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Energy Efficient Computation

t Energy computation, latency, 
security, etc. are critical 
metrics of edge inference.

t Tradeoff between accuracy 
and complexity of models.

t Efficient computation
› Neural architecture
› Quantization
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Neural Architecture Design

t Mechanism of neural 
networks is not well 
interpreted.

t Designing neural architecture 
is challenging.

t Can we advance AI/ML using 
artificial intelligence instead 
of human intelligence?

5

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

Alex
Net

Inc
ep

tio
n-V

1

VGG-16

VGG-19

Res
Net-

18

Res
Net-

34

Res
Net-

50

Res
Net-

10
1

Res
Net-

15
2

Res
Net-

20
0

E
rro

r r
at

e 
(%

)

La
ye

rs
 / 

S
pe

ed
 (m

s)

ImageNet Results

Layers Speed (ms) Top-1 error Top-5 error



Neural Architecture Search
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Neural Architecture Search

t Black box optimization
› Find the optimal network 

configuration to maximize the 
performance

› Huge search space

t Available methods
› Reinforcement learning
› Evolutionary algorithm
› Differentiable architecture search

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable 
architecture search,” ICLR 2019.
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Quantization

t Weights, activations can be 
quantized due to the inherent 
redundancy in representations.

t Mixed precision for different 
layers

› HAQ

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: 
hardware-aware automated quantization with mixed 
precision,” CVPR, 2019.
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Our Work
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Search Space Basis: MobileNetV2 Block (MB)
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Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. MobileNetV2: Inverted residuals and linear 
bottlenecks. CVPR 2018.

expand ratio! ∈ 1,3,6 kernel size ' ∈ 3,5,7
network connectivity * ∈ 0,1 layer−wise bitwidths ,-, ,. ∈ 2,4,6,8



Search Space

Input Shape Block Type Bitwidth #Channels Stride #Blocks
224 × 224 × 3 Conv 3 × 3 8 32 2 1

112 × 112 × 32 Search Space
block(!,#, $, %&, %')

16 2 1

56 × 56 × 16 24 1 2

56 × 56 × 24 32 2 4

28 × 28 × 32 64 2 4

14 × 14 × 64 128 1 4

14 × 14 × 128 160 2 5

7 × 7 × 160 256 1 2

7 × 7 × 256 Conv 1 × 1 8 1280 1 1

7 × 7 × 1280 Pooling and FC 8 - 1 1
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Our Framework
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Problem Formulation

t Discover neural architectures that minimize the task-related loss 
while satisfying the energy constraint.

min
$
%&~() * +,∗ . ; 012345267

8. :. ;∗ = argmin * +, . ;06@24A
%&~()B . < D

E$ is the policy with parameter F
. represents a neural network with weights ;
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Problem Formulation

t Discover neural architectures that minimize the task-related loss 
while satisfying the energy constraint.

min
$
%&~() * +,∗ . ; 012345267

8. :. ;∗ = argmin * +, . ;06@24A
%&~()B . < D

t Relaxation 
min
$
%&~() * +,∗ . ; 012345267 + Fmax %&~()B . − D, 0

8. :. ;∗ = argmin * +, . ;06@24A
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Hardware Environment
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REINFORCE algorithm

t Policy gradient theorem
For any differentiable policy !", for any policy objective functions #, 
the policy gradient is

∇ "# % = '()[∇" log !" .()]

t Non-differentiable energy measures
∇"'0~()# 2 = '0~() # 2 ∇" log !"

≈ 1
56
789

:
# 27 ∇" log !" 27
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Software Environment
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Non-Differentiability 

t Relax the discrete mask variable ! to be a continuous random 
variable computed by the Gumbel Softmax function

!" =
exp (("+ log -")/0
∑ exp (("+ log -")/0

where -" is the logit, ("~Gumbel(0, 1), 0 is the temperature.
t One-hot [0, 1, 0]

Continuous [.3, .5, .2]

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with Gumbel-Softmax,” ICLR, 2017.
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t Whenever the policy parameter ! changes, the weights of network 
"($) needs to be retrained.

t Motivated by differentiable architecture search (DARTS), we 
propose the following algorithm.

H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,” ICLR 2019.

Bilevel Optimization
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Sample minibatch of network configurations $ from the controller

Update network models "($) by minimizing the training loss

Update the controller parameters !
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Experimental Settings

t Hardware simulator of Bit Fusion [1, 2]

t First, search architectures and mixed precision for each layer on a 
proxy task, tiny ImageNet

› Trained for a fixed 60 epochs
› 5 days on 1 NVIDIA Tesla P100

t Next, train the discovered architectures on CIFAR-100 and 
ImageNet from scratch.

[1] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically 
composable architecture for accelerating deep neural network,” in Proc. ISCA, June 2018, pp. 764–775. 
[2] https://github.com/hsharma35/bitfusion
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Searched Results
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Results on ImageNet

24

12
.7

1.
7

12
.9

32
.1

11
.6

1.
44

8.
91

21
.2

10
.1

2.
12

16
.3

40
.2

9.
94

2.
06

10
.9

24
.7

Top-5 Error Model  Size (MB) Energy (mJ) Latency (ms)

IMAGENET RESULT
HAQ-small Ours-small HAQ-base Ours-base



Joint NAS and Mixed Precision Quantization
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Adaptive Mixed Precision Quantization
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t Pareto front for error rate, latency, and energy 
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Conclusion

t We propose a new methodology to perform joint optimization of 
NAS and mixed precision quantization in the extended search 
space.

t Hardware performance is involved in the objective function.

t Our methodology facilitates the end-to-end design automation flow 
of neural network design and deployment, especially the edge 
inference.
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Thank you!
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Backup Framework
t Pipelines of Hardware-Centric 

Design Automation for 
Efficient Neural Networks

t Limited research considers 
each stage of the pipeline 
collaboratively

t Our proposed framework: 
Mixed Precision NAS
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Backup result

31

29
.1

7.
4

13
8

75
3 83
8

24
.7

5.
3

25
.5

55
7

59
1

28
.1

9

9.
75

3.
4

29

73
.9

26
.8

4

8.
97

4.
5

34
.7

83
.9

36
.2

9

15
.4

1.
68

13
.5

27
.933

.0
1

12
.7

1.
7

12
.9

32
.1

31
.6

2

11
.6

1.
44

8.
91

21
.229

.1

10
.1

2.
12

16
.3

40
.2

28
.2

3

9.
94

2.
06

10
.9

24
.7

Top-1 Error Top-5 Error Model  Size (MB) Energy (mJ) Latency (ms)

ImageNet RESULT
VGG-16 FXP 8 Resnet-50 FXP 8 MobileNetV2 FXP 8 FBNet-B FXP 8 FBNet-B FXP3
HAQ-small Mixed Ours-small Mixed HAQ-base Mixed Ours-base Mixed


