

Benchmark DREAMPlace Ours [42]
H-CR V-CR WL (e+06 um) H-CR V-CR WL (e+06 um)

superblue11_a 0.0222 0.0151 38.27 0.0239 0.0144 40.10
superblue14 0.1410 0.1508 25.77 0.1347 0.1481 25.87
superblue16_a 0.0719 0.0926 28.48 0.0595 0.0633 29.10
superblue19 0.1906 0.2638 19.65 0.1194 0.1811 20.16

Average 0.1064 0.1306 28.04 0.0844 0.1017 28.81
Ratio 1.260 1.284 0.973 1.000 1.000 1.000

1 superblue12 is used for training, and the rest superblue designs are used to verify the placement results.

10

100

1000

10000

100000

500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000

R
un

tii
m

e (
s)

Problem Size (#Cells)

NTUplace4dr DATE21 AI-Assisted (GPU) Ours AI-Assisted (GPU)

3.4×

43×

Fig. 5: Runtime comparison with NTUplace4dr [48] and gradient-based AI-assisted placement flow [52] on designs from the
ISPD 2015 contest [54], based on data collected from [52]. Noted that the runtime for superblue11_a is not reported in
[52], as it is used for training.

X
a

b
c

Input Net
(Unrouted)

X
a

b
c

Graph
Reduce

X
a

b
c

Graph
Broadcast

Net Conv 1

Net Conv 2

Net Conv 3

Pin cap,
Pin is PI/PO,
Input-output

distance

Pin feature,
I/O distance

Delay(x->a),
Delay(x->b),
Delay(x->c).

Fig. 6: The GNN-based net convolution model for pre-routing
net delay prediction [34].

TABLE III: Accuracy of net delay prediction and runtime
comparison between timing GNN model inference and the
Innovus flow.

Benchmark R2
Runtime (s)

Innovus GNN Speed-up

Train

RISCY-a 0.9106 286 0.0212 13473.2
RISCY-b 0.8815 280 0.0186 15024.5

RISCY-FPU-a 0.9021 297 0.0292 10176.9
RISCY-FPU-b 0.8818 292 0.0196 14879.7

Test
zero-riscy-a 0.8938 155 0.0217 7129.2
zero-riscy-b 0.8706 149 0.0198 7535.7

B. AI-Inspired Heterogeneous Timing Optimization

Based on accurate timing modeling, timing optimization in
the placement stage pays attention to timing-critical circuit
regions and paths to prioritize their shortening. The perfor-
mance of a timing-driven placement engine is determined
by its explicitness in timing objective formulation, as well
as its computational overhead compared to wirelength-driven
placement flows. Most widely-used timing-driven optimization
algorithms [59], [60], [61], [62], [63], [64], [65], [66] address
the timing targets in indirect ways like net weighting due
to the indifferentiable timing objectives, which harms their
optimization outcome. Meanwhile, as the performance of
placement engines has reached a new milestone thanks to
GPU-based heterogeneous parallelism [5], the timing opti-
mization algorithm is becoming the performance bottleneck
due to its CPU affinity.

To improve the explicitness of the timing objectives, we
proposed a differentiable timing-driven optimization frame-
work [7]. We noted the analogy between the timing optimiza-
tion problem in placement and the training of a multi-layer
deep neural network (DNN) model, as illustrated in Figure 7.
The trainable weights in a DNN are analogous to the movable
cell locations in placement. The model structure of a DNN
corresponds to the circuit topology of our placement instance.
The output of a DNN is obtained by forward propagating
the hidden representation vectors throughout the DNN layers,
whereas the timing slacks of a circuit are obtained by forward
propagating the arrival times throughout the directed acyclic

graph (DAG) of the design.
Inspired by these analogies, we learn from the training of a

DNN using the back-propagation algorithm. In similar, we can
calculate the gradient of timing objectives to the cell locations
by back-propagating on the circuit topology. By smoothing the
timing corner merges using the log-sum-exp formula, we build
a differentiable timing engine that can be seamlessly integrated
into an existing analytical placement flow.

X a

b

Y
c

Level 1 Level 2

Z

W

Level 3

Net Delay
Cell Delay

Layer 1 Layer 2 Layer 3

Activation
Function

Feature
Transform

Forward Prop for Objective

Backward Prop for Gradients

Forward Prop for Slacks

Backward Prop for Gradients?

Fig. 7: The analogy between a timing analysis engine and a
deep neural network [7].

The differentiable timing-driven placement algorithm can
effectively reduce the timing violations in the placement stage,
thanks to its direct modeling of the timing target. We have run
the algorithm using 8 different netlists from the ICCAD 2015
contest [54], as well as 6 different netlists from CircuitNet. We
list the result of worst negative slack (WNS), total negative
slack (TNS), and wirelength in Table IV and Table V, respec-
tively. Almost all the designs tested witness improvements
in WNS and TNS, without notable wirelength degradation
compared to a non-timing-driven flow. The average WNS
and TNS improvements are 15.0% and 17.6% on CircuitNet,
respectively.

During the placement optimization, the differentiable timing
analysis and optimization are repeatedly invocated within
the inner optimization loop which consists of hundreds to
thousands of iterations. This makes the performance of timing
analysis critical for efficient chip optimization. With the size
of modern circuit designs reaching millions of logic gates
and logic depth reaching hundreds, traditional CPU-based
parallel timing analysis engines fail to deliver reasonable per-
formance due to their poor scalability that saturates at around
16 CPU threads. We solve this scalability challenge using
heterogeneous CPU-GPU parallelism [21]. We develop high-
performance timing analysis kernels covering both forward
slack computation and backward gradient computation.

Figure 8 shows the GPU-accelerated timing-driven place-
ment flow. We implement the kernels as PyTorch operators to
make use of the auto-differentiation algorithm from the exist-
ing ML framework. In addition to the wirelength and density
kernels from DREAMPlace, we add differentiable WNS and
TNS kernels in objective and gradient calculation. Thanks to
the efficient heterogeneous kernels and our AI-inspired differ-
entiable flow, our timing-driven placement engine outperforms

Global Placement

Wirelength
Gradient

Density
Gradient

WNS/TNS
Gradient

Initial Cell Positions

Update Cell Positions

Update Steiner Trees w. FLUTE

Every 10 iterations

Converge?
No

Otherwise

Legalization

Yes

Output

CPU
Task
GPU
Task

Update Parameters

Fig. 8: The AI-inspired heterogeneous timing-driven place-
ment flow [7].

the CPU-based OpenROAD flow [67], [43] and the GPU-
based net weighting flow [66] by a notable gap on runtime.
Figure 9 shows the runtime comparison under different design
scales. We achieved an average 18.9× and 1.8× speed-up over
OpenROAD and net weighting, respectively.

VI. CONCLUSION

In this paper, we have introduced AI-enabled GPU accel-
eration for routability and timing optimization in physical
design. The main idea is to leverage AI-assisted cross-stage
prediction and AI-inspired design optimization to break the
inter-stage information dependency and achieve massive par-
allelism on heterogeneous CPU-GPU platforms. AI-assisted
cross-stage prediction based on an open-source AI for EDA
dataset CircuitNet can achieve thousands of times of speedup
compared with conventional iterative design feedbacks. AI-
inpsired design optimization brings a new way to effectively
optimize timing with GPU-friendly computation workloads.
Our experimental results demonstrate that over 18× speedup
can be achieved on heterogeneous CPU-GPU platforms with
competitive performance compared with conventional CPU-
based approaches. In the future, we plan to extend the method-
ology to other design stages like floorplanning, powerplanning,
and clock tree synthesis.

ACKNOWLEDGE

This work was supported in part by the National
Key Research and Development Program of China (No.
2021ZD0114702).

REFERENCES

[1] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–789, 2021.

[2] J. Cong and Y. Zou, “Parallel multi-level analytical global placement on
graphics processing units,” in Proc. ICCAD. ACM, 2009, pp. 681–688.

TABLE IV: Timing slack improvements on ICCAD 2015 contest benchmarks [54] using our differentiable timing-driven
placement flow, compared with DREAMPlace, OpenROAD, and net weighting.

Benchmark
DREAMPlace [5] OpenROAD [67], [43] Net Weighting [68], [66] Ours

WNS TNS HPWL WNS TNS HPWL WNS TNS HPWL WNS TNS HPWL

superblue1 -18.87 -262.44 421.97 -28.01 -192.37 462.40 -14.10 -85.03 443.14 -10.77 -74.85 423.80
superblue3 -27.65 -76.64 478.18 -23.31 -70.21 598.70 -16.43 -54.74 482.40 -12.37 -39.43 478.37
superblue4 -22.04 -290.88 311.97 -21.65 -190.71 324.90 -12.78 -144.38 335.94 -8.49 -82.92 312.23
superblue5 -48.92 -157.82 488.29 -35.72 -140.44 518.80 -26.76 -95.78 556.18 -25.21 -108.08 488.72
superblue7 -19.75 -141.55 604.28 -19.02 -194.62 627.40 -15.22 -63.86 603.97 -15.22 -46.43 602.10
superblue10 -26.10 -731.94 935.93 -23.35 -575.78 946.60 -31.88 -768.75 1036.67 -21.97 -558.05 934.44
superblue16 -17.71 -453.57 435.76 -18.27 -523.53 455.50 -12.11 -124.18 448.11 -10.85 -87.03 485.12
superblue18 -20.29 -96.76 243.03 -9.95 -75.82 264.80 -11.87 -47.25 253.64 -7.99 -19.31 243.58

Avg. Ratio 1.897 3.125 0.987 1.712 2.889 1.066 1.282 1.472 1.043 1.000 1.000 1.000

100

1000

10000

100000

700000 900000 1100000 1300000 1500000 1700000 1900000

R
un

tim
e

(s
)

Problem Size (#Cells)

OpenROAD (CPU) Net Weighting (GPU) Ours AI-Inspired (GPU)

18.9×

1.8×

Fig. 9: Runtime comparison with OpenROAD and net weighting-based timing-driven placement flow on designs from the
ICCAD 2015 contest [54]. Data for OpenROAD and net-weighting-based method is collected from [66] on a Linux host with
40 Intel Xeon CPU cores, 4 GeForce RTX 2080 Ti GPUs, and 256 GB RAM.

TABLE V: Timing slack improvements on CircuitNet using
our differentiable timing-driven placement flow.

Benchmark
DREAMPlace Ours

WNS TNS HPWL WNS TNS HPWL

RISCY-a -68.52 -246 1048.4 -57.25 -223.3 1051.2
RISCY-b -51.45 -113.3 1132.9 -46.28 -94.83 1132.0
RISCY-FPU-a -98.87 -823.7 1659.5 -97.89 -783.9 1663.4
RISCY-FPU-b -226.7 -1038 1859.7 -148.5 -687.6 1845.2
zero-riscy-a -26.77 -175.1 936.8 -25.96 -156.5 934.8
zero-riscy-b -49.84 -49.14 830.5 -48.56 -45.45 824.4

Avg. Ratio 1.150 1.176 1.002 1.000 1.000 1.000

[3] C.-X. Lin and M. D. Wong, “Accelerate analytical placement with gpu:
A generic approach,” in Proc. DATE. IEEE, 2018, pp. 1345–1350.

[4] Z. Guo, J. Mai, and Y. Lin, “Ultrafast cpu/gpu kernels for density ac-
cumulation in placement,” in Proc. DAC, San Francisco, CA, December
2021.

[5] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPlace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE TCAD, 2020.

[6] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCD-
Place: Accelerated batch-based concurrent detailed placement on multi-
threaded cpus and gpus,” IEEE TCAD, 2020.

[7] Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,” in
Proc. DAC. ACM, 2022.

[8] L. Liu, B. Fu, M. D. F. Wong, and E. F. Y. Young, “Xplace: An extremely
fast and extensible global placement framework,” in Proc. DAC, 2022.

[9] P. Liao, H. Liu, Y. Lin, B. Yu, and M. Wong, “On a moreau envelope
wirelength model for analytical global placement,” in Proc. DAC. San
Francisco, CA: ACM/IEEE, July 2023.

[10] H. Yang, K. Fung, Y. Zhao, Y. Lin, and B. Yu, “Mixed-cell-height legal-

ization on cpu-gpu heterogeneous systems,” in Proc. DATE, Antwerp,
Belgium, March 2022.

[11] S. Dhar and D. Z. Pan, “GDP: GPU accelerated detailed placement,” in
Proc. HPEC, Sept 2018.

[12] S. Dhar, L. Singhal, M. Iyer, and D. Pan, “Fpga accelerated fpga
placement,” in Proc. FPL. IEEE, 2019, pp. 404–410.

[13] Y. Meng, W. Li, Y. Lin, and D. Z. Pan, “elfplace: Electrostatics-based
placement for large-scale heterogeneous fpgas,” IEEE TCAD, vol. 41,
pp. 155–168, January 2021.

[14] J. Mai, Y. Meng, Z. Di, and Y. Lin, “Multi-electrostatic fpga place-
ment considering slicel-slicem heterogeneity and clock feasibility,” in
Proc. DAC. San Francisco, CA: ACM/IEEE, July 2022.

[15] J. Mai, J. Wang, Z. Di, G. Luo, Y. Liang, and Y. Lin, “Openparf: An
open-source placement and routing framework for large-scale heteroge-
neous fpgas with deep learning toolkit,” in Proc. ASICON. Nanjing,
China: IEEE, October 2023.

[16] S. Liu, Y. Pu, P. Liao, H. Wu, R. Zhang, Z. Chen, W. Lv, Y. Lin, and
B. Yu, “Fastgr : Global routing on cpu-gpu with heterogeneous task
graph scheduler,” IEEE TCAD, vol. 42, pp. 2317–2330, October 2022.

[17] S. Lin, J. Liu, E. F. Young, and M. D. Wong, “Gamer: Gpu-accelerated
maze routing,” IEEE TCAD, vol. 42, no. 2, pp. 583–593, 2022.

[18] S. Lin and M. D. Wong, “Superfast full-scale cpu-accelerated global
routing,” in Proc. ICCAD, 2022, pp. 1–8.

[19] X. Jiang, Y. Lin, and Z. Wang, “Fpga-accelerated maze routing kernel
for vlsi designs,” in Proc. ASPDAC. Virtual Conference: IEEE, January
2022.

[20] Y. Shen and J. Hu, “GPU acceleration for PCA-based statistical static
timing analysis,” in Proc. ICCD. IEEE, 2015, pp. 674–679.

[21] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing
analysis,” in Proc. ICCAD. ACM, 2020.

[22] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated path-
based timing analysis,” in Proc. DAC. ACM, 2021.

[23] Z. Guo, T.-W. Huang, and Y. Lin, “Heterocppr: Accelerating common
path pessimism removal with heterogeneous cpu-gpu parallelism,” in
Proc. ICCAD, Virtual Conference, November 2021.

[24] ——, “Accelerating static timing analysis using cpu-gpu heterogeneous
parallelism,” IEEE TCAD, 2023.

[25] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J. Henkel,
“Mlcad: A survey of research in machine learning for cad,” IEEE TCAD,
vol. 41, pp. 3162–3181, November 2021.

[26] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and
J. Hu, “Routenet: Routability prediction for mixed-size designs using
convolutional neural network,” in Proc. ICCAD. IEEE, 2018, pp. 1–8.

[27] C. Yu and Z. Zhang, “Painting on placement: Forecasting routing
congestion using conditional generative adversarial nets,” in Proc. DAC,
2019, pp. 1–6.

[28] R. Kirby, S. Godil, R. Roy, and B. Catanzaro, “Congestionnet: Routing
congestion prediction using deep graph neural networks,” in Proc. VLSI-
SoC. IEEE, 2019, pp. 217–222.

[29] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale fpgas,” in
Proc. ASPDAC. IEEE/ACM, January 2020.

[30] R. Liang, H. Xiang, D. Pandey, L. Reddy, S. Ramji, G.-J. Nam, and
J. Hu, “Design rule violation prediction at sub-10nm process nodes using
customized convolutional networks,” TCADICS, 2021.

[31] B. Wang, G. Shen, D. Li, J. Hao, W. Liu, Y. Huang, H. Wu, Y. Lin,
G. Chen, and P. A. Heng, “Lhnn: Lattice hypergraph neural network
for vlsi congestion prediction,” in Proc. DAC. San Francisco, CA:
ACM/IEEE, July 2022.

[32] Y. Chen, J. Mai, X. Gao, M. Zhang, and Y. Lin, “Macrorank: Rank-
ing macro placement solutions leveraging translation equivariancy,” in
Proc. ASPDAC, Tokyo, Japan, January 2023.

[33] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. DAC,
2019, pp. 106:1–106:6.

[34] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
in Proc. DAC. ACM, 2022.

[35] X. He, Z. Fu, Y. Wang, C. Liu, and Y. Guo, “Accurate timing prediction
at placement stage with look-ahead rc network,” in Proc. DAC, 2022,
pp. 1213–1218.

[36] Y. Ye, T. Chen, Y. Gao, H. Yan, B. Yu, and L. Shi, “Fast and Accurate
Wire Timing Estimation Based on Graph Learning,” in Proc. DATE.
Antwerp, Belgium: IEEE, Apr. 2023, pp. 1–6.

[37] ——, “Graph-learning-driven path-based timing analysis results predic-
tor from graph-based timing analysis,” in Proc. ASPDAC, 2023, pp.
547–552.

[38] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang,
“Primal: Power inference using machine learning,” in Proc. DAC, 2019,
pp. 1–6.

[39] Z. Xie, X. Xu, M. Walker, J. Knebel, K. Palaniswamy, N. Hebert, J. Hu,
H. Yang, Y. Chen, and S. Das, “Apollo: An automated power modeling
framework for runtime power introspection in high-volume commercial
microprocessors,” in Proc. MICRO, 2021, pp. 1–14.

[40] Z. Xie, “Efficient runtime power modeling with on-chip power meters,”
in Proc. ISPD, 2023, pp. 168–174.

[41] Z. Chai, Y. Zhao, Y. Lin, W. Liu, R. Wang, and R. Huang, “Circuitnet:
An open-source dataset for machine learning applications in electronic
design automation (eda),” SCIENCE CHINA Information Sciences,
September 2022.

[42] Z. Chai, Y. Zhao, W. Liu, Y. Lin, R. Wang, and R. Huang, “Circuitnet:
An open-source dataset for machine learning in vlsi cad applications
with improved domain-specific evaluation metric and learning strate-
gies,” IEEE TCAD, 2023.

[43] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing
solution quality and routability validation in global placement,” IEEE
TCAD, 2018.

[44] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“Ntuplace3: An analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints,” IEEE TCAD, vol. 27, no. 7,
pp. 1228–1240, 2008.

[45] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. F.
Wong, “A gpu-accelerated framework for path-based timing analysis,”
IEEE TCAD, pp. 1–1, 2023.

[46] Y. Zhao, Z. Chai, Y. Lin, R. Wang, and R. Huang, “Hybridnet: Dual-
branch fusion of geometrical and topological views for vlsi congestion
prediction.” Nanjing, China: IEEE/ACM, May 2023.

[47] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai, and E. F.
Young, “Ripple 2.0: High quality routability-driven placement via global

router integration,” in ACM/EDAC/IEEE Design Automation Conference
(DAC), 2013, pp. 1–6.

[48] C.-C. Huang, H.-Y. Lee, B.-Q. Lin, S.-W. Yang, C.-H. Chang, S.-T.
Chen, Y.-W. Chang, T.-C. Chen, and I. Bustany, “NTUplace4dr: A
Detailed-Routing-Driven Placer for Mixed-Size Circuit Designs With
Technology and Region Constraints,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (ICCAD), vol. 37, no. 3,
pp. 669–681, 2018.

[49] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
Solution Quality and Routability Validation in Global Placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (ICCAD), vol. 38, no. 9, pp. 1717–1730, 2019.

[50] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in Automation Test
in Europe Conference Exhibition 2007 Design, 2021.

[51] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proc. ISPD, 2015, pp. 157–164.

[52] S. Liu, Q. Sun, P. Liao, Y. Lin, and B. Yu, “Global placement with
deep learning-enabled explicit routability optimization,” in Proc. DATE,
Virtual Conference, February 2021.

[53] C.-C. Huang, H.-Y. Lee, B.-Q. Lin, S.-W. Yang, C.-H. Chang, S.-
T. Chen, Y.-W. Chang, T.-C. Chen, and I. Bustany, “Ntuplace4dr:
A detailed-routing-driven placer for mixed-size circuit designs with
technology and region constraints,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 3, pp.
669–681, 2017.

[54] M. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD
contest in incremental timing-driven placement and benchmark suite,”
in Proc. ICCAD, 2015, pp. 921–926.

[55] S.-S. Han, A. B. Kahng, S. Nath, and A. S. Vydyanathan, “A deep learn-
ing methodology to proliferate golden signoff timing,” in Proc. DATE,
2014, pp. 1–6.

[56] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. DAC,
2019, pp. 1–6.

[57] R. Liang, Z. Xie, J. Jung, V. Chauha, Y. Chen, J. Hu, H. Xiang, and
G.-J. Nam, “Routing-free crosstalk prediction,” in Proc. ICCAD, 2020,
pp. 1–9.

[58] K. Chang, J. Ahn, H. Park, K.-M. Choi, and T. Kim, “DTOC: integrat-
ing Deep-learning driven Timing Optimization into the state-of-the-art
Commercial EDA tool,” in Proc. DATE. Antwerp, Belgium: IEEE, Apr.
2023, pp. 1–6.

[59] M. Burstein and M. N. Youssef, “Timing influenced layout design,” in
Proc. DAC. IEEE, 1985, pp. 124–130.

[60] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. Jukl, P. Kozak, and
M. Wiesel, “Chip layout optimization using critical path weighting,” in
Proc. DAC. IEEE, 1984, pp. 133–136.

[61] H. Chang, E. Shragowitz, J. Liu, H. Youssef, B. Lu, and S. Sutanthavibul,
“Net criticality revisited: An effective method to improve timing in
physical design,” in Proc. ISPD, 2002, pp. 155–160.

[62] T. Kong, “A novel net weighting algorithm for timing-driven placement,”
in Proc. ICCAD, 2002, pp. 172–176.

[63] B. Halpin, C. R. Chen, and N. Sehgal, “A sensitivity based placer for
standard cells,” in Proc. GLSVLSI, 2000, pp. 193–196.

[64] T.-Y. Wang, J.-L. Tsai, and C. C.-P. Chen, “Sensitivity guided net
weighting for placement driven synthesis,” in Proc. ISPD, 2004, pp.
124–131.

[65] Z. Xiu and R. A. Rutenbar, “Timing-driven placement by grid-warping,”
in Proc. DAC, 2005, pp. 585–591.

[66] P. Liao, D. Guo, Z. Guo, S. Liu, Y. Lin, and B. Yu, “Dreamplace
4.0: Timing-driven placement with momentum-based net weighting and
lagrangian-based refinement,” IEEE TCAD, pp. 1–1, 2023.

[67] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the openroad project,” in
Proc. DAC, 2019, pp. 1–4.

[68] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin, and B. Yu, “DREAMPlace 4.0:
Timing-driven global placement with momentum-based net weighting,”
in Proc. DATE, Antwerp, Belgium, March 2022.

	Introduction
	Related Work
	Heterogeneous Acceleration of Physical Design
	Acceleration of Placement
	Acceleration of Routing
	Acceleration of Timing Analysis

	AI-Assisted Cross-Stage Performance Modeling
	Routability Modeling
	Timing Modeling

	The CircuitNet Dataset
	Routability Modeling and Optimization
	Routability Modeling using FCN and CircuitNet
	Heterogeneous Routability Optimization

	Timing Modeling and Optimization
	AI-Assisted Timing Modeling using GNN and CircuitNet
	AI-Inspired Heterogeneous Timing Optimization

	Conclusion
	References

