Differentiable Physical Optimization

Yufan Du'!?, Zizheng Guo*?, Runsheng Wang>>#, Yibo Lin*>**
'School of EECS, Peking University, 2School of Integrated Circuits, Peking University,
3Institute of EDA, Peking University, “Beijing Advanced Innovation Center for Integrated Circuits
nbsdyf@hotmail.com, {gzz, r.wang, yibolin} @pku.edu.cn

Abstract—Gate sizing and buffer insertion are crucial for
VLSI physical optimization; however, conventional decoupled
approaches often yield suboptimal solutions due to uncoordinated
resource allocation. Existing simultaneous methods resort to
oversimplified timing models or heuristic assumptions, failing
to unify the two tasks mathematically rigorously. We present
a differentiable physical optimization framework integrating
both techniques with GPU acceleration. Key innovations include
timing-aware buffer tree skeleton construction, physics-aware
modeling, and discrete-aware optimization algorithms. Experi-
ments demonstrate 23% total negative slack (TNS) improvement
and 12% worst negative slack (WNS) improvement with similar
power consumption and 30x speedup versus CPU-based opti-
mization flow. This work establishes a new paradigm for co-
optimizing interdependent physical design tasks with rigorous
modeling and efficient computation.

I. INTRODUCTION

Physical optimization is critical in the modern VLSI phys-
ical design flow. It plays a crucial role in resolving design
violations and also enhances circuit performance by improving
electrical characteristics. Of all the techniques that can be
adopted during physical optimization, gate sizing and buffer
insertion are arguably the most effective [1]. While the former
adjusts circuit gate sizes to balance timing constraints against
power and area trade-offs, the latter inserts the necessary
buffers in circuit nets for similar goals. Common objectives
make simultaneous optimization feasible [2], [3].

Furthermore, two optimization tasks substantially affect
each other, which means that separate optimization efforts
may result in suboptimal solutions [1]. Consider the example
in Figure 1, an underpowered AND gate drives a long wire
beyond its capacitance. If buffer insertion is applied only,
only a small buffer can be inserted due to the weak AND
gate drive strength. Therefore, the remaining wire is still
beyond buffer driving capability, leading to another buffer
insertion. On the contrary, by applying driver sizing only,
the sizer will invariably choose an extremely large size to
drive the large capacitive load. Although it improves the
delay, the net will still likely require buffers to handle the
resistive interconnect. The upstream driver also suffers from
the increased input load of the AND gate. A more reasonably
sized driver and reduced buffer usage can only be achieved
through simultaneous consideration.

Unfortunately, extensive research is focused on gate sizing
or buffer insertion independently [4]-[9], failing to unlock a
larger optimization space. Though a few works [1]-[3], [10]
consider them simultaneously, they still rely on simplified
and obsolete timing models or heuristic assumptions based on
experience due to the intricacy of rigorous timing modeling,
especially for the complicated impact of buffer insertion and

8:DB {1 Critical Net
Buffer Only
Weak Driver = Multiple Buffers to Amplify
Upstream O o) B
1
Stress {1 Sizing Only

S

Both

e

Balanced Solution

Fig. 1. A single-sink net with a long wire. Separate optimizations can lead to
suboptimal solutions, such as additional powering-up buffers or an oversized
driver. Simultaneous optimization provides the best solution.

gate sizing on timing. For example, a rigorous timing analysis
should include both capacitance load and signal slew propa-
gation in two bi-directional ways of the timing graph. Neither
heuristic modeling methods [1], [3], [10] nor black box-based
machine learning methods [2] manage to rigorously model
the interdependency of different calculation parts in timing
analysis. Therefore, they cannot accurately quantify how each
optimization operation betters timing, let alone wisely allocate
resources between the two optimization methods.

The strong discrete solution space of buffer insertion
comes as yet another challenge. The dynamic programming
method [11] focuses on local features and only considers one
net across the entire timing path per iteration, thereby failing
to explore a global optimal solution. Apart from that, the lack
of physical constraints for upsizing and inserting buffers in
prior works leads to local congestion or unreasonable buffer
locations, such as hovering over a macro. Although they
resort to detailed placement to legalize this, the significant
displacement incurred sabotages the original placement, gate
sizing, and buffer insertion effects. The last but not least
challenge is the non-parallelizability of traditional gate sizing
and buffer insertion. Therefore, they are mainly based on
traditional CPU flow with limited room for further speedup.

To address those challenges, we propose a differentiable
PPA optimization framework that quantitatively models how
gate sizing and buffer insertion determine design quality.
We construct a physical-aware objective to assist in avoiding
congestion or buffering over obstacles. We proposed discrete-
aware optimization algorithms that are compatible with the
strong discrete solution space, ensuring all the gates and buffer
candidates can be considered in a single iteration as well. Our
framework’s computationally intensive parts are deployed on
the GPU, making it remarkably efficient.

Our contributions are summarized as follows:

o To the best of our knowledge, we propose the first differ-

entiable physical optimization framework that seamlessly
integrates gate sizing and buffer insertion.

« We constructed a physical-aware objective to mitigate
local congestion and illegal location buffering.

e Our method guarantees gradient precision and utilizes
discrete-aware optimization algorithms to address chal-
lenging discrete problems effectively.

o Experimental results show marked improvements with
an average enhancement of 23% in total negative slack
(TNS), 12% in worst negative slack (WNS), and similar
power consumption, while on average 30x speed up than
OpenROAD [12].

We believe our work will certainly encourage VLSI physical
optimization research from new perspectives. The rest of
this paper is organized as follows. Section II shows the
preliminaries and problem formulation; Section III details our
differentiable physical optimization framework; Section IV
demonstrates the results; Section V concludes the paper.

II. PRELIMINARIES

This section reviews the background of VLSI physical opti-
mization and prevalent differentiable optimization techniques,
followed by problem formulation.

A. VLSI Physical Optimization

To achieve timing closure and power optimization in a
placed design, gate sizing and buffer insertion are two of
the most effective transforms that can be performed [1] for
physical optimization.

1) Gate sizing: Gate sizing optimizes timing by selecting
the drive strengths of each gate to ensure signal integrity on
critical paths while minimizing power and area on non-critical
paths. This NP-hard problem [13] exhibits inherent complexity
from discrete sizing choices, non-convex delay models, and
numerous near-critical paths [14]. Classical approaches in-
clude: (1) Dynamic programming methods [15]-[17] effective
for tree-structured circuits but failing on general topologies; (2)
Sensitivity-driven techniques [8], [18], [19] limited by heuris-
tic quality; (3) Learning-based frameworks [20]-[23] requiring
costly retraining across technology nodes; (4) Lagrangian
relaxation (LR) methods [4], [5], [24]-[30] constrained by
local optima.

Recent differentiable methods [7], [31]-[33] exhibit re-
markable performance. However, they process benchmarks by
simply minimizing gate sizes from well-optimized, both sized
and buffered, circuits. It deviates from the normal flow and
restricts exploration space due to already inserted buffers.

2) Buffer Insertion: Buffer insertion places buffers to re-
duce upstream load and mitigate interconnect net delay while
balancing power-area tradeoffs. Its optimization complexity
stems from the circuit structure transformation [34] and ac-
curate timing modeling. Van Ginneken algorithm [35] pio-
neered dynamic programming for optimal buffer placement,
later extended to handle noise-aware [36] and higher-order
delay models [37]. However, existing methods predominantly
operate on post-sized circuits, restricting their solution space
to locally optimal regions. This sequential optimization fails
to exploit the fundamental coupling between driver strength
and buffer requirements, as demonstrated in Section I.

TABLE I
SUMMARY OF NOTATIONS.
Notation Description
g Set of original gates
Beand Candidate buffer locations
& Timing endpoints set
N Interconnect net set
Sg Size for gate g
bs., Size for buffer at u € Beang
by, Buffer insertion indicator at u € Beang
D(z,y) Normalized electric potential at location (z, y)
u—v Delay from node u to v
in/out
a Arrival time at node v input/output pin

v
Slew:,"/out Slew rate at node v input/output pin

Leak(d,sy) Leakage power of gate d with size sqg
Area(d,sy) Area of gate d with size sq
LG/ out Load capacitance at buffer w input/output
C™(bs,) Input capacitance of buffer with size bs,,
Ci‘iaig(sg) Input capacitance of gate g pin u with size sg
R’u_,v Interconnect resistance between u and v
TNS Total negative slack (Timing objective)
WNS Worst negative slack
Plotal Unified power penalty
Diotal Unified density penalty

B. Differentiable Optimization Trend

Differentiable optimization has become a trend for VLSI
physical design, converting traditionally combinatorial prob-
lems into continuous solutions with gradient-driven optimiza-
tion techniques. Transforming discrete constraints into dif-
ferentiable objectives enables gradient back propagation to
guide optimization [38]-[40]. Unlike heuristic methods, differ-
entiable frameworks systematically propagate timing, power,
and area gradients across all reliant computing components
and natively support GPU acceleration [41]. Those gradients
directly relate the objectives to the inputs, thus guaranteeing
the explainability and reliability. Its breakthrough potential
is evidenced across placement [42], routing [39], and logic
synthesis [43] while maintaining mathematical rigor absent in
black-box machine learning.

Recent successes in gate sizing [31]-[33] further establish
this methodology as a trend for next-generation EDA tools.
However, the completely discrete nature of buffer insertion
makes applying differentiable methods incompatible. Addi-
tionally, circuit graph transformation triggered by buffer in-
sertion is hard to model in a differentiable manner. Therefore,
differentiable buffer insertion has not yet been proposed, let
alone further integrated with gate sizing in a single differen-
tiable physical optimization framework.

C. Problem Formulation

Problem. Given a set of gates and an initial placement
layout, the objective is to mitigate the timing violation and
minimize total power by simultaneously determining gate size
set s, buffer presence set b, buffer size set bs, buffer location
set bx and by, and the connection for each buffer tree.

III. METHODOLOGY

In this section, we present a novel, unified, differentiable
framework for simultaneously optimizing gate sizing and
buffer insertion. Section III-A strictly defines the discrete
solution space, which includes gate size, buffer presence,

! | Timing Analysis

1 .
| Steiner Tree !

Initial Circuit | Steiner Tree Ly = o |
N Timing —» Timing-Aware
| 1 g
and Placement i Construction : | Re-Routing :
- .- +_ _Z_
Backward Gate Size/ Forward Objectives Calculation
Buffer Presence/ - Physical-
B 5 <+ Timing Power
Buffer Size Gradients - Hvtt Aware
Calculation iz Clapeeiiie Objective
+ A
Optimization Algorithm
No
Gate Buffer Buffer
Upsizi Inserti Resizi Yes
[nsertion esizing »| Converge Check —» Output
Gate Buffer
Downsizing Remove (p———— N
(Iter. > 100) | | (iter. > 100) GPU Task [| CPU Task |
_____ J

Fig. 2. The whole flow of our framework.

and buffer size variables. Based on these three sets of vari-
ables, sections III-B-III-D detail differentiable functions for
timing, power, and physical-aware objectives, respectively.
Section III-E proposes the unified optimization algorithm that
conducts simultaneous gate sizing and buffer insertion. The
whole framework is illustrated in Figure 2.

A. Solution Space Formulation

The solution space formulation has a critical impact on both
the quality and efficiency of differentiable optimization for
physical design. Our key insight is that buffer insertion and
gate sizing require fundamentally different treatments. While
gate sizing operates within a predefined discrete space S, from
the library, buffer insertion introduces multidimensional com-
plexity across four variables: buffer presence, size, location,
and connectivity (e.g., series vs. parallel connection for two
or more buffers). Traditional approaches either oversimplify
this space, thereby losing optimal solutions, or overexpand it,
resulting in a computational explosion.

Our framework strategically constrains the solution space
while preserving optimization flexibility:

o Location Constraints: Buffer candidate B.,,q locations
are restricted to early routing tree nodes and 20um wire
segments, reducing spatial complexity while maintaining
sufficient solution space

o Connectivity Constraints: Automatic upstream connec-
tions based on the routing tree pattern, thus simplifying
the degree of freedom on connectivity

The early routing tree should be carefully constructed to
unlock a better solution while saving the wirelength resource.
Some prior works [11], [37] simply leverage the Steiner tree
skeleton, focusing solely on minimizing wirelength and failing
to unlock a larger buffer insertion solution space. As shown in
Figure 3, the most critical sink pin x is connected to the driver
through a detour path. It leads to poor timing performance,
thus requiring more buffers to be inserted. More buffers will,
in turn, negatively prolong the pin x arrival time and also
increase the area and power consumption.

Our critical innovation lies in our timing-aware re-branching
mechanism, which strikes a balance between wirelength ad-
vantage and timing enhancement. We begin with a single
timing analysis (as described in III-B) based on initial Steiner
tree routing results to assess the current performance of the

Buffered S

Critical Sink Pin
Detour

More Buf.
Bad Delay

Steiner Tree
Routing

Priority
Less Buf.
Better Delay,

Timing-Aware|

I
|
|
|
|
|
|
|
|
|
|
|
|
|
Re-Branch :
|
|
|

[>Buffer = Sink Pin © Buffer Candidate

Fig. 3. Our timing-aware re-branching adapts the Steiner skeleton to create
optimized buffer insertion points for critical sinks while saving wirelength.
circuit. Let S = {s1, 52, ..., 8, } denote the set of sink pins in
a net. For each sink pin s; € S, we define its criticality as:

C(s;) = (—slack(s;)) X Npan(si) (D

where Nyun(s;) counts how many critical paths pass through
s;. The timing slack and critical path number both determine
the sink pin criticality.
The normalized criticality is computed as:
C(s;) = _ C)
max,;es C(s;)

2

Sinks are processed in descending order of C (s). For each
sink s; with routing level p; (defined as its hop count from
the Steiner root), we calculate the upstream jump level:

ki = [Csi) x i 3

where [-] denotes the ceiling function. This allows connecting
s; to an ancestor node k; levels upstream in the Steiner tree.

To balance timing optimization with wirelength preserva-
tion, we constrain the number of re-branched sinks:

[{si|s; is re-branched}| < 0.2|S5] “4)

As shown in the lower part of Figure 3, the new re-
branching skeleton reduces latency for critical sink = by k,-
level upstream connection. The algorithm prioritizes the most
timing-critical sinks (the highest C values) while preserving
most of the original Steiner topology for wirelength resource.

With timing-aware re-branching and buffer candidate set
Bcand, the unified solution space is defined as:

o Gate sizes sy € S,

« Buffer presence b, € {0,1} at candidate location u €

Bcand

o Buffer sizes bs, € S, at candidate location © € Beang

With the optimization variables defined, the unified opti-
mization objective is formulated as:

min |TNS| ~+ a1 Potal + a2 Dyotal (5)

s,b,bs
with default coefficients «; = 0.001 and o, = 0.005
balancing timing/power/physical-aware density tradeoffs. The
user can also adjust them based on their needs.

In the following sections, we will describe how to calculate
these three differentiable objectives.

B. Timing Objective

Timing optimization is the cornerstone of VLSI physical
design optimization. An effective optimization framework de-
mands precise and rigorous timing objective analysis, which
presents significant challenges in our work due to: (1) the
inherent complexity of modern timing models; (2) the dynamic
circuit topology changes introduced by buffer insertion; (3) the
complex bi-directional impact of buffer insertion, buffer size,
and gate size on upstream capacitance/delay and downstream
slew/delay; and (4) the non-triviality to maintain the objective
differentiable with respect to three set of optimization vari-
ables. These factors collectively make accurate timing analysis
particularly demanding in the context of simultaneous buffer
insertion and gate sizing optimization. In response to these
challenges, we proposed a timing model to evaluate timing
objectives through five systematic computational phases.

1) Load Capacitance Calculation: The load capacitance
calculation is non-trivial, as the insertion of a buffer partitions
the net, substantially impacting the overall load distribution.
Also, the downstream gate size impacts the upstream load.

We propagate the load from sinks to sources through
topological traversal. For each buffer candidate node u in the
interconnect tree:

a) Capacitance Composition: The self capacitance for
node u combines its own wire capacitance and gate input
capacitance (only when u is a net sink node, i.e., the input
pin of a downstream gate g):
ca (s,)

in,u

if u is gate ¢ input pin
gate g mput p 6)

0 otherwise

Cu _ C::Jire + {

where the downstream gate ¢ input pin wu capacitance
CE"¢ 9(s,) uses linear interpolation between discrete sizes for

differentiable gradient calculation:

CEC I(s,) = (1 —1y) O I(k) +n,CEC Ik +1) (7

in,u in,u in,u

where k& = [s,|' is the lower bound of the gate size and
Ng = 8q — k is the fractional part of the gate size. In this way,
the gradient of C5' ?(s,) with respect to s, can be easily
calculated, so does the gradient of C,, with respect to s,.

In the following equations, we also ensure that all timing
calculation equations are differentiable and ignore gradient
derivation for simplicity.

b) Load Recursion: The buffer candidate node v output
pin load aggregates downstream capacitances:

out __ mn
Lu =Cut Zvechildren(u) Lv ®)

Node u input pin load depends on buffer insertion b, = 1 or
not b, = 0, as shown in the upper part of Figure 4.

L' =1b,Ch(bs,) + (1 — by,) L™ ©)

I sg is already the largest size option, k£ 4 1 goes beyond the reasonable
range. Therefore, in this paper, the maximal size interpolation is between the
largest and the second largest size. Also, if there is only one size option, no
interpolation is needed.

Buffered S
All 2 : Buf. Input
Downstream | Pin Cap.
Cap. I "
Load Prop. DD?: yin/out I
|
4 |
|
!
—o |
Gate + RC | Gate+ RC + Bu
3) | — ui"r\ yout
Delay Prop. B wrest >
|
|
o |
|
|
. 21 Gate _, RC _, Buf.
TG ate , RC | Trans. Degrad. Trans.
rans. Degrad. | uin_ | yout
Slew Prop. = et B D
|
o ! l
|

Fig. 4. The timing propagation through the interconnect net and gate.

where C’ﬁl“f applies similar linear interpolation for buffer size
bs,. This equation also guarantees the differentiability of Li"
with respect to b,, and bs,,.

As shown in the upper part of Figure 4, if buffer w is not
inserted (b, = 0), the input load L™ combines all of the
downstream capacitances. If buffer u is inserted (b, = 1), the
input load L™ is the input capacitance of buffer C*"f(bs,,).

2) Wire Elmore Delay Calculation: With each node’s load
computed, the Elmore delay from node w to its child node v
is calculated as follows:
where R, _,, is the interconnect resistance between u and v.
The Elmore delay A, ., is the product of the interconnect
resistance R,,_,, and the input load Lf}" at node v.

3) Net Signal Propagation: As buffer insertion might par-
tition one net into several pieces, net signal propagation is
also highly non-trivial. For each net, consider a net segment
u — v with node v buffer presence b, and buffer size bs,,.
The arrival time propagation from u to v is calculated as:

n __ _out
ay’ = ag” + Ay

out __ _in buf
ay"™ = ay" + by - LUT gelay

) 11
(Slew’™, L°"* bs,) (b

where the first equation computes input arrival time at v using
Elmore wire RC delay A,,_,,, and the second adds up the extra
buffer delay LUTg‘e’fay at the buffer output if buffer inserted
(b, = 1), as shown in the middle part of Figure 4. The
LUT function also adopts linear interpolation [9] method to
guarantee the differentiability of a2“* with respect to by, bs,),
Slew'™, and L9"*,

Slew propagation through the same net segment combines
RC slew degradation and potential buffer slew transformation:

Slew'™ = \/ Slew?? 4 (In10 - Ay_yy)?

Slew?"! = (1 — b,)Slew™ + b,, - LUT% (Slew’", L%, bs,))
(12)

The first equation models how input slew degrades passing
through a wire v — v, while the second handles buffer-
induced slew transformation through LUTSS . If b, = 1,
the output slew is determined by the buffer’s output slew. If
b, = 0, the slew will keep the RC degraded slew Slew'". The
slew propagation is shown in the lower part of Figure 4.

4) Gate Signal Propagation: Apart from interconnect nets
propagation, for gate-level propagation, we handle gates
through worst-case analysis. Each gate g with output v and
inputs u € fanin(v) exhibits:

Aysy = LUTﬁziyg(SlewT, Lo s)

out __ m
a, = mv?x (au + Au—m)

Slew("" = max (LUTE., 7(Slew.*, L")

13)

The max operations ensure timing conservatism by tracking
the latest-arriving signal and the worst-case output slew. Gate
lookup tables LUT#*® model input-to-output delay/slew depen-
dencies on input slew, output load, and gate size s, preserving
technology-specific nonlinearities. The gate delay and slew
transformations are also differentiable, as the max operation
allows for gradient propagation.

5) Timing Endpoint Calculation: The timing analysis con-
cludes with the analysis of timing endpoints. For each timing
endpoint ¢ synchronized by clock period T with setup time
Tiewp, the timing margin is:

Slack; = To — Tsetup —a; (14)
where a; denotes the worst-case arrival time propagated to
endpoint . This formulation directly measures the safety
margin between actual signal arrival and the clock edge, with
positive slack indicating timing compliance and negative slack
representing violations.

The global timing objective aggregates constraint violations
through total negative slack (TNS):

TNS = Z min(0, Slack;) (15)

i€

where &£ denotes the set of all timing endpoints. The TNS
metric provides differentiable guidance for optimization by
penalizing only violating paths, while satisfying endpoints
contribute zero gradient. This formulation enables the efficient
allocation of optimization resources to critical paths without
over-constraining non-critical regions.

In summary, the timing objective calculation includes five
different phases: net load calculation, wire Elmore delay
calculation, net signal propagation, gate signal propagation,
and timing endpoint calculation. The first, second, and fifth
phases are performed only once in each iteration. In contrast,
the third and fourth phases are iteratively performed in circuit
topological order, from timing start points to end points. Each
phase differentiates its outputs from its inputs, allowing the
gradients to be backpropagated throughout the whole timing
analysis process. Therefore, our proposed timing model inte-
grates variables for buffer presence, buffer size, and gate size,
while maintaining precision, differentiability, and efficiency.

C. Power Objective

Power optimization has become more crucial for modern
low-power VLSI designs. Our approach carefully handles both
sizing and buffer insertion through three key components:

a) Leakage Power Calculation: Leakage power is de-
composed into gate and buffer components:

Paae(s) = ZLeak(g,sg)
geg

Pout(b, bs) = Z b, - Leak(buf, bs,,)

UE Beand

(16)

where G denotes original gates, 3 represents candidate
buffer locations, and Leak(-) maps device sizes to library-
characterized leakage values.

b) Unified Power Objective: The total leakage power
aggregates both components:

Pootal = Pgate(s) + Pbuf(ba bS) 17

¢) Gradient Computation: Assuming the continuous re-
laxation through linear interpolation between discrete library
sizes, the leakage gradients become:

oP
o = Leak(g, [sy] + 1) — Leak(g, |sy])
Osg
oP
8T)u = Leak(buf, bs,,)
oP
Fbs. b, [Leak(buf, | bs, | + 1) — Leak(buf, | bs, |)]

(18)

In this way, we have gradients guiding the low-power

optimization. Therefore, our model can balance the timing and

power objectives. The buffer insertion and gate upsizing with
low power consumption can be prioritized.

D. Physical-Aware Objective

The physical-aware objective prevents excessive area infla-
tion or usage caused by upsizing, while discouraging buffer
insertion at illegal or congested locations. Unlike prior works,
which often neglect these physical constraints due to the
significant computational overhead of analyzing the impacts
of gate sizing and buffer insertion on physical layout, our
approach efficiently integrates these considerations through
differentiable spatial and congestion-aware modeling. Our
method introduces a density penalty that jointly handles both
gate and buffer area impacts through three key components:

a) Electrostatic Density Model: We model gates and
buffers as charged particles in an electrostatic system, where
the density penalty corresponds to potential energy. For any
device d (gate or buffer) at location (z4,y4) with area Areag,
the density contribution is:

Dg = Areag - (24, ya) 19)
where ®(x,y) € [0,1] is the normalized electric potential re-
flecting local placement density, computed from gate locations.

b) Device Area Modeling: Device areas vary with
discrete size options. We implement continuous relaxation
through linear interpolation between adjacent sizes:

Area(sq) = Area(|sq])([sa] —sa)+Area(|sq]+1)(sq—[s4])
(20
where s, denotes the continuous size parameter for device d.

¢) Unified Density Gradient: The total density penalty
aggregates all devices:

Dow =Y _ Dg+ Y byD,

9€G w€Beana

21

where G is the set of gates and B.,q is potential buffer
locations.

The density gradients with respect to optimization parame-
ters are:

oD
9s. [Areay(|sy] + 1) — Areay([sg])]P(wg, yg)
g
oD
GT)u = Area,, - D(xy, Yu)
oD
Fbs = PulArean([bs,] + 1) — Areap([bs,)] (zu, yu)

(22)

This formulation discourages gate scaling in dense regions
(® — 1) while permitting modifications in sparse regions
(® — 0). The differentiable model enables simultaneous opti-
mization of timing without compromising physical feasibility.

E. Unified Optimization Algorithm

This section processes gradients Vs,, Vb,, and Vbs,
derived from backward gradient propagation of the previous
three objectives to simultaneously determine: (1) gate sizing,
(2) buffer insertion/removal, and (3) buffer resizing. A key
challenge arises from the discrete nature of buffer and sizing
decisions, which conflicts with the continuous gradient-based
formulation. Prior gradient-based methods (e.g., [9]) face
fundamental limitations in addressing discrete problems:

First, the continuous relaxation of discrete variables leads
to unrealistic intermediate states. Standard gradient descent
may produce buffer presence values b, € (0,1) that neither
represent true insertion (b, = 1) nor removal (b, = 0),
ultimately leading to the unreliability of objective calculation
and degrading solution quality. This becomes particularly
problematic when combined with:

Second, using raw gradients only provides limited guidance
for the optimization. For instance, high fanout nets appear-
ing on multiple critical paths may accumulate disproportion-
ately large gradients, triggering excessive buffer insertion that
starves less critical but still timing-sensitive nets.

To address these challenges, we develop a balanced co-
optimization algorithm with two key features: 1) Discrete-
Aware Gradient Processing: Specialized gradient projection
techniques maintain feasible discrete states throughout op-
timization while preserving gradient guidance. 2) Adaptive
Resource Allocation: Dynamic weighting adjusts optimization
priorities based on a soft quota to prevent resource starvation.

The complete algorithm proceeds through four phases de-
scribed in the following sections, each maintaining the discrete

Algorithm 1 Balanced and Adaptive Optimization Algorithm
l: s, 1, Vge g > Gate Minimal Size
2: b, < 0, bs, < 4, Yu € Beang > BUFx4 as Default Size
3: quota,, + max(1,0.1|B,|), Vn € N > Net-Level Soft

Quota
4: for iter <+ 1 to Itery,, do
5: Compute objectives (TNS, Py, Diotal)
6: Compute gradients (Vs, Vb, Vbs)
> Adaptive Gradient Scaling
for net n € N parallel do
kn — ZuGBn bu

: n < exp(—max(0, k, — quota,,))
10: Vb, < 7, Vb, Yu € B,
11: end for

> Gate Sizing
122 G« {g|sg < [S4| A Vs, <0}

13: Upsize smallest 1% gradient gates in G: sy < s,+1

14: if iter > 100 then

15: G~ +{g|sg > 1A Vs, >0}

16: Downsize largest 1% gradients gates in G~ : sy <
sg—1

17: end if

> Buffer Insertion
18: BT« 0, B« 0
19: for net n € N parallel do

20: u) 4— arg maxyep, Vby

21: if Vb,: < 0 then

22: Bt « Bt uU{u;}

23: end if

24: end for

25: Insert smallest 1% gradients buffers in B™: b, + 1

26: if iter > 100 then

27: B~ + {u|Vb, <0Ab, =1}

28: Remove largest 1% gradients buffers in B~ b, <
0

29: end if

> Buffer Resize
30 Rt + {ulb, = 1|bs, < |Sy| A Vbs, < 0}
31: R~ + {ulb, = 1|bs, > 1A Vbs, > 0}

32: Upsize smallest 5% gradient buffers in R™ bs, «
bs, +1

33: Downsize largest 5% gradient buffers in R~ bs, +
bs, — 1

34: Break if Convergence

35: end for

nature of decisions while enabling global optimization through
careful gradient utilization. The detailed algorithm is shown in
Algorithm 1. Description of each phase is as follows:
Initialization establishes conservative starting points to
prevent premature over-optimization. All gates initialize at
minimum drive strength (s, = 1) to avoid false critical
paths from oversized drivers. Buffer candidates B,,q initialize
uninserted (b, = 0) with median default size bs, = 4 to
balance load-driving capability and power preservation. The
4x default buffer size addresses typical critical net require-
ments while maintaining both further upsizing and downsizing

flexibility. Apart from that, we initialize net-level buffer quotas
(Algorithm 1 line 3) to prevent local over-insertion.

Adaptive Gradient Scaling manages net-level resource
competition through exponential decay:

Yn, = exp (— max(0, k,, — quota,,)) (23)

where k, = ZueBn b,, counts existing buffers for net n.
Gradients scale as Vb,, + 7v,Vb,, dynamically suppressing
insertions when k,, > quota,, while permitting gradient-driven
buffer insertion below quota.

Gate Sizing implements discrete gate size transitions be-
tween drive strengths. We partition gates into:

« GT: Non-maximal sizes with Vs, < 0 (upsizing candi-

dates)

e G7: Non-minimal sizes with Vs, > 0 (downsizing

candidates, activated post 100 iterations)
Updates follow strict thresholds - only gates with top-1%
gradients in each category modify sizes. The 100-iteration
delay for downsizing releases early over-sizing resources while
preserving stability through 1% update rates.

Buffer Insertion/Removal handles buffer presence task. No
more than one buffer is inserted per net per iteration. That is
because spatially adjacent buffer candidates may have similar
gradients, leading to potential multiple adjacent insertions in
the same net. Therefore, for each net n, we first identify the
most critical candidate:

uy = arg min Vb, (24)

ueB,
The insertion set B contains all candidates with negative
gradients:

Bt = {u;|Vb,: <0} (25)

From BT, we select the top 1% buffers with the strongest
negative gradients for insertion. After 100 iterations, we acti-
vate removal for buffers with positive gradients:

B~ = {u € Binserled‘Vbu > 0} (26)

where Binserea denotes currently inserted buffers. Removal
follows the same top 1% selection on B~.

Buffer Resizing follows a similar upsizing and downsizing
candidates selection method:
R* = {u|Vbs, < 0,bs, < bs™}
R~ = {u|Vbs, > 0,bs, > bs™"} (downsizing candidates)

27

But buffer resizing employs wider 5% adjustment bands than
1% gate sizing in each iteration. The wider resizing range is
due to the VLSI library providing more buffer size options
than general gates, which increases the likelihood of resizing.
Additionally, buffer insertion typically occurs on the critical
path, where multiple adjustments take place.

Our algorithm resolves three key limitations of prior gra-
dient methods: 1) Hard discrete constraints via discrete state
transitions 2) Net-level resource balancing through -, -scaled

(upsizing candidates)

TABLE II
OUR BENCHMARK STATISTICS.
Design #Gate | WNS (ns) TNS (ns) | Power (mW)
NV_NVDLA_partition_m 27,553 -1.15 -228.05 0.01
NV_NVDLA _partition_p 79,919 -0.29 -72.419 0.07
mempool_tile_wrap 145,776 -1.67 | -20710.20 0.04
aes_256 187,851 -0.22 -87.60 0.32
ariane136 278,465 -0.38 -839.67 0.54
NV_NVDLA_partition_a 38,089 -1.07 -1136.05 0.03
ariane133 149,396 -0.56 -1279.20 0.51
NV_NVDLA_partition_c 184,863 -0.80 | -12304.10 0.22
NV_NVDLA _partition_o 260,483 -2.99 | -22094.52 0.10
aes_192 283,750 -0.26 -59.70 0.37

EEE OpenROAD
Differentiable Opt.

Runtime (s, log scale)

Fig. 5. Runtime (in log scale) of OpenROAD [12] method and our method.

gradients 3) Phased optimization with late-stage buffer re-
moval and gate downsizing to avoid over-optimization and
balance resource allocation.

Finally, convergence occurs when total negative slack (TNS)
improvement plateaus.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

We implement our unified framework for gate sizing and
buffer insertion using Python, C++, and CUDA kernels. Our
experiments are conducted on a server equipped with a 48-
core Intel Xeon Silver 4124 CPU at 2.20 GHz, 256GB RAM,
and an Nvidia A6000 GPU with 48GB of memory. We obtain
10 cases from the ICCAD’24 CAD contest [14] and perform
a few necessary operations. Those cases are first synthesized
using the ASAP7 [44] standard cell library without inserting
buffers in this early stage, and further placement is performed
by the OpenROAD [12] flow. Regarding timing and power
metrics reporting, we utilize a widely used commercial tool,
Innovus [45], to ensure accuracy. Our benchmark statistics and
relevant initial metrics are presented in Table II. These bench-
marks vary in scale, complexity, and timing performance,
reflecting a range of real-world design scenarios.

B. Results and Analysis

For our evaluations, we compare three different methods:
end-to-end OpenROAD [12] flow, OpenROAD buffering fol-
lowed by the latest differentiable-based gate sizer [9], and
our proposed differentiable physical optimization method.
Following each of these three methods, we conduct detailed
placement for legalization and early global routing before
reporting the timing and total power metrics from Innovus [45]
to ensure the accuracy and reliability of our evaluation.

The results are summarized in Table III. Compared to
end-to-end OpenROAD [12] flow, our differentiable physical
optimization framework achieves 23% improvement in TNS
and 12% improvement in WNS, while only a 3% power
increase. The slight power increase is reasonable since timing

TABLE III
COMPARISON OF TIMING AND POWER METRICS ACROSS OPTIMIZATION FLOWS.

OpenROAD Buffering + Sizing

OpenROAD Buffering + Sizer [9]

Differentiable Physical Opt.

Case Name

TNS (ns) WNS (ns) Power (mW) TNS (ns) WNS (ns) Power (mW) TNS (ns) WNS (ns) Power (mW)
NV_NVDLA_partition_m -13.05 -0.27 0.01 -11.99 -0.30 0.01 -11.92 -0.27 0.01
NV_NVDLA _partition_p -61.13 -0.23 0.08 -43.17 -0.20 0.08 -39.05 -0.22 0.08
mempool_tile_wrap -21051.10 -1.66 0.05 -18423.10 -1.62 0.06 -17661.10 -1.56 0.06
arianc136 0.00 0.00 0.37 0.00 0.00 0.33 0.00 0.00 0.35
as_256 -631.92 -0.58 0.55 53252 -0.32 0.57 -409.44 -0.24 0.58
NV_NVDLA_partition_a 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.03
ariane133 -554.41 -0.36 052 -551.60 -0.35 0.53 -545.05 -0.35 0.56
NV_NVDLA _partition_c ~ -12304.00 -0.80 022 -11245.80 -0.80 023 -11185.10 -0.79 0.23
NV_NVDLA _partition_o 0.00 0.00 0.10 0.00 0.00 0.10 0.00 0.00 0.10
acs_192 -54.90 -0.17 047 -53.27 -0.16 0.47 -12.01 -0.13 0.46
Norm. Avg 1.00 1.00 1.00 0.90 0.93 1.02 0.77 0.88 1.03

6] 5490 5327 buffer tree skeleton unlocks better timing performance. Finally,

49.20

14.22

12.77

|TNS| (ns)

12.01

Fig. 6. Ablation study of our method based on the largest case (aes_192).

closure is the primary goal of our optimization, while power
consumption is less important. We also compare our method
with a separate OpenROAD buffering and the latest sizer [9]
flow. Although this separate method outperforms end-to-end
OpenROAD flow, it does not offer a better solution than our
proposed method. As pointed out in Section I, the separate
optimization of gate sizing and buffer insertion may get stuck
in local optima for both gate sizing and buffer insertion, thus
failing to unlock the mutual optimization space.

For runtime performance, as shown in Figure 5, our GPU-
based method achieves a speedup of 30x compared to the
OpenROAD [12] flow. It is also worth noting that our method
has consistent runtime performance across benchmarks of
different sizes. It highlights the scalability of our method and
its potential for large-scale industrial designs. In contrast, the
OpenROAD flow runtime is highly correlated with the design
size and the severity of the original timing performance.

C. Ablation Study

To further validate the effectiveness of our method, we
conduct an ablation study to evaluate the impact of each
component in our framework. For this study, we select the
largest case (aes_192) and compare the results of our method
with and without each component.

As shown in Figure 6, the traditional or separate flow
has the worst performance, highlighting the importance of
simultaneous optimization. The discrete-aware gradient-based
method is crucial for achieving optimal performance in our
simultaneous optimization framework. The performance de-
grades significantly once we replace it with a simple gradient
descent method followed by a rounding operation. This is
predictable as relaxing discrete buffer presence variables to
continuous variables will insert “semi-buffers” that mislead
the optimization. In addition, the timing-aware buffer tree re-
branching technique also contributes to further enhancing per-
formance. With the timing-critical sink pins taking priority, our

the physical-aware objective is also important for achieving
the best performance. Since oversizing, over-buffering, or
infeasible buffer locations lead to local congestion or unrea-
sonable buffer locations, the performance will degrade once
the detailed placer displaces and legalizes these components.

In our ablation study, we also attempted finer-grained buffer
candidate locations, but this did not substantially improve
performance. This is because the slight displacement of buffer
locations will not make a big difference. Therefore, although
the finer-grained buffer tends to include better buffer locations,
the performance improvement is limited.

V. CONCLUSION

In this paper, we develop a pioneering differentiable phys-
ical optimization framework that integrates gate sizing and
buffer insertion. Based on differentiable optimization tech-
niques, we successfully unify two physical optimization tasks
via a rigorous mathematical formulation. Benefiting from
GPU-acceleration techniques, our method achieves a remark-
able speedup of 30x compared to the traditional CPU-based
flow. To further improve the timing performance, we propose
a timing-aware buffer tree skeleton re-branching method that
unlocks better solutions. We also introduce a physical-aware
objective to enhance the feasibility of our solutions upon the
original placement layout. Our discrete-aware gradient-based
optimization method effectively handles the strong discrete
nature of gate sizing and buffer insertion. We demonstrate the
effectiveness of our framework through extensive experiments,
showing that our method significantly outperforms existing
methods with a 23% improvement in total negative slack
(TNS) and a 12% improvement in worst negative slack (WNS)
while maintaining similar power consumption. Our future
work includes even more steps, such as placement or even
global routing, within this framework. We also plan to explore
more extensive optimization strategies, such as pin swapping
and logic resynthesis, to enhance the performance of our
framework further. We strongly believe that our work will
inspire and stimulate further research into PPA optimization
in the VLSI design flow from brand new perspectives.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation of China (Grant No. T2293701), the Natural
Science Foundation of Beijing, China (Grant No. Z230002),
and the 111 Project (B18001).

[1]

[2]

[3]

[5]

[6

=

[7]

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

C. Alpert et al., “Simultaneous driver sizing and buffer insertion using
a delay penalty estimation technique,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no. 1, pp.
136-141, 2004.

H. Wu et al., “Aito: Simultaneous gate sizing and buffer insertion for
timing optimization with gnns and 1l,” Integration, vol. 98, p. 102211,
2024.

A. Murugavel and N. Ranganathan, “Gate sizing and buffer insertion
using economic models for power optimization,” in 17th International
Conference on VLSI Design. Proceedings., 2004, pp. 195-200.

A. Sharma et al, “Fast lagrangian relaxation-based multithreaded
gate sizing using simple timing calibrations,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 39, no. 7, pp. 1456-1469, 2020.

S. Daboul et al., “Provably fast and near-optimum gate sizing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 12, pp. 3163-3176, 2018.

G. Flach et al., “Effective method for simultaneous gate sizing and
v th assignment using lagrangian relaxation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 4, pp. 546-557, 2014.

Y. Du et al., “Addressing continuity and expressivity limitations in
differentiable physical optimization: A case study in gate sizing,” in
2025 International Symposium of EDA (ISEDA), 2025.

J. Hu et al., “Sensitivity-guided metaheuristics for accurate discrete
gate sizing,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2012, pp. 233-239.

Y. Du et al., “Fusion of global placement and gate sizing with differ-
entiable optimization,” in 2024 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2024.

K. Lowe and P. Gulak, “A joint gate sizing and buffer insertion method
for optimizing delay and power in cmos and bicmos combinational
logic,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 17, no. 5, pp. 419-434, 1998.

L. van Ginneken, “Buffer placement in distributed rc-tree networks
for minimal elmore delay,” IEEE International Symposium on
Circuits and Systems, pp. 865-868 vol.2, 1990. [Online]. Available:
https://api.semanticscholar.org/CorpusID:109927706
The-OpenROAD-Project, “Openroad,” GitHub repository, 2024, avail-
able online: https://github.com/The-OpenROAD-Project/OpenROAD.
W. Ning, “Strongly np-hard discrete gate-sizing problems,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 13, no. 8, pp. 1045-1051, 1994.

B.-Y. Wu et al., “2024 iccad cad contest problem c: Scalable logic
gate sizing using ml techniques and gpu acceleration,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2024.
Y. Liu and J. Hu, “Gpu-based parallelization for fast circuit optimiza-
tion,” in ACM/IEEE Design Automation Conference (DAC), 2009, pp.
943-946.

S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell-library-based designs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 28, no. 6, pp. 818-825, 2009.

Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and
threshold voltage assignment,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 2, pp. 223-234,
2010.

J. P. Fishburn, “Tilos: A posynomial programming approach to transistor
sizing,” Proc. Int. Conf. On Computer-Aided Design, vol. 33, no. 2, pp.
236-238, 2003.

A. B. Kahng et al., “High-performance gate sizing with a signoff timer,”
in Proceedings of the International Conference on Computer-Aided
Design, ser. ICCAD *13. IEEE Press, 2013, p. 450-457.

Y.-C. Lu et al., “Rl-sizer: Vlsi gate sizing for timing optimization
using deep reinforcement learning,” in ACM/IEEE Design Automation
Conference (DAC), 2021, pp. 733-738.

S. Nath et al., “Transsizer: A novel transformer-based fast gate sizer,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2022, pp. 1-9.

C.-K. Cheng et al., “Dagsizer: A directed graph convolutional network
approach to discrete gate sizing of vlsi graphs,” TODAES, no. 4, 2023.
P. Pham and J. Chung, “Agd: A learning-based optimization framework
for eda and its application to gate sizing,” in ACM/IEEE Design
Automation Conference (DAC), 2023, pp. 1-6.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]
[36]
(371

(38]

(39]
[40]
[41]

[42]

[43]

[44]

[45]

C.-P. Chen, C. Chu, and D. Wong, “Fast and exact simultaneous gate and
wire sizing by lagrangian relaxation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 18, no. 7,
pp. 1014-1025, 1999.

——, “Fast and exact simultaneous gate and wire sizing by lagrangian
relaxation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 7, pp. 1014-1025, 1999.

D. Chinnery and A. Sharma, “Integrating Ir gate sizing in an industrial
place-and-route flow,” in ACM International Symposium on Physical
Design (ISPD), 2022, p. 39-48.

M. M. Ozdal, S. Burns, and J. Hu, “Algorithms for gate sizing and device
parameter selection for high-performance designs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 31, no. 10, pp. 1558-1571, 2012.

D. Mangiras, D. Chinnery, and G. Dimitrakopoulos, “Task-based parallel
programming for gate sizing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 42, no. 4, pp.
1309-1322, 2023.

X. Zhou et al., “Heterogeneous graph neural network-based imitation
learning for gate sizing acceleration,” in JEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2022, pp. 1-9.

A. Sharma et al., “Fast lagrangian relaxation based gate sizing us-
ing multi-threading,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 426-433.

Y. Du et al.,, “Fusion of global placement and gate sizing with dif-
ferentiable optimization,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). ACM, 2024.

Y. Ye et al., “Learning-driven physically-aware large-scale circuit gate
sizing,” 2024. [Online]. Available: https://arxiv.org/abs/2403.08193
Y.-C. Lu et al, “Lego-size: Llm-enhanced gpu-optimized signoff-
accurate differentiable vlsi gate sizing in advanced nodes,” in ACM
International Symposium on Physical Design (ISPD), 2025.

Y. Du et al., “Powpredict: Cross-stage power prediction with circuit-
transformation-aware learning,” in Proceedings of the 61st Annual
Design Automation Conference 2024. ACM, 2024.

L. P. P. van Ginneken, “Buffer placement in distributed rc-tree networks
for minimal elmore delay,” 1990.

C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise and
delay optimization,” in Proc. ACM/IEEE DAC, 1998.

——, “Buffer insertion with accurate gate and interconnect delay
computation,” in Proc. ACM/IEEE DAC, 1999.

W. C. N. D. Sha, “Non-linear optimization system and method for wire
length and delay optimization for an automatic electric circuit placer,”
Patent.

W. Li et al., “Dgr: Differentiable global router,” in ACM/IEEE Design
Automation Conference (DAC), 2024.

Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,” in
ACM/IEEE Design Automation Conference (DAC), 2022, p. 1315-1320.
G. Chen et al., “Differentiable edge-based opc,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). ACM, 2024.
J. Lu et al., “eplace: Electrostatics-based placement using fast fourier
transform and nesterov’s method,” ACM Trans. Des. Autom. Electron.
Syst., vol. 20, no. 2, mar 2015.

X. Wang et al., “Dasals: Differentiable architecture search-driven ap-
proximate logic synthesis,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2023.

L. T. Clark et al., “Asap7: A 7-nm finfet predictive process design kit,”
Microelectronics Journal, vol. 53, pp. 105-115, 2016.

“Cadence Innovus Implementation System,” http://www.cadence.com.

