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Abstract Yield, turn-around time, and chip quality are always of significant con-
cerns for VLSI designs. The performance and efficiency of key design steps such
as physical design, mask synthesis, and physical verification are critical to guaran-
tee fast design closure and manufacturability. Recent advances in machine learning
provide various new opportunities and approaches to tackle these challenges. This
chapter will discuss several applications of machine learning in the backend design
flow and demonstrate its impacts to existing design automation methodology.

1 Introduction

The extreme scaling of VLSI circuits has reached to the manufacturing limitation.
Various challenges have been raised from the printability issues due to lithogra-
phy resolution, process variation, etc. Thus a design needs to be highly optimized
and extensively verified for manufacturability. In addition, design quality and man-
ufacturability in late stages of the design flow become increasingly sensitive to the
changes in early stages, increasing turn-around time and slowing down the design
closure. Thus, early stage prediction of valid designs is becoming more and more
critical.

In this chapter, we focus on the backend design challenges, including physical
design, mask synthesis and physical verification. Physical design implements a gate-
level netlist to a layout with physical locations and geometries. It typically includes
placement, clock tree synthesis, routing, etc. Mask synthesis is a follow-up step to
improve the printability utilizing resolution enhancement techniques (RETs), such
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as optical proximity correction (OPC) and sub-resolution assist features (SRAFs).
Besides optimization stages like physical design and mask synthesis, physical veri-
fication, e.g., hotspot detection, is another crucial step to validate the manufactura-
bility of a design.

The aforementioned stages have been developing for decades and are encounter-
ing various challenges in performance and efficiency in advanced technology nodes.
The advances in machine learning stimulate new opportunities to boost the design
closure of the backend flow. General machine learning can be categorized to su-
pervised learning and unsupervised learning. Supervised learning is essentially a
modeling technique in which underlying correlation between features and labels is
extracted to build a model. The model is then able to predict labels when given
new features. Typical algorithms for supervised learning include boosting, logistic
regression, support vector machines, deep neural networks, and so on [14]. Unsu-
pervised learning does not require labels from data samples, such as a clustering
problem. It aims at learning the hidden structures in the data.

This chapter will survey recent practices and researches on the machine learn-
ing applications to the backend design automation, from late stages to early, i.e.,
physical verification, mask synthesis, and physical design. We will introduce the
motivations of each problem and briefly explain the learning techniques to solve
the problem. Section 2 focuses on the challenges in physical verification; section 3
illustrates the problems in mask synthesis; section 4 talks about the applications in
physical design; section 5 concludes the chapter.

2 Machine Learning in Physical Verification

Physical verification refers to various validation steps in the manufacturing process,
such as lithography hotspot detection. Machine learning mainly helps to decrease
turn-around-time and manufacturing costs.

Lithography hotspots denote specific patterns that tend to fail in printing even
after RETs, which are becoming more and more common due to the complexity of
lithography system and process variation. The early detection of lithography hotspot
remains to be a critical challenge to enhance manufacturability and reduce costs.
Generally, expensive lithography simulation is required for accurate hotspot detec-
tion, often leading to long turn-around time. Therefore, developing efficient hotspot
detection is desired and machine learning is a suitable technique due to its efficiency
in prediction.

Hotspot detection is a classification task in which layout clips labeled as either
hotspots or non-hotspots are provided. The objective is to construct a model that can
accurately classify clips. Fig. 1 shows two layouts with hotspots. In practice, the per-
formance of hotspot detection is mainly evaluated with two metrics, i.e., detection
accuracy and false alarm. Detection accuracy is defined as the ratio between the
number of correctly detected hotspots and the number of real hotspots. False alarm
is defined as the number of non-hotspots that are recognized as hotspots. The model-
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Fig. 1 Example of hotspot patterns marked in red [13].

ing objective is to first improve detection accuracy and then minimize false alarms.
In other words, it is tolerable to mis-classify a few non-hotspots into hotspots, while
the opposite is not encouraged.

2.1 Layout Feature Extraction and Encoding

The performance of hotspot detection is highly dependent to layout feature extrac-
tion and model selection. Layout feature represents the layout attributes to determine
hotspots and non-hotspots, which is fundamental to the detection. Typical feature
representations include density based feature [45, 27], fragmentation based feature,
and concentric circle area sampling (CCAS) [29, 57, 58].

Fig. 2(a) illustrates the fragmentation based feature extraction. Each fragment F
within a circle with an effective radius r is considered. Geometric characteristics of
fragments covered by the circle are extracted as the representation of F , e.g., pattern
shapes, distances between layout and corner information. Fig. 2(b) explains the con-
centric circles with area sampling to capture the layout information that matches the
diffraction of lights. In this feature representation, a layout is sampled with differ-
ent number of positions along concentric circles. Fig. 2(c) shows the density-based
feature extraction. The feature is a vector of pattern densities computed from the
layout density within each grid. As features are generally extracted to a feature
vector, the spatial information between elements of the vector is lost [51, 24]. For
example, geometrically close sampling points may not correspond to elements close
to each other in indices. Hence, a feature tensor representation is proposed to keep
such spatial information, as shown in Fig. 2(d). The original clip is converted to
a hyper-image after feature tensor extraction. It is divided into 12× 12 blocks and
each block is converted to 100× 100 images. The feature tensor is obtained after
applying discrete cosine transformation (DCT) to each block.
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Fig. 2 (a) Fragmentation based hotspot signature extraction[9]. (b) CCAS feature extraction [23].
(c) Density-based pattern representation[58]. (d) Feature tensor generation[51].

Hotspot Non-hotspot Hotspot region

(a) (b) (c)

Fig. 3 A 2D-space example of hotspot region decision. (a) Pattern matching. (b) Fuzzy Pattern
Matching. (c) Machine learning. [23]
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2.2 Machine Learning Models for Hotspot Detection

Conventionally pattern matching is widely used in hotspot detection, as show in
Fig. 3(a), while it cannot handle the situation when a pattern is not found in the
pre-built library [1, 55]. Then fuzzy pattern matching is developed to dynamically
tune the regions around the known hotspots, as shown in Fig. 3(b) [23]. Machine
learning based approaches recently demonstrate even better generality, as shown in
Fig. 3(c).

Besides feature extraction, various machine learning models have been used as
hotspot detection kernels to achieve high accuracy and low false alarms, including
support vector machine (SVM) [10, 56], artificial neural network (ANN) [10], and
boosting methods [27, 57]. Zhang et al. [57] also propose an online learning scheme
to verify newly detected hotspots and incrementally update the model.

To mitigate the impacts from feature representation to the detection accuracy,
deep neural network (DNN) has been proposed for hotspot detection [39, 28]. DNN
can avoid the manual efforts for the selection of feature extraction approaches, be-
cause it takes high-dimensional layout as input and perform automatic feature ex-
traction during training. Promising empirical results have been observed with DNN
in several papers [39, 28, 49, 50]. A typical configuration of DNN structure is shown
in Fig. 4. It consists of four convolution layers and two fully connected layers. Each
convolution layer uses a set of kernels to perform convolution on an input tensor F
as follows,

F⊗K( j,k) =
c

∑
i=1

m

∑
m0=1

m

∑
n0=1

F(i, j−m0,k−n0)K(m0,n0), (1)

where F ∈Rc×n×n and kernel K ∈Rc×m×m. Each fully connected layer performs
linear transformation to an input vector as follows,

x 7→Wx, (2)

where x ∈Rm×1 is the input vector and W ∈Rn×m represents the neuron weights.
The activation function ReLU layer is defined as follows,

x 7→

{
x, if x > 0,
0, otherwise, (3)

where x ∈Rm×1 is the input vector.
The DNN in Fig. 4 is trained with mini-batch gradient descent (MGD) algorithm,

as shown in Alg. 1 [51]. Variable W is the neuron weights, λ is the learning rate,
α ∈ (0,1) denotes the decay factor of the learning rate, k denotes the decay step,
y∗h is the hotspot ground truth, and y∗n is the non-hotspot ground truth. In each itera-
tion, m training instances {F1,F2, . . . ,Fm} are randomly sampled. The gradients are
computed from line 6-8. The neuron weights W is updated with the gradients and
the learning rate in line 14. In every k iterations, the learning rate λ is decayed to
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Fig. 4 An example of a neural network for hotspot detection [51].

Algorithm 1 Mini-batch Gradient Descent (MGD)
1: function MGD((W,λ ,α,k,y∗h,y

∗
n))

2: Initialize parameters j← 0,W > 0;
3: while not stop condition do
4: j← j+1;
5: Sample m training instances {F1,F2, . . . ,Fm};
6: for i = 1,2, . . . ,m do
7: Gi← backprop(Fi);
8: end for
9: Calculate gradient Ḡ ← 1

m ∑
m
i=1 Gi;

10: Update weight W←W−λ Ḡi;
11: if j mod k = 0 then
12: λ ← αλ , j← 0;
13: end if
14: end while
15: return Trained model f ;
16: end function

αλ , as shown in line 10-11. MGD function returns the best model for the training
set.

Despite the convenience in automatic feature extraction, the best configuration of
DNN still requires manual trial and error process, such as searching for the number
and types of layers. Later, Matsunawa et al.[28] and Yang et al.[51] further propose
two different DNN structures that can improve the accuracy and reduce false alarms.

Table 1 shows the comparison between various state-of-the-art hotspot detectors
on both ICCAD 2012 contest benchmarks and industrial designs [51, 49, 24]. The
number of clips with hotspots is represented as “HS#” and the number of clips with-
out hotspots is represented as “NHS#”. Column “Accu” denotes the accuracy and
column “FA” denotes the false alarm. While different hotspot detectors may have
different objectives in their problem formulations, the table reports the accuracy
and false alarm for reference. Generally, deep learning achieves high accuracy with
relatively low false alarm [51, 49]. Detectors like the online boosting algorithm [57]
mainly try to reduce the overall detection and simulation time (ODST) using online
learning with reasonable accuracy.
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Table 1 Comparison between the state-of-the-art hotspot detectors [51, 49]

Bench
Train Test AdaBoost [27] Online [57] Deep [51] Deep [49]

HS# NHS# HS# NHS# FA#
Accu

FA#
Accu

FA#
Accu

FA#
Accu

(%) (%) (%) (%)

ICCAD 1204 17096 2524 13503 2919 84.2 4497 97.7 3413 98.2 1776 97.36
Industry1 34281 15635 17157 7801 557 93.2 1136 89.9 680 98.9 307 98.41
Industry2 15197 48758 7520 24457 1320 44.8 7402 88.4 2165 93.6 793 90.56
Industry3 24776 49315 12228 24817 3144 44.0 8609 82.3 4196 91.3 1723 83.63

Avg. - - - - 2397 66.6 5411 89.6 2613 95.5 1150 92.49
Ratio - - - - 0.92 0.70 2.07 0.94 1.0 1.0 0.44 0.97

3 Machine Learning in Mask Synthesis

As the technology nodes scale to the limit of light wavelength, various resolution en-
hancement techniques (RETs), such as optical proximity correction (OPC), source
mask co-optimization, and sub-resolution assist features (SRAFs), become a neces-
sity. Machine learning can be applied to various RETs to improve the turn-around
time of mask synthesis.

3.1 Mask Synthesis Flow

Fig. 5(a) gives a standard mask synthesis flow in which target patterns (layout) are
taken as input and mask patterns are generated after iterative optimization proce-
dures including SRAF generation, OPC, mask rule check (MRC) and lithography
compliance check (LCC) [24]. In SRAF generation, sub-resolution assist features
are inserted to benefit the printing of target patterns. In OPC, the edge segments
of target patterns are optimized for robust lithography printing. To ensure mask
manufacturing friendliness, mask manufacturing rules should be checked after these
optimization procedures in MRC. Then, LCC performs the lithography simulation
under a set of process windows to check printability. Here process windows denote
different {focus, dose} conditions to generate printing contours, such as nominal,
inner, and outer contour, as shown in Fig. 5(b). To quantify the process windows,
two metrics are introduced: edge placement error (EPE) evaluates the distance be-
tween the target pattern contour and the nominal contour; process variation (PV)
band evaluates the area between the inner and outer contour. A typical objective of
RETs is to minimize EPE and PV band.
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Target Patterns

SRAF.Generation
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Mask.patterns
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Fig. 5 Mask synthesis: (a) a standard mask synthesis flow, (b) printing contours under different
{focus, dose} conditions [47].

3.2 Machine Learning for Sub-Resolution Assist Features

SRAFs are small rectangles within the sub-resolution domain to assist the printing
of target patterns. In other words, they will not be actually printed, even though
they are on masks. The effectiveness of SRAFs for an isolated contact is illustrated
in Fig. 6. It can be seen that Fig. 6(c) (with SRAFs) achieves much smaller PV
band than Fig. 6(b) (without SRAFs). This is because SRAFs deliver light to the
positions of target patterns in a proper phase, improving the robustness of printing.
In advanced technology nodes, developing fast yet high-quality SRAF generations
is increasingly critical to the yield [48, 47].

There are two types of conventional SRAF generation approaches, model-based
and rule-based. Model-based SRAF generation ensures high-quality and robustness
but is computationally expensive [37, 41, 53, 38, 34, 21]. Thus, it is not scalable to
large layout designs. On the other hand, rule-based SRAF generation enables super
fast turn-around time by complicated look-up-tables [36, 20, 22], while its perfor-
mance highly depends on the quality of look-up-tables which require adjustment
with significant engineering efforts [47].

Supervised learning is promising to efficiently approximate model-based SRAF
generation to improve turn-around time and meanwhile maintain high quality [47].
The training data comes from model-based SRAF generation. The model is trained
to predict whether a pixel should be covered by SRAFs. The actual SRAFs are gen-
erated with the guidance of the model, subjecting to SRAF rules. Learning-based
SRAF generation is formulated into a classification problem in which feature vec-
tors are extracted with CCAS and the kernel models adopt both logistic regression
and SVM.

The mathematical formulation of logistic regression is as follows [11],
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Target pattern OPC pattern SRAF PV band

(a)

(b) (c)

Fig. 6 (a) An isolated contact, (b) printing with OPC only, (c) printing with SRAF generation and
OPC [47].

min
www

1
2

wwwT www+C∑
i

log(1+ e−yiwwwT xxxiii), (4)

where www is the weight parameters determined during training, xxxiii and yi are features
and label (−1 or 1 for two-class classification) for ith data sample, respectively. The
first term 1

2 wwwT www is the L2 regularization to avoid overfitting utilizing maximum like-
lihood method [17]. The second term is the overall error cost. Parameter C sets the
importance of the regularization term. Thus the objective for training is to minimize
the overall error cost with L2 regularization.

On the other hand, the mathematical formulation of support vector machine with
linear kernel is as follows [4],

min
www,b,ξ

1
2

wwwT www+C∑
i

ξi, (5a)

s.t. yi(wwwT xxxiii +b)≥ 1−ξi, (5b)
ξi ≥ 0, ∀i, (5c)

where www,b,ξ are variables to be determined during training. Variable b is the bias for
the hyperplane and ξ denotes the error for the ith data sample. The objective function
contains two terms: one term for error minimization; the other for L2 regularization
like that in logistic regression. Essentially SVM defines a hyperplane to maximize
the margin between the decision boundaries.

The comparison of various SRAF generation approaches in EPE, PV band, and
runtime, is shown in Fig. 7. The model-based SRAF generation uses Mentor Calibre
with industrial-strength setup. As shown in Fig. 7(a), SVM based classification leads
to better approximation to the model-based approach than does logistic regression in
terms of PV band. The differences in EPE are marginal, as shown in Fig. 7(b). The
major benefit of the learning-based approaches comes from the runtime, as shown in
Fig. 7(c). Over 3X speedup for a layout clip with 10µm×10µm size can be achieved
by both logistic regression and SVM due to efficient prediction.
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Fig. 7 Comparison among different schemes in terms of, (a) PV band distribution, (b) EPE distri-
bution at nominal conditions, and (c) runtime [47].

3.3 Machine Learning for Optical Proximity Correction

OPC is another important RET to improve the performance of advanced lithography.
Fig. 8 demonstrates the effectiveness of OPC, where the edges of target patterns
are fragmented and each segment is shifted in a way that the target patterns can
be robustly printed, i.e., the EPE values are minimized. Conventional model-based
OPC approaches are notorious for their runtime overhead [32, 16]. To overcome
the runtime issue, regression models are proposed to enable fast full-chip OPC with
an acceptable performance loss, such as linear regression [19, 16] and nonlinear
regression [26, 25].

Fig. 9 shows the flow of regression-based OPC, which consists of training and
testing phases. Besides standard steps for both model-based OPC and machine
learning based approaches like edge fragmentation, training phase requires both
model-based OPC and feature extraction for model calibration, while testing phase



Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 11

only needs feature extraction for model validation. Current regression-based tech-
niques suffer from overfitting issues, degrading the accuracy of OPC results in the
testing phase. In addition, increasingly complicated designs result in complex op-
tical proximity effects toward the sub-resolution domain, causing the difficulty in
achieving accurate regression models.

Mask WaferDesign target

without OPC

with OPC

Fig. 8 Wafer patterns w./w.o. OPC [30].

Training layout

Edge 
fragmentation

Model-based OPC Feature extraction

Model training

Training layout

Edge 
fragmentation

Feature extraction

Model testing

Training Phase Testing Phase

Fig. 9 Machine learning based OPC flow [30].

To overcome the aforementioned challenges, a hierarchical Bayes model (HBM)
is proposed for the OPC problem with CCAS feature extraction [30]. In the HBM,
a generalized linear mixed model (GLMM) is trained with explicit consideration of
different edge types, including normal, convex, concave, line-end edge, etc. GLMM
handles these edge types by regarding them as a random effect with a random vari-
ance. For unknown variables, the HBM assumes a non-informative prior distribu-
tion, thus avoiding the lack of prior information. Therefore, better OPC results can
be generated by HBM compared with previous regression approaches.

The comparison between HBM-based approach and model-based (MB) approach
is demonstrated in Fig. 10. MB ik denotes OPC results from the kth iteration of the
MB-approach. The HBM-based approach can achieve EPE results comparable to
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Fig. 10 Compare HBM-based and model-based OPC in terms of EPE distributions [30].

that of the MB-approach at the 10th iteration, while the former is much faster. Hence,
it is suggested to initialize OPC conditions with HBM-based approach and use MB-
based approach to finish the rest OPC iterations, such that the overall runtime can
be reduced [30].

4 Machine Learning in Physical Design

Machine learning can not only benefit late stages in the backend design flow, but
also early stages, such as physical design. Physical design contains many difficult
combinatorial problems that are hard to solve optimally. These problems are getting
even more complicated due to increasing constraints from design configurations and
manufacturing in advanced technology nodes.

4.1 Machine Learning for Datapath Placement

Wirelength, such as steiner tree wirelength (StWL), is a widely used metric in VLSI
placement for random logic designs. It is the first-order approximation to intercon-
nect delay and capacitance. As minimizing HPWL is generally NP-hard [7], an-
alytical placement with iterative optimizations is developed. Logic designs often
contain datapaths in which cells are characterized with a high degree of bit-wise
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Fig. 11 An example of datapath-aware placement (PADE) achieves a 14% improvement in StWL
compared to conventional placement (Fast-Place3) [42].

parallelism. Conventional analytical placement usually handles them sub-optimally
[43]. For designs with many embedded datapaths, it is critical to extract and place
them appropriately for high quality placement [42, 6, 46].

An example in which modern placers fail to handle datapaths effectively is shown
in Fig. 11 [42, 54]. Fig. 11(a) sketches a datapath circuit in which there are three
bit-stacks of cells, {2, 3, 4, 5}, {6, 7, 8, 9}, and {10, 11, 12, 13}, with fixed I/O
pins. Two placement solutions, one from a datapath-aware placer, PADE [42], and
the other from a conventional placer, Fast-Place3 [40], are shown in Fig. 11(b) and
Fig. 11(c), respectively. PADE is able to achieve smaller StWL because it packs and
aligns each bit-stack more tightly than does Fast-Place3.

The automatic extraction of datapath is critical to eventual placement quality,
in which machine learning techniques can bring benefits. In the datapath extrac-
tion proposed by [42], datapaths are evaluated with SVM and ANN techniques and
then extracted according to their importance. A combined SVM and ANN learning
approach is developed to classify datapath and non-datapath patterns in the initial
netlist for efficient modeling. SVM is able to achieve global optimal in maximizing
the separation margin, while it is susceptible to data noise. ANN, on the other hand,
is more robust to noise, but more difficult to achieve optimal training accuracy. A
pattern is considered to be datapath if and only if both the SVM model and the ANN
model output positive predictions, utilizing the advantanges of SVM and ANN.

4.2 Machine Learning for Routability-Driven Placement

Machine learning can also be applied to routability prediction in placement, which
is very critical to the solution quality of modern placement. This is motivated by
the gap between conventional routing congestion metrics, such as global routing
congestion and the actual detailed routing violations [2, 3]. Fig. 12 shows an ex-
ample in which the routing hotspots reported by global routing are quite different
from those in actual detailed routing. Fig. 13 shows a similar comparison in which
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GR Prediction Actual DRC

(a) (b) (c)
Fig. 12 (a) Routing hotspots predicted by global routing and (b) actual routing hotspots and (c) an
overlay of predicted and actual routing hotspot [3].

Learning-based Prediction Actual DRC

(a) (b) (c)

Fig. 13 (a) Routing hotspots predicted by machine learning and (b) actual routing hotspots and (c)
an overlay of predicted and actual routing hotspot [3].

a SVM model with radius basis function (RBF) is adopted to build the correlation
between layout features and routing hotspots. The routing hotspots reported by ma-
chine learning models are much more consistent with the actual routing hotspots.
Various features in placement are extracted to train an accurate routing congestion
predictor, including density parameters (e.g., local pin and cell density), global rout-
ing parameters (e.g., local overflow, demand, and capacity), pin proximity, cells
tending to result in congestion (e.g., multi-height, sequential cells), connectivity pa-
rameters (e.g., number of nets in local windows), and structural parameters (e.g.,
number and depth of fanin and fanout logic stages). Hence, congestion prediction is
very effective in placement.

Based on the routing hotspot predictor, a routability optimization algorithm is
developed to redistribute white space, as shown in Fig. 14. White space around
hotspots is extracted and redistributed by incrementally moving cells to improve
routability. Incremental legalization is needed to remove overlaps between cells.
Experimental results demonstrate an average of 20.6% and a maximum of 76.8%
reduction in the number of DRC violations with negligible degradation in wirelength
and timing [3].
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Fig. 14 Routability optimization guided by routing hotspot prediction [3].

4.3 Machine Learning for Clock Optimization

Besides placement, machine learning can also benefit the design of clock networks.
Latch optimization including clustering and placement is of significant importance
in modern VLSI designs to optimize skew and power consumption in clock net-
works. Latches in one cluster share a common local clock buffer (LCB) and are
generally placed physically together [35, 5, 18]. Fig. 15 shows that latches are tightly
clustered around LCBs, dramatically reducing the overall wirelength of local clock
trees. A learning based latch optimization methodology is proposed in [44] with a
genetic algorithm for initial latch placement and decision tree induction for latch
template matching. It is reported that 20-30% average reduction in local clock tree
capacitance is achieved in industrial designs.

Classification with decision tree predicts a target class F based on an input vector
E in which (E,F) = (e1,e2,e3, ...,ek,F) with (1 ≤ k ≤ |E|). A decision tree learns
by recursively partitioning the source data into subsequent subsets based on the
attribute test [44]. This method has following advantanges [33]:

• no prior probability distributions are required to data;
• greedy induction approaches provide good approximation to finding an optimal

decision tree;
• fast prediction with worse case O(ω) complexity is possible, where ω is the

depth of the tree.

The decision tree induction algorithm is mainly used for structured template se-
lection. This problem requires a quick decision on the best template given even an
unknown set of input requirements. In addition, the algorithm can handle categorical
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Fig. 15 Multi-GHz design showing clustered latches, where red cells are latches and purple cells
are local clock buffers (LCB) [44].

Algorithm 2 Decision Tree Induction
1: function TREEBUILD(E,F)
2: if stopping condition(E,F) = T RUE then
3: Create a new node from the lea f ;
4: Classify the lea f ;
5: Return lea f ;
6: else
7: Create a node root;
8: Find the best split and set it equal to the root test condition;
9: Let V = the set of possible outcome test conditions of the root node;

10: for each v ∈V do
11: Ev = training records given the root test condition;
12: child = TREEBUILD(Ev,F);
13: Add child as descendent of root and label;
14: end for
15: end if
16: Return root;
17: end function

variables with multiple classes and is easy to implement and maintain. The template
selection problem is a suitable application of this algorithm.

The decision tree induction algorithm is presented in Alg. 2 [44]. When the stop-
ping condition is met, a new node is created with either a test condition or a class
label, and then classify and return the final decision, in line 3-5. Let V be the set of
possible class labels in node lea f When the stopping condition is not yet met, a new
node called root is created and the best split based on specific metrics is searched in
line 7-8. For each possible label in root, line 11-13 recursively call for evaluating a
new node.
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Fig. 16 The challenge of hotspot detection in detailed routing [8].

4.4 Machine Learning for Lithography Friendly Routing

Despite other applications, the last application of machine learning we introduce
in this chapter is to improve lithography friendliness in early stage. Lithography
hotspot mitigation in the post-routing stage lacks the flexibility and thus requires
early consideration [31]. Rule-based approaches have been developed for hotspot
correction [52, 12]. However, with learning-based hotspot prediction, hotspots can
be identified with high accuracy to guide routing effectively.

The major challenge of hotspots detection in routing lies in the requirement of
early prediction before a real routing path is obtained. A layout region with metal
blockages and unrouted pins, Pin1 to Pin4, is shown in Fig. 16(a). Due to the ex-
istence of unrouted nets, general hotspot detection approaches fail to work, while
potential hotspots may be caused by the routing segments from Pin1 to Pin2, as
shown in Fig. 16(b). To tackle this problem, a pre-built hotspot prediction model and
a routing path prediction model are developed for hotspot detection in routing [8].
The routing path prediction model explores possible routing solutions with given
available routing resources and identify preferable routes according to routing con-
gestion and hotspots predicted by the hotspot prediction model. Due to complexity
of data, ANN is adopted as the classifier. The techniques report an average of 50%
reduction on lithography hotspots with 18%∼30% runtime overhead compared with
existing lithography friendly routing works.

5 Conclusion

Machine learning has demonstrated promising benefits to various key steps in the
VLSI backend design flow. This chapter surveys several critical issues in physical
verification, mask synthesis, and physical design, such as hotspot detection, SRAF
generation, OPC, placement and routing optimization. There are also tremendous
ongoing research in this area to develop effective and efficient techniques based on
machine learning. This will enable fast closure of the backend design flow as well as
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increasing the quality of backend synthesis solutions such that timing, power, area,
and yield can be eventually improved.

In addition, backend VLSI design is still at its early stage in applying machine
learning techniques. For example, in the SRAF generation, pixel-by-pixel prediction
is required and only linear models are used, limiting the application of more com-
plicated models due to high computational expense. Similarly, OPC is only afford-
able to adopt linear models as well. Such kind of optimization problems essentially
need to generate a new mask image with a given layout image. It is worth explor-
ing whether generative learning techniques can be applied [15]. For placement and
routing problems, manual selection of important features is still required, while it
is not clear whether general representation of layout information exists and whether
automatic feature selection can be developed. Furthermore, unlike fields with ex-
tensive research on machine learning like image recognition in which large amount
of data is available, it is generally difficult and expensive to obtain enough data
in VLSI design for training robust and accurate models. Therefore, it is critical to
develop techniques to improve modeling accuracy with relaxed requirement of big
data so that machine learning can be widely adopted. All these challenges remain to
be explored in the future.
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