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Abstract—Differentiable optimization is popular for its efficiency and
explainability. However, it faces limitations due to its reliance on contin-
uous formulations and constraints on objective expressivity. To address
these challenges, we propose a framework combining differentiable
methods with gradient clipping and calibration strategies to ensure
efficient and targeted optimization. Gate sizing, a key challenge in
chip PPA optimization, exemplifies all the challenges with its discrete
nature and objective complexity. Applying our proposed differentiable
framework to gate sizing, we outperform top contestants in the 2024
ICCAD CAD gate sizing contest in overall quality scores and runtime,
with excellent and balanced performance on all important evaluation
metrics.

Index Terms—physical design, differentiable optimization, gate sizing

I. INTRODUCTION

Differentiable optimization has shown remarkable performance in
tackling complex optimization tasks, especially in VLSI design [1]–
[8]. By formulating optimization objectives in a differentiable man-
ner, this approach facilitates direct gradient descent optimization re-
sembling the neural network training process. With GPU acceleration,
it addresses large-scale problems efficiently [9], [10].

However, applying differentiable optimization to real-world phys-
ical design applications poses significant challenges due to inherent
continuity and expressivity limitations. Encountering these limitations,
we proposed respective solutions. To verify our solutions, we conduct
a case study in gate sizing—a critical and representative VLSI opti-
mization task. Gate sizing selects gate driving strengths to optimize
timing, power, and area, subjecting to design rule constraints. It is
a crucial step in the design flow for PPA (power, performance, and
area) optimization since it is frequently triggered after key stages like
placement, clock tree synthesis, and routing.

Like other optimization tasks, gate sizing in prior works [5]–[7] has
benefited from the remarkable efficiency of differentiable optimiza-
tion methods but struggles with the aforementioned limitations. The
continuity limitation [11], [12] poses a significant challenge, as almost
all core VLSI tasks—such as logic optimization, placement, and
routing—require discrete solutions that conflict with the continuous
nature of differentiable frameworks. Particularly in gate sizing, the
extremely sparse gate size solutions are highly incompatible with
traditional differentiable methods like gradient descent.

On the other hand, the expressivity limitation [13], [14] stems
from the necessity of using smooth models to enable differentiable
computation. However, many timing and power models in VLSI de-
sign are inherently not smooth. Since different models yield different
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analyzing outcomes, and the choice of the final outcome ultimately
lies with the user, optimization efforts must be reflected regardless of
the selection of the reference model. For instance, in nearly all VLSI
design tasks, including gate sizing, timing is a critical objective. Yet,
it is widely recognized that timing models suffer from the expressivity
limitation. Previous works [3], [5]–[7] only optimize timing in their
own differentiable timing models. However, once the reference timing
model alters, their optimization effects are mistargeted.

Since both limitations of a differentiable framework are very
common across almost all physical optimization tasks, the need for
general methods to solve these limitations is urgent. In our work, we
propose strategies to overcome these limitations and develop a novel
differentiable framework using gate sizing as a case study. Following
are our contributions:

• To tackle the continuity limitation, we propose a gradient
clipping strategy for gate sizing discretization that bridges the
gap between the continuous differentiable optimization and the
discrete nature of the gate sizes.

• To address the expressivity limitation, we introduce a gradient
calibration framework in which our optimization efforts are
aimed regardless of the selection of the external reference VLSI
analyzing tool.

• Our experimental results show that our proposed differentiable
framework performs exceptionally well in the gate sizing case
study in all important metrics. We outperform all top 3 winners
at 2024 ICCAD CAD gate sizing contest in both quality score
and runtime.

We believe that our work will inspire and encourage further
research on efficient differentiable physical optimization. Our ad-
vancements could broaden the scope of optimization in chip design
and other real-world applications.

II. PRELIMINARIES

This section reviews differentiable optimization techniques for
physical design tasks and introduces the gate sizing problem.

A. Differentiable Optimization

Differentiable optimization has recently gained wide popularity
for addressing complex optimization challenges in VLSI design
fields [1]–[8], [15]. The key idea is to formulate the variable into
a continuous solution space (e.g., by relaxing discrete constraints).
Then, the optimization objective is expressed as a differentiable
analytical function whose gradient is derived using back-propagation
and used directly for gradient-based optimization.



TABLE I: Summary of notations.

Notation Description
G Set of gates
Sg Set of available sizes for gate g
E Set of edges in the timing graph

Nend Set of end nodes in the timing graph
sg Size for gate g

dij(sg) Delay from node i to node j
ai Arrival time at node i
t Clock period

tsetup Setup time
Leakg(sg) Leakage power of gate g with size sg
Areag(sg) Area of gate g with size sg
Capi(sg) Capacitance of the pin i with its

corresponding gate size sg
Loadi(s) Load capacitance at output pin i
Slewi(s) Transition time at input pin i

TNS Total negative slack
WNS Worst negative slack

Differentiable optimization has been used to optimize cell place-
ment for better timing [3], signal routing for better wirelength and
routability [15], approximate logic synthesis solutions for better
area and error rate [2] and neural architecture search (NAS) [16].
Such differentiable techniques benefit from an inherently well-formed
solution space and a more targeted and explainable optimization
objective. As a result, they have been showing superior potential.

B. Case Study: Gate Sizing

Gate sizing selects the drive strength of each gate to optimize
timing and eliminate DRVs like maximum load capacitance and sig-
nal transition time. This process ensures gates on critical paths have
enough strength to pass signals efficiently while reducing non-critical
gate sizes to save power and area. As such, gate sizing becomes a
critical factor connecting all important chip quality metrics.

As an NP-hard problem [17], gate sizing is among the most
difficult combinatorial optimization problems. Specific challenges
arise from its discrete nature, the non-convexity of delay models,
and the large number of near-critical paths that make optimization
challenging [18]. Prior research on gate sizing generally falls into
the following categories:

1) Dynamic programming-based methods [19]–[21] work well for
tree-structured circuits but falter with general circuits contain-
ing reconvergent paths.

2) Sensitivity-based methods [22]–[24] adjust gate sizes based on
initial sensitivity estimates, which relies heavily on the quality
of heuristics.

3) Learning-based methods, including RL [25], generative
AI [26], and GCN [27], [28], incur time-consuming retraining
when transferred to different technology libraries [29].

4) Heuristic methods with Lagrangian relaxation (LR) [30]–[38]
reduce the search space using KKT conditions but often rely
on slow, local searches and gate-by-gate iterations.

Recently, differentiable methods [5]–[7] act as a powerful methodol-
ogy for gate sizing. While they efficiently optimize PPA metrics using
gradient-based approaches, their discrete size of gates mismatches
with continuous gradient descent method (continuity limitation).
Meanwhile, such techniques only guarantee their optimization efforts
in their own analyzing model outcomes [6], [7] (expressivity limita-
tion), wasting the optimization resources and efforts if an external
reference timer is used.
C. Problem Formulation

Problem. Given a set of gates and detailed placement layout,
determine the size s of all gates in order to minimize total leakage
power while eliminating DRVs and timing violations. Using the
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Fig. 1: The flow of our proposed methodology.

notations from Table I, the gate sizing problem can be formulated
as follows:

min
s,a

∑
g∈G

Leakg(sg)

subject to sg ∈ Sg, ∀g ∈ G,
Slewi(sg) ≤ Max Slewi(sg), ∀i ∈ Input Pin(s),

Loadi(sg) ≤ Max Loadi(sg), ∀i ∈ Output Pin(s),

ai + dij(s) ≤ aj , ∀(i, j) ∈ E ,
ak ≤ t− tsetup, ∀k ∈ Nend,

where minimization is over the set of discrete gate variable s and
arrival time a. There are three constraints:

1) Gate sizes sg must be selected from the available sizes Sg for
each gate g.

2) Signal transition time (slew) and gate output load capacitance
must strictly stay within upper limits to ensure the elimination
of DRVs. This is paramount, as failing to address DRVs
directly undermines the reliability of timing analysis, rendering
untrustworthy results [39], [40].

3) Once DRVs are eliminated, the setup time requirement must
be met to guarantee the circuit’s proper functionality.

III. METHODOLOGY

In this section, we present a new differentiable framework. Sec-
tion III-A provides an overview of our framework. Sections III-B and
III-C presents our basic differentiable formulation. Sections III-D and
III-E point out the specific continuity and expressivity limitations and
our solutions, respectively.

A. Framework Overview

In a differentiable framework, we first calculate optimization
objectives. In our case study, formulating gate sizing objectives is no
exception (III-B and III-C). Here is the overall objective, including
leakage power consumption, timing metrics, and DRV violation:

min
s

Leak(s) + α|TNS|+ β
∑
pini

max(Slewi(s)− Max Slewi(s), 0)

+ γ
∑
pini

max(Loadi(s)− Max Loadi(s), 0),

where α, β, and γ are weights for different objectives. These weights
are set based on contest factors used to calculate the quality score.

After objective calculation, the gradients of the objective with
respect to optimization variable s can be calculated, indicating how
the optimization variable s should be optimized.

As mentioned before, this basic framework poses significant chal-
lenges, particularly regarding continuity and expressivity. To address
the continuity limitation, we propose a gradient clipping method in
III-D to bridge the gap between differentiable framework and the
discrete nature of practical tasks. To solve the expressivity limitation,



we develop a gradient calibration strategy in III-E to enhance opti-
mization target precision regardless of the reference model selection.
The whole flow is shown in Figure 1.

B. Differentiable Power and Area Objectives

Power and area objectives are critical in chip design. While
cell upsizing can reduce DRV and timing violations, it increases
power consumption, leading to heat and reliability issues, larger area
usage, and routability difficulties. Balancing these trade-offs while
optimizing timing is known to be highly complex. Thus, modeling
how gate size changes affect these objectives is essential for targeted
and efficient upsizing.

To enable the differentiability, we define a general form of linear
interpolation as:

F Interp.(sg) = F (⌊sg⌋)(⌈sg⌉ − sg) + F (⌈sg⌉)(sg − ⌊sg⌋), (1)

where sg is gate g size and F is a specific function2. This linear
interpolation method gives the correct output for each gate size input
while ensuring the output is differentiable with respect to the gate
size input, thus enabling both objective and gradient calculation.

Applying this to gate sizing, the leakage and area for non-integer
gate sizes sg are given by:

Leakg(sg) = Leakg Interp.(sg), (2)

Areag(sg) = Areag Interp.(sg). (3)

Total power is then summed directly, while the area calculation
incorporates local density to consider possible congestion issues:

Leak(s) =
∑
g

Leakg(sg), (4)

Area(s) =
∑
g

Areag(sg)× Density(g). (5)

Each gate receives gradients from these objectives:

∂

∂sg
Leak(s) = Leakg(⌈sg⌉)− Leakg(⌊sg⌋), (6)

∂

∂sg
Area(s) = [Areag(⌈sg⌉)− Areag(⌊sg⌋)]× Density(g). (7)

This approach discourages upsizing that consumes high power or
occurs in dense regions, effectively controlling heat, congestion, and
routing issues.

C. Differentiable DRV and Timing Objectives

Eliminating DRVs and timing violations are complex and critical
objectives in VLSI. DRV elimination ensures the reliability of timing
analysis, while timing optimization guarantees circuit functionality.

Here, we outline the steps to calculate these complex and critical
objectives while maintaining a differentiable manner.

1) Steiner Tree Construction: We utilize FLUTE [41] for early net
routing estimates, fed into the timing model as shown in the upper
left gray box in Figure 2.

2If sg is an integer, these two values are the same. To prevent this, we
redefine roundings as ⌈sg⌉ = min(sgmax, ⌈sg + ϵ⌉), where ϵ is a small
constant ensuring different rounding values, and sgmax is the maximum gate
size. If sg is already at sgmax, ⌊sg⌋ becomes max(1, sgmax−1) and ⌈sg⌉
remains sgmax.
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Fig. 3: Continuity limitation for natural discrete optimization task in
a differentiable framework.

2) Differentiable Gate Input Pin Capacitance: Upsizing a gate
typically increases input pin capacitance, impacting its upstream
components’ timing performance. Therefore, we interpolate the ca-
pacitance value for non-integer gate sizes, as shown in the middle
blue box. This is done using the following interpolation formula:

Capi(sg) = Capi Interp.(sg), (8)

where pini is gate g input.
3) Differentiable Net Delay Calculation: We implement Elmore

delay for differentiable delay and slew calculations as in [3] with
inputs from the last two steps, as shown in the Elmore Delay box.

4) Differentiable Gate Delay Calculation: We derive delay and
slew using a look-up table (LUT) indexed by input slew and output
load, with interpolation for non-integer gate sizes (illustrated in the
lower right blue box). Specifically:

dij(sg) = dij Interp.(sg), (9)

where i and j denote pins in a timing arc within gate g.
5) Differentiable DRV, WNS, and TNS Calculation: Given capac-

itance, slew, and delay outputs, we calculate DRV value and timing
objectives, as shown in the bottom part of the figure.

D. Gradient Clipping

In previous sections, we constructed differentiable targets. There-
fore, each gate can derive the gradient from various objectives. How-
ever, effectively leveraging these gradients for optimization remains
a significant challenge.

In this section and subsequent sections, we outline the challenges
and propose solutions to address them.

1) Continuity Limitation: While gradient descent (GD) in previous
work [5] is effective for continuous optimization, it faces limitations
when applied to inherently discrete tasks such as gate sizing, mak-
ing applying differentiable methods to prevailing discrete problems



highly non-trivial. For example, in Figure 3, consider an example
where two gates are initially sized at ×1. GD optimization may result
in continuous sizes like ×1.2 and ×1.4, that, when interpolated,
resolve timing violations. However, since gate sizes are inherently
integers, rounding these continuous values to discrete sizes in the
final step will cancel out the optimization. With a deeper circuit logic
level, this inaccuracy would be amplified [5].

2) Gradient Clipping Solution: Unlike direct usage of GD in
previous work [5], we propose a gradient clipping strategy to adapt
differentiable strategies for discrete optimization problems.

Our algorithm enforces integer gate sizes to preserve the discrete
nature, ensuring compatibility with discrete optimization tasks. We
leverage gradients as reliable sensitivity indicators to identify the
criticality of each optimization variable’s adjustment. In our gate
sizing case study, initially, all gate sizes are set to minimal. In each
iteration, we upsize the top k1% gates with the smallest gradients, as
these gates will most likely benefit from adjustments. Conversely, to
mitigate unnecessary area and power consumption, our algorithm also
downsizes the top k2% gates with the largest gradients, which are
supposed to be oversized gates. The selection of k1 and k2 is crucial
to balance the convergence speed and optimization quality. Our
empirical observations over all test cases show that 0.3 ≤ k1 ≤ 1 and
k2 ≤ 0.1 strike an effective balance, ensuring efficient optimization
without compromising overall quality.

This gradient clipping strategy aligns with the discrete constraints
of gate sizing while utilizing gradient-based insights for effective
adjustments, ensuring robust and practical optimization.

E. Gradient Calibration

In addition to the continuity limitation, expressivity limitation also
restrains the potential of differentiable optimization.

1) Expressivity Limitation: Ensuring compatibility with differen-
tiable optimization methods often necessitates differentiable models.
For instance, [5] employs the Elmore delay model to achieve differ-
entiability, but it only maximizes the optimization efforts solely on
Elmore delay model. Similarly, [6] models only the effect of gate
size on the current gate delay to maintain differentiability, neglecting
its impact on upstream load and downstream slew. Furthermore, [7]
utilizes machine learning to fit timing models and leverages back-
propagated gradients for gate size optimization. However, machine
learning models often fall short in accurately replicating algorithmic
precision [13], [14].

Achieving both expressivity and differentiability presents a sig-
nificant challenge. Prior methods [42], [43] have aimed to calibrate
objectives to enhance expressivity and accuracy, typically involving
additive corrections to modify the original model outputs to align
with commercial STA engines. However, such additive adjustments
are zero-order, as they do not alter the gradient. Consequently, while
these methods ensure correctness in the forward pass, they fail to
calibrate the backward gradient calculation.

2) Multiplicative Gradient Calibration Solution: To address the
expressivity limitation, we introduce gradient calibration, a crucial
step for ensuring both accurate objective and gradient values. Unlike
additive calibration in previous works, we design multiplicative
calibration, which introduces a calibration ratio to scale the original
value to align any external model.

In our case study, we use timing and design rule violation (DRV),
the most significant yet impacted by expressivity limitation metrics, to
demonstrate our multiplicative calibration. For these objective calcu-
lations, since the slew value propagates throughout all circuit levels,
the slew value misalignment is amplified through the propagation

Set Slewa = Slewa 300 ps Slewb 400 ps
Slewb 600 ps

Cali. Slewb = Slewb × Cali. Ratiob
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Fig. 4: Demonstration of slew gradient calibration. Calibration for
other metrics follows a similar process.

process. Therefore, we highlight the slew calibration. As illustrated
in Figure 4, consider a simplified case where gate X drives a 2-pin
net. To calibrate the slew value, our timer uses the source Pina slew
value from the reference timer, followed by both timers computing
the sink Pinb timing metrics. If the slew at Pinb is reported as
400 ps by our timer and 600 ps by the reference timer, a calibration
ratio of 1.5 is derived and used in subsequent iterations to adjust our
model’s sink pin slew. This approach extends to net delay, net load
capacitance, and gate power, enabling comprehensive calibration.

Unlike previous additive calibration methods [42], [43], we find
that multiplicative calibration better captures the relationship between
variables and objectives. First, the multiplicative method calibrates
gate size sensitivity, as reflected in the gradient, leading to a more
explainable objective. Second, as observed in our experiments, the
multiplicative method remains accurate over extended periods, even
as the design undergoes multiple optimization iterations, whereas
simple additive calibration diverges quickly. Therefore, in our case
study, only a single invoke of multiplicative calibration at the begin-
ning proves to be both efficient and accurate enough.

Notably, the multiplicative calibration approach is a general idea. It
can be easily adapted to other cases requiring the alignment between
an optimization model and an external model.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our proposed gate sizer using Python, C++, and
CUDA kernels. To ensure a fair comparison against other contestants
in the 2024 ICCAD CAD gate sizing contest [18], we designed
our evaluation environment to match the contest conditions. The
evaluation machine featured a 2.25 GHz AMD EPYC 7742 processor,
512 GB of RAM, and an Nvidia A100 GPU with 80 GB of memory,
consistent with the contest’s GPU configuration. In adherence to the
contest’s constraints, our evaluations were conducted using only 8
CPU cores and a maximum of 200 GB of RAM.

B. Results and Analysis

We evaluated our newly developed gate sizer against the top 3
winners from the contest over all 10 benchmarks. Detailed statistics
for these benchmarks are provided in Table II, highlighting the diver-
sity in scale, complexity, power consumption, and timing violation
severity across the cases, thereby covering a broad spectrum of design
scenarios. These benchmarks are at the post-placement stage, where



TABLE II: 2024 ICCAD CAD gate sizing contest [18] benchmark statistics.
Design #Gate WNS (ns) TNS (ns) Slew DRV (ns) Load DRV (fF) Power (uW)
NV NVDLA partition m 27,553 -0.595 -156.323 258.761 256 1.672
NV NVDLA partition p 79,919 -1.519 -6,306.640 6,125.512 5,292 5.539
ariane136 145,776 -1.298 -10,143.711 14,843.895 15,463 17,539.095
mempool tile wrap 187,851 -1.315 -10,458.099 12,069.070 10,779 2,590.189
aes 256 278,465 -0.284 -212.965 942.810 1,300 16.771
hidden1 38,089 -1.069 -1,136.054 4,073.071 6,811 2.762
hidden2 149,396 -1.214 -9,400.457 16,582.889 16,661 17,152.379
hidden3 184,863 -1.563 -2,436.288 19,755.937 33,088 16,513.594
hidden4 260,483 -3.185 -25,334.022 19,138.199 27,548 21.024
hidden5 283,750 -0.324 -370.293 3.483 0 16.170

        Norm.
        Runtime

        Score

Norm. TNS
Score

Norm.        
Slew DRV        

Score        

Norm.      
Load DRV      

Score      
    Norm. Power

     Score

1st
2nd
3rd
Ours

Fig. 5: A holistic radar chart for
four sizers. Outer is better.

TABLE III: Gate sizer scores across 10 cases for top three winners, three ablation studies, and our sizer. The best scores are bolded, and
the second-best scores are highlighted among the top three winners and our sizer.

Benchmark Quality Score (lower is better) Contest Normalized Score (higher is better)
1st 2nd 3rd No Clip. No Cali. Ours 1st 2nd 3rd No Clip. No Cali. Ours

NV NVDLA partition m 538.5 471.1 387.5 517.9 570.3 482.4 72.0 82.3 100.0 74.8 67.9 80.3
NV NVDLA partition p 775.7 753.5 512.3 697.4 1113.2 644.8 66.0 68.0 100.0 73.5 46.0 79.5
ariane136 2968.5 1708.6 1776.8 4362.3 29109.3 2417.1 57.6 100.0 96.2 39.2 5.9 70.7
mempool tile wrap 1648.2 1358.9 1713.5 3312.5 25768.4 1356.3 82.5 100.0 79.3 41.0 5.3 100.2
aes 256 8.8 0.2 0.4 36.7 1.9 0.2 2.8 100.0 56.0 0.7 12.7 108.3
hidden1 15.6 11.5 626.5 16.1 142.4 0.5 73.4 100.0 1.8 71.1 8.0 2569.1
hidden2 8418.4 12513.7 10737.0 9548.0 31836.0 8293.9 100.0 67.3 78.4 88.2 26.4 101.5
hidden3 12432.7 28766.2 42833.1 16103.4 16091.7 11858.4 100.0 43.2 29.0 77.2 77.3 104.8
hidden4 20760.5 69483.3 50919.5 20062.8 44005.7 15750.4 100.0 29.9 40.8 103.5 47.2 131.8
hidden5 12.4 24.2 234.6 11.3 47.4 4.5 100.0 51.3 5.3 109.5 26.2 274.1
Average 4757.9 11509.1 10974.1 5466.9 14868.6 4080.8 75.4 74.3 58.7 67.9 32.3 362.0

TABLE IV: Gate sizer performance comparison based on contest evaluation metrics.
Benchmark Runtime (s) TNS (ns) Slew DRV (ns) Load DRV (fF) Power Incre. (uW)

1st 2nd 3rd Ours 1st 2nd 3rd Ours 1st 2nd 3rd Ours 1st 2nd 3rd Ours 1st 2nd 3rd Ours
NV NVDLA partition m 11.45 7.65 6.65 9.55 -11.80 -11.80 -10.23 -11.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85 1.25 1.02 1.06
NV NVDLA partition p 19.57 27.03 14.49 15.24 -23.64 -20.01 -17.78 -22.07 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 1.04 1.77 1.10 1.17
ariane136 31.84 111.87 21.91 24.20 -73.16 -21.72 -27.88 -60.14 12.13 6.41 21.28 15.53 0.00 0.00 0.00 0.00 2.18 6.65 6.06 2.00
mempool tile wrap 34.47 81.13 27.79 27.19 -0.28 -0.64 -2.86 -0.47 30.48 16.04 32.72 28.29 1.69 1.23 4.08 2.18 2.52 8.09 3.99 2.74
aes 256 23.60 66.55 34.89 20.01 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.06 0.15 0.10
hidden1 14.06 25.12 8.14 13.10 0.00 0.00 -2.05 0.00 0.22 0.10 3.18 0.00 0.00 0.00 7.73 0.00 0.12 0.59 0.12 0.13
hidden2 26.12 106.86 22.43 24.92 -265.80 -237.61 -339.60 -282.20 27.54 15.34 27.56 21.20 0.00 0.00 25.92 0.00 2.41 5.89 4.86 1.80
hidden3 29.15 45.69 25.48 25.12 0.00 0.00 0.00 0.00 561.16 557.90 795.48 548.88 60.44 337.75 1346.13 44.01 0.60 1.74 0.91 0.61
hidden4 29.82 116.21 32.65 24.98 -0.25 -0.02 -6.07 0.00 388.27 342.62 496.93 366.47 66.49 475.68 555.33 22.16 0.28 5.87 1.03 1.07
hidden5 24.30 176.03 35.79 22.30 -0.50 0.00 -10.82 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.88 5.45 2.11 2.98
Ratio 1.18 3.69 1.11 1.00 1.00 0.78 1.11 1.00 1.04 0.96 1.41 1.00 2.63 16.63 39.57 1.00 0.93 2.64 1.50 1.00

the contestant’s gate sizer needs to determine optimal gate sizes for
each gate. After gate sizing, another detailed placement and global
routing are performed using the open-source tool OpenROAD [44]
to ensure a more accurate evaluation.

We follow the contest evaluation metrics, which cover runtime,
leakage power, TNS, and severity of slew and load DRV, as well as
the formula for calculating quality and normalized scores. The weight
of DRV is the highest in this contest, as without DRV elimination
the timing report will be not accurate due to extrapolation [39], [40].
Therefore, our strategy emphasizes DRV elimination to guarantee the
reliability of subsequent timing analyses and optimization.

The quality score and normalized score are detailed in Table III.
These scores highlight the superior capabilities of our sizer. It outper-
forms the winners in terms of quality score, showcasing its potential
for delivering efficient and high-quality gate sizing solutions. For
the first three cases, their smaller scale increases the variability in
gate sizing optimization results, thus making it difficult to achieve
consistently optimal outcomes.

Beyond demonstrating our superiority over the top three winners,
we conducted ablation studies to validate the effectiveness of key
techniques. Specifically, we examined the impact of removing gradi-
ent clipping and gradient calibration. The results, also presented in
Table III, indicate a significant decrease in overall performance when
neither technique is excluded, with gradient calibration contributing
the most to our model by making the optimization process more tar-
geted and efficient. In particular, performance decline is pronounced
in larger designs, highlighting the limited application of the vanilla

differentiable approach to large-scale real-world designs.
Table IV presents a detailed comparison of all five contest metrics

between the contest winners and our gate sizer, complemented by a
radar chart (Figure 5) illustrating the comprehensive and prioritized
optimization performance of our gate sizer. In the most critical task
of DRV elimination shown on the left side of the radar chart, our gate
sizer significantly outperforms others in load DRV reduction while
also leading in slew DRV mitigation. For timing, our gate sizer shows
competitive results. However, timing metrics may be less reliable here
due to the severe DRVs present in half of the benchmarks. Beyond
timing and DRV metrics, our gate sizer achieves exceptional power
consumption performance, surpassing the second- and third-place
winners and approaching the first-place result. Lastly, although all
three teams and our gate sizer utilized GPU acceleration or machine
learning methods as advocated by the contest, we outperformed the
top three winners in runtime, demonstrating remarkable scalability.
This efficiency is particularly vital for large-scale VLSI designs,
facilitating faster design iterations.

V. CONCLUSION

In this paper, we highlighted the limitations of applying differen-
tiable frameworks to real-world problems, particularly the challenges
of continuity and expressivity. To address these, we introduced a
novel gradient clipping strategy to bridge the gap between continuous
optimization and the discrete nature of gate sizing, as well as a
robust gradient calibration framework to ensure precise optimization
in complex scenarios. Experimental results demonstrate that our
gate sizer achieves exceptional, comprehensive, and well-prioritized



performance, surpassing the top three 2024 ICCAD CAD gate sizing
winners in both quality score and runtime. We believe this work estab-
lishes a robust foundation for further research and exploration, paving
the way for extending the application of differentiable optimization
in VLSI design and other practical fields.
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