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Abstract—The post-exposure bake (PEB) process is a critical step in
semiconductor lithography, directly impacting resist profile accuracy and
circuit pattern fidelity. Precise modeling of PEB is essential for controlling
photoacid diffusion and inhibitor reactions. In this paper, we introduce
SDM-PEB, an advanced modeling framework designed to enhance the
accuracy of PEB simulations by capturing both intra-layer spatial
dependencies and inter-layer depthwise interactions. Leveraging a unique
hierarchical feature extractor with overlapped patch merging and efficient
self-attention, our approach effectively captures both coarse and fine
features at multiple scales. The spatial-depthwise Mamba-based attention
unit, centered on a customized selective scan and structured state space
model, efficiently captures spatial and depthwise dependencies, enabling
precise 3D PEB simulation. Additionally, a PEB focal loss and differential
depth divergence regularization term improve the sensitivity to both
spatial and depthwise variations, addressing inherent data imbalances
in 3D PEB simulations. Our framework is validated with commercial
rigorous model, and experimental results demonstrate that the SDM-PEB
outperforms previous methods in accuracy and efficiency.

I. INTRODUCTION

Lithography simulation plays a vital role in semiconductor manufac-
turing, providing precise predictions and optimizations for transferring
circuit patterns onto silicon wafers to create integrated circuits [1].
As devices become increasingly miniaturized and designs grow more
intricate, achieving high-resolution patterns becomes increasingly
challenging [2], [3]. This amplifies the role of lithography simulation
in electronic design automation (EDA), where it accelerates design
cycles, integrates manufacturability considerations early, and ensures
adherence to strict performance and yield standards. By minimizing
the cost and time of experimental iterations, lithography simulation
has become essential for addressing the complexities of modern semi-
conductor technologies and advancing the efficiency and accuracy of
the entire EDA workflow.

Predictive simulation of lithographic processes requires the model-
ing of various physical and chemical phenomena. Typical lithography
simulation flow for chemically amplified resist (CAR) consists of
optical simulation and photoresist simulation, as can be seen in Fig. 1.
Optical simulation models the light exposure process where light
interacts with photomasks to project patterns onto the photoresist
layer. In recent years, significant advancements have been made
in optical simulation, driven by the need for precise control over
light exposure and pattern fidelity [4]–[10]. Advanced techniques,
such as source-mask optimization (SMO), further enhance optical
simulation by fine-tuning exposure parameters [11], [12]. Photoresist
simulation, on the other aspect, models the chemical and physical
processes occurring within the photoresist layer during lithography,
from exposure through post-exposure bake (PEB) to development.
PEB is crucial in lithography, as it mitigates the standing wave
effect and ensures consistent feature development [13]. In positive-
tone CAR, exposure to an aerial image decomposes the photoacid
generator, creating an acid latent image within the resist. During the
subsequent PEB process, the resist is baked at elevated temperature,
triggering an acid-catalyzed deprotection reaction that decomposes the
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Fig. 1 A typical flow of lithography simulation for chemically
amplified resist: from optical simulation to photoresist simulation.

inhibitor material [14]. By the end of PEB, the resist in the exposed
area is deprotected, resulting in a higher development rate compared
to unexposed area. The inhibitor concentration distribution determines
the final resist profile after development. In regions where inhibitor
concentration decreases due to acid reactions, the resist dissolves,
forming the desired pattern. PEB simulation simulates the remaining
inhibitor concentration based on the initial 3D photoacid profile,
working as a connection between optical simulation and final printed
features. Fine-tuning simulation tools is essential to accurately model
the acid’s catalytic behavior and predict final feature sizes.

According to the studies in [15], PEB simulation accounts for
up to 30% of the runtime in the rigorous lithography simulation
flow of Synopsys Sentaurus Lithography (S-Litho), which is non-
negligible. Compared to machine learning-based optical simulation,
PEB simulation often requires several times more computational time,
highlighting the need for more efficient modeling approaches. Early
research from the 1990s to early 2000s focused on acid-catalyzed
reactions and physical dynamics governing pattern formation, using
simplified reaction-diffusion equations [16], [17], and 3D diffusion
profile simulations [18]. These methods demand significant compu-
tational resources, especially when simulating large-scale patterns.
Methods such as finite element analysis (FEA) and finite difference
methods (FDM) achieve spatial and temporal precision but are compu-
tationally intensive and limited in scalability for large-scale patterns.
The lack of adaptive mesh refinement and seamless integration
into lithography workflows further hinders efficiency and accuracy.
Despite advancements in optical simulation, PEB simulation, crucial
for accurate patterning, remains comparatively underexplored and
could benefit from further development. Unlike 2D simulations, the
3D distribution characteristic of PEB introduces significant challenges
in modeling complexity and computational cost. Recent state-of-
the-art work DeePEB [15] addresses PEB modeling in CAR using
neural networks, leveraging Fourier Neural Operator (FNO) [19] and
convolution network to capture low-frequency global information and
high-frequency local details. However, this approach struggles to fully
capture continuous spatial and depthwise dependencies in 3D space,
which are critical in PEB simulation where gradients and interactions
across all three dimensions influence outcomes. Additionally, the
frequency segmentation in FNO risks incomplete representations,
while convolution operations may miss intricate high-frequency de-
tails required in 3D structures. The computational overhead of FNO



also impacts its efficiency, posing further challenges.
To address the above challenges in precisely and efficiently model-

ing PEB process, we propose SDM-PEB, designed to fully capture the
spatial and depthwise dependencies inherent in complex physical and
chemical reactions. Inspired by the recent advancements in Vision
Transformers (ViT) [20]–[22], we adopt hierarchical transformer-
based encoders with efficient spatial self-attention to extract both
high-resolution coarse features and low-resolution fine-grained se-
quence features. Given that neighboring layers in the photoacid dis-
tribution provide valuable context, spatial and depthwise correlations
require a carefully designed self-attention mechanism. Mamba [23],
[24], a recent innovation based on state space models, efficiently
captures long-range dependencies through selective scanning of fea-
ture sequences. Building on these new advancements, we introduce a
customized spatial-depthwise Mamba-based attention unit (SDM unit)
in each encoder layer, integrating parallel three-direction selective
scan mechanisms of space state sequences to address both intra-
layer spatial coherence and inter-layer interactions. Furthermore, a
novel PEB focal loss is proposed to address the issue of imbalanced
distribution of inhibitor. A differential divergence regularization is
utilized to account for inter-layer variations. Our major contributions
are summarized as follows:

• We employ a hierarchical vision transformer encoder to extract
multi-scale spatial information within a single photoacid depth
level.

• We propose a customized spatial-depthwise Mamba-based atten-
tion unit to enhance the model’s capability in capturing cross-
depth-level dependencies.

• We proposed the PEB focal loss and the differential depthwise
divergence regularization to refine the learning objective, ad-
dressing reaction imbalances and reducing depthwise divergence.

• We evaluate our framework using the industry-verified software
S-Litho, and the results demonstrate superior precision and
efficiency compared to existing methods.

II. PRELIMINARIES

A. Photoresist Simulation Process

Post-Exposure Bake Process. Different resists undergo distinct
physical and chemical reactions during PEB [13]. This paper focuses
on positive-tone chemically amplified resists (CAR), the predominant
materials used in ArF (193 nm) exposure for advanced semiconductor
manufacturing. Modern CARs comprise protected polymers or disso-
lution inhibitors (I), photoacid generators (PAG), and quencher bases
(B) [25]. The reaction process aims to create solubility contrast in the
resist, enabling pattern formation. During lithographic exposure prior
to PEB, incident light decomposes the PAG, producing photoacid
(A). In the subsequent thermal-driven PEB process, the photoacid
catalyzes a reaction that deblocks the inhibitor. This catalytic reaction
amplifies the effects of exposure and can be described by the catalytic
reaction equation:

∂[I]

∂t
= −kc[I][A], (1)

where [I] and [A] denote the normalized concentration distributions
of the inhibitor and photoacid, respectively, and kc represents the
catalysis coefficient.

The generated photoacid molecules diffuse within the resist during
the process and are neutralized by the base quencher upon contact.
This acid-base neutralization regulates acid diffusion, preventing
excessive spreading and reactions in undesired regions. The base
quencher also diffuses during PEB. The general reaction-diffusion

process for normalized concentration distribution of photoacid [A]
and base quencher [B] can be expressed:

∂[A]

∂t
= −kr[A][B] +DA∇2[A], (2)

∂[B]

∂t
= −kr[A][B] +DB∇2[B]. (3)

In the above equation, the first term represents the neutralization
reaction with kr the reaction coefficient, the second term is Fick’s
law of diffusion in three dimensions, DA, DB are the diffusion
coefficients. The diffusion length L depends on diffusion coefficient
and PEB duration T : L =

√
2D · T .

For initial conditions (I.C.), without loss of generality, we consider
uniform base and inhibitor distributions, while photoacid concentra-
tion is derived from the 3D aerial image via the Dill Model [26].
Boundary conditions (B.C.) are critical in confined structures like
thin films. In x-y dimensions, we consider a commonly used zero-
flux B.C., ensuring no flux across boundaries [27], [28]. In the z
dimension, Robin B.C. describes photoacid in/out-diffusion at the
resist surface:

∂[A]

∂n
= 0, DA

∂[A]

∂z
= h([A]top − [A]sat), (4)

where n is the normal direction, h is the transfer coefficient and
[A]sat is the saturation concentration.

Development Process. After PEB, the development process trans-
forms the chemically modified photoresist into a physical pattern.
During this stage, exposed regions dissolve in the developer solution
at a rate R, which depends on the inhibitor concentration and is
described by the Mack kinetic model [29]:

R(x, y, z) = Rmax
(a+ 1)(1− [I])n

a+ (1− [n])n
+Rmin, a = (1−Mth)n

n+ 1

n− 1
.

(5)
Here Rmax and Rmin are the maximum and minimum development
rates for fully exposed and unexposed regions, respectively. n is
the surface reaction order, Mth is the experimentally determined
threshold.

Using local development rates, the resist profile at a given de-
velopment time td can be evaluated. The propagation of the de-
velopment front Sd(x, y, z) is governed by the Eikonal equation
[30]: |∇Sd(x, y, z)| = 1/R(x, y, z). In this work, we compute
development rates from the inhibitor distribution and use an open-
source Eikonal Solver [31] to calculate the development profile.

B. State Space Models-based Methodologies

Feature representations in 3D photoresist, characterized by consecu-
tive depthwise distributions, can be naturally modeled as sequences of
depth-levels (from shallow to deep). Recent advances in state space
models (SSMs) have demonstrated their effectiveness in capturing
long-range dependencies while supporting efficient parallel training.
Originating from the Kalman filter [32], SSMs are linear time-
invariant systems that map a scalar sequence x(t) to another scalar
sequence y(t) via a hidden state h(t) ∈ RN , where t ∈ {1 . . . L}.
The system evolves with evolution parameter A ∈ RN×N , initialized
using HiPPO matrix [33], and the projection parameters B ∈ RN×1

and C ∈ RN×1 as:

h′(t) = Ah(t) + Bx(t), y(t) = Ch(t). (6)

To adapt to deep learning, continuous-time SSMs are discretized
using the zero-order hold (ZOH) assumption [34], transforming
continuous-time parameters A and B into discrete equivalents:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B, (7)
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Fig. 2 The architecture overview of our proposed SDM-PEB framework.

(b)

(a)

Fig. 3 (a) Non-overlapped patch merging
and (b) overlapped patch merging.

with a specified time step ∆. The Equation (6) can be expressed in
the discrete form:

ht = Āht−1 + B̄xt, yt = Cht. (8)

To improve computational efficiency and scalability, the iterative
process in Equation (8) is reformulated as a single global convolution:

y = x ∗ K̄, K̄ = (CB̄,CĀB̄, · · · ,CĀL−1B̄), (9)

where ∗ denotes the convolution operation.
Mamba [23], a recent selective scan SSM, excels in long-sequence

modeling with linear complexity. By associating SSM parameters
with the input, Mamba selectively focuses on relevant information
while ignoring irrelevant inputs. This is achieved by configuring the
projection matrix to be dependent on input sequence x with K
channels:

B = LinearN (x), C = LinearN (x), (10)

∆ = softplus(BroadcastK(Linear1(x)) + D), (11)

where LinearN projects to a hidden dimension N , BroadcastK
expands 1D data into a K-dimensions, and D is a constant weight
matrix. To enhance GPU utilization and memory efficiency, Mamba
employs a hardware-aware algorithm for selective SSM computation
with linear scalability relative to sequence length. By combining
kernel fusion and recomputation within parallel scans, this approach
minimizes memory I/O operations, resulting in substantial improve-
ments in computation speed.

C. Problem Formulation
To enhance PEB simulation accuracy, we focus on predicting the
3D inhibitor distribution, known as the PEB latent image. Following
prior work [15], we evaluate the predicted inhibitor distribution
I, development rate R, and resulting photoresist profile using the
following metrics:

Root Mean Squared Error (RMSE). Root Mean Squared Error is
commonly used to measure the difference between the predicted P̂
and the ground truth P :

RMSE =

√√√√∥∥∥P̂ − P
∥∥∥2

n
, P = [I], R. (12)

Normalized Root Mean Squared Error (NRMSE). Normalized
Root Mean Squared Error (NRMSE) accounts for the magnitude of
the true values, making the error more interpretable, especially for
datasets with different scales or units:

NRMSE =

∥∥∥P̂ − P
∥∥∥
F

‖P ‖F
, P = [I], R, (13)

where ‖·‖F denotes the Frobenius norm.

Photoresist Profile Critical Dimension Error (CD Error). In addi-
tion to the direct comparison of inhibitor distribution and development
rate, CD error assesses the photoresist profile’s accuracy by comparing
printed feature dimensions CDd in the x-y plane to target values:

CD Errord =

√
(ĈDd − CDd)2

n
, d = x, y. (14)

Problem 1 (PEB simulation problem). Given initial 3D photoacid
distributions {[A]i}Ni=1 and corresponding inhibitor distributions
{[I]i}Ni=1 with spatial dimensions D, H , W (depth, height, width),
the objective is to develop and train a deep-learning model FΘ :
[A] 7→ [I], parameterized by Θ, to accurately predict inhibitor
distributions for test mask patterns. The model must capture both
spatial and depthwise dependencies, minimizing RMSE, NRMSE, and
CD error while ensuring efficient computational runtime.

III. FRAMEWORK

A. Overview
In post-exposure bake (PEB) simulation, accurately modeling spatial
(x-y plane) and depthwise (z-axis) dependencies is crucial for pre-
dicting complex 3D distributions. To enhance the model’s ability to
capture nuanced details essential for precise pattern representation in
lithography, we propose the following:

1) Hierarchical Contextual Feature Extractor, designed to cap-
ture both coarse and fine-grained spatial features at each depth
level;

2) Spatial-Depthwise Mamba-based Attention Unit, developed
to model cross-depth-level dependencies effectively.

Fig. 2 provides an overview of the SDM-PEB architecture. The
design of the proposed framework is detailed in this section.

B. Hierarchical Contextual Feature Extractor
A single-scale feature extractor with fixed resolution often struggles to
effectively capture the complex patterns and multi-scale dependencies
inherent in the PEB simulation task. Inspired by advancements in
hierarchical feature extractors [35], [36], we adopt a hierarchical
feature encoder to generate high-resolution coarse features and low-
resolution fine-grained features. To further optimize the trade-off
between performance and efficiency in the PEB simulation task, we
incorporate two key customizations.

Depthwise Overlapped Patch Merging. Local dependencies be-
tween neighboring regions are essential for modeling reactions in-
fluenced by adjacent concentrations. These dependencies help the
model understand photoacid diffusion and reaction rate variations.



(a) (b)

Fig. 4 Vertical visualization of distributions: (a) photoacid at the initial
stage and (b) inhibitor at the final stage.

To reduce information loss at patch boundaries and enhance local
continuity, we apply depthwise overlapped patch merging instead
of non-overlapped patch merging to downsample spatial feature
maps while retaining depth resolution. A comparative illustration is
provided in Fig. 3. Additionally, The channel dimension increases
after each merging layer, capturing increasingly complex and abstract
feature representations.

Efficient Spatial Self-Attention. ViT-based feature extractors have
achieved great success in general computer vision tasks by employ-
ing spatial self-attention to dynamically assign importance to input
features. However, the computational complexity of standard multi-
head self-attention is O(L2), where L is the sequence length of the
input.

In the task of PEB prediction, the input photoacid distributions
are typically large due to high-resolution requirements and include a
depth dimension, making the computational cost of standard attention
mechanisms infeasible. To address this challenge, we apply a reduc-
tion ratio r to shorten the sequence length, as suggested in [35]. The
transformation is defined as follows:

K̂ = Reshape

(
L

r
,C · r

)
(K), K = LinearC(K̂), (15)

where K is the key in the attention mechanism, and C is the
feature dimension of K. After the transformation, the sequence
length of K is reduced by the reduction ratio r, decreasing the
computational complexity from O(L2) to O(L2/r), thereby making
the computational cost manageable.

C. Spatial-Depthwise Mamba-based Attention Unit
As described in Equations (1) and (2), photoacid molecules generated
during exposure diffuse and trigger chemical reactions in adjacent
layers, altering the inhibitor profile. Therefore, depthwise interactions
are crucial for accurately predicting the final inhibitor distribution and
resist profile. This causal depthwise dependency can be observed in
the vertical profiles shown in Fig. 4, which exhibit continuous and
gradual changes in photoacid and inhibitor distributions.

Given that Mamba [23] is renowned for its ability to model se-
quential information, we propose the spatial-depthwise Mamba-based
attention unit (SDM Unit) to extract inter-depth-level relationships.
The SDM Unit extends bidirectional scanning into three dimensions
to better aggregate depthwise information and employs structured
state space models to effectively capture both spatial and depthwise
dependencies.

Spatial-Depthwise PEB Selective Scan. As introduced in Sec-
tion II, Mamba is traditionally designed for 1D sequences. To extend
Mamba to the PEB simulation task and enhance its capability for
3D photoacid-inhibitor modeling, the selective scan path must be
carefully designed. Building on the ideas from previous works [24],
[37], [38], we propose employing three types of selective scans
simultaneously: (1) Spatial Scan: The spatial scan operates along the
depth dimension, focusing on information at a specific spatial position

Conv1D
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Conv1D

Conv1D Spatial-SSM

<latexit sha1_base64="pi+sNk6JNCXFq5bp/TFPGSNAgFM=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae0Y8lk0jY0kwxJRqlD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbD1RpJsWdmcTUj/BQsAEj2FjpvhdIHupJZK/0adovV9yqOwNaJl5OKpCj0S9/9UJJkogKQzjWuuu5sfFTrAwjnE5LvUTTGJMxHtKupQJHVPvpLPUUnVglRAOp7BEGzdTfGymOdBbNTkbYjPSil4n/ed3EDC79lIk4MVSQ+UODhCMjUVYBCpmixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5PWWdWrVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5j86L8+58zEcLTr5zCH/gfP4AWeiTFg==</latexit>z

<latexit sha1_base64="QAt/GBpBgLfJ5421DcpXbiKEchk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae0Y8lk0jY0kwxJRi1D/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbD1RpJsWdmcTUj/BQsAEj2FjpvhdIHupJZK/0adovV9yqOwNaJl5OKpCj0S9/9UJJkogKQzjWuuu5sfFTrAwjnE5LvUTTGJMxHtKupQJHVPvpLPUUnVglRAOp7BEGzdTfGymOdBbNTkbYjPSil4n/ed3EDC79lIk4MVSQ+UODhCMjUVYBCpmixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5PWWdWrVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5j86L8+58zEcLTr5zCH/gfP4AVt6TFA==</latexit>x

Depth-backward SSM<latexit sha1_base64="C/yV+zmsTtVlv61bSlA8a2b2u3E=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae0Y8lk0jY0k4xJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbj1RpJsWdmcTUj/BQsAEj2FjpvhdIHupJZK/0YdovV9yqOwNaJl5OKpCj0S9/9UJJkogKQzjWuuu5sfFTrAwjnE5LvUTTGJMxHtKupQJHVPvpLPUUnVglRAOp7BEGzdTfGymOdBbNTkbYjPSil4n/ed3EDC79lIk4MVSQ+UODhCMjUVYBCpmixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5PWWdWrVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5T86L8+58zEcLTr5zCH/gfP4ATDuTDQ==</latexit>q

<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>�
<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>�
<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>�
<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>�

Linear
<latexit sha1_base64="qStfXHlzD+JU9sH0DDbZbfxbC/o=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2LJlMpg3NJEOSUcrQ/3DjQhG3/os7/8ZMOwttPRByOOdecnKChDNtXPfbWVldW9/YLG2Vt3d29/YrB4dtLVNFaItILlU3wJpyJmjLMMNpN1EUxwGnnWB8k/udR6o0k+LeTBLqx3goWMQINlZ66AeSh3oS2ytLpoNK1a25M6Bl4hWkCgWag8pXP5QkjakwhGOte56bGD/DyjDC6bTcTzVNMBnjIe1ZKnBMtZ/NUk/RqVVCFElljzBopv7eyHCs82h2MsZmpBe9XPzP66UmuvIzJpLUUEHmD0UpR0aivAIUMkWJ4RNLMFHMZkVkhBUmxhZVtiV4i19eJu3zmlev1e8uqo3roo4SHMMJnIEHl9CAW2hCCwgoeIZXeHOenBfn3fmYj644xc4R/IHz+QNKtpMM</latexit>p

(a)

Layer 
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i+1
Layer 

<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
Layer 

<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i-1

Layer 
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i+1
Layer 

<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
Layer 

<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i-1

Layer 
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i+1
Layer 

<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
Layer 

<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i
<latexit sha1_base64="kSD1gj0zm5uE0tiEl/bImImTVQs=">AAAB6HicbZDLSgMxFIbPeK31VnXpJlgEV2VGobrSghuXLdgLtEPJpGfa2ExmSDJCKX0CNy4Uceur+AbufBvTaRfa+kPg4//PIeecIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD22nefESleSzvzShBP6J9yUPOqLFWjXcLRbfkZiLL4M2hePN5kanaLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9uipBFqf5wNOiGn1umRMFb2SUMy93fHmEZaj6LAVkbUDPRiNjX/y9qpCa/8MZdJalCy2UdhKoiJyXRr0uMKmREjC5QpbmclbEAVZcbeJm+P4C2uvAyN85JXLpVrXrFyDTPl4BhO4Aw8uIQK3EEV6sAA4Qle4NV5cJ6dN+d9VrrizHuO4I+cjx/JpI8l</latexit>

i-1

(b)

Fig. 5 (a) The architecture of the spatial-depthwise Mamba-based
attention unit; (b) Illustration of the three-direction PEB selective
scan, from left to right: spatial scan, depth-forward scan, and depth-
backward scan.

across all depth layers; (2) Depth-Forward Scan: The depth-forward
scan processes the entire shallow level first before transitioning to
deeper levels; (3) Depth-Backward Scan: The depth-backward scan
follows the reverse order of the depth-forward scan, processing deeper
levels before moving to shallower ones. We illustrate the scan methods
in Fig. 5(b). The spatial-depthwise three-direction PEB selective scan,
serves as the core element in the SDM Unit, and leverages parallel
SSMs to establish the intra- and inter-depth long-range dependencies.

Structure of SDM Unit. The structure of the spatial-depthwise
Mamba-based attention unit (SDM Unit) is illustrated in Fig. 5(a).
Specifically, the feed-forward layer output in the i-th en-
coder layer, comprising feature map embeddings with dimensions
RCi×D×Hi×Wi , is reshaped into a sequence qi of size RCi×DHiWi ,
and normalized through a normalization layer. This sequence is
then fed into the SDM Unit, which enhances both inter-layer and
intra-layer distribution dependencies. The normalized sequence qi
is linearly projected into xi and zi with hidden dimension Chi .
For each scanning direction, a 1D convolution followed by SiLU
activation [39] is applied to x, resulting in x′d as input for the d-
direction spatial-depthwise PEB selective scan: B,C,∆ are derived
fromEquation (10), and discretized values Ā, B̄ are computed using
Equation (7). The outputs of the selective scan are calculated via
Equation (9). These outputs are then weighted by zi and combined
to produce the final feature pi. A depthwise convolution with a kernel
size of 3 is subsequently applied to refine fine-grained features.

By dynamically adjusting attention weights across spatial and
depthwise dimensions, the model effectively captures both local
and global patterns within the resist layers. This enables accurate
modeling of intricate physical-chemical interactions in 3D inhibitor
distributions, resulting in a precise inhibitor profile.

D. Customized PEB Optimization Objectives
To accommodate the exponential variation of inhibitor as indi-
cated in Equation (1), we apply the label normalization technique
from [15], specifically predicting the quadratic negative logarithmic
transformation of the inhibitor distribution as the output Y rather
than the raw distribution. This transformation is defined as Y =
− ln(− ln([I])/kc). In previous work [15], the authors used the single
maximum squared error (MaxSE):

LMaxSE = max
d,h,w

(
Ŷd,h,w − Yd,h,w

)2

. (16)

However, by emphasizing only the maximum error, MaxSE may not
reflect the overall quality of predictions across the entire distribution.
Additionally, the model could become unstable, potentially oscillating
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Fig. 6 Distribution frequencies of (a) photoacid value ranges and (b)
inhibitor value ranges.

to correct extreme outliers rather than achieving balanced accuracy. In
this work, we introduce a customized PEB focal loss and a differential
depth divergence regularization to address the complexity of the 3D
distribution.

PEB Focal Loss. As can be seen from Fig. 6, the distributions
of both photoacid and inhibitor are highly imbalanced: In every
layer, photoacid spreads widely but shows significant exception inside
contacts meanwhile inhibitor tends to be localized inside contacts. The
frequency of the inhibitor distribution can even differ by several orders
of magnitude. This imbalance skews the data toward low-variance
background regions, making it difficult for the model to focus on
subtle but critical changes near contacts. Inspired by the focal loss
proposed for hard example mining [40], we design a PEB focal loss
to address the imbalance issue:

LPEB-FL =

D∑
d

H∑
h

W∑
w

∣∣∣Ŷd,h,w − Yd,h,w∣∣∣γ (Ŷd,h,w − Yd,h,w)2

,

(17)
where γ is the focusing parameter, empirically set to 1 in our
experiment.

Differential Depth Divergence Regularization. In 3D PEB sim-
ulation, understanding how the inhibitor distribution evolves across
layers is crucial for enhancing spatial-depthwise dependencies. We
further propose the differential depth divergence regularization fo-
cusing on aligning inter-layer differences. For every pair Ŷ,Y ∈
RD×H×W , we first calculate their layer-wise forward difference maps
∆Ŷ,∆Y ∈ R(D−1)×H×W , in which d-th layer can be expressed:

∆Ŷd = Ŷd+1 − Ŷd, ∆Yd = Yd+1 − Yd. (18)

We then convert the difference maps into probabilities by applying the
softmax function across the height and width dimensions, in which
high difference layers are penalized:

σ(∆Ŷd) =
exp(∆Ŷd/τ)∑H

h=1

∑W
w=1 exp(∆Ŷd,h,w/τ)

, (19)

σ(∆Yd) =
exp(∆Yd/τ)∑H

h=1

∑W
w=1 exp(∆Yd,h,w/τ)

, (20)

where τ is the parameter to sharpen the probability distribution,
we empirically set to 0.1 here. The differential depth divergence
regularization LDiv is formulated as the Kullback-Leibler divergence
between the predicted difference map and the ground difference map:

LDiv =

D−1∑
d=1

σ(∆Ŷd) log
σ(∆Ŷd)
σ(∆Yd)

. (21)

The overall loss function is the linear combination of the three
weighted by α and β with empirical values 1.0 and 0.1. The learning
on the whole distribution can be enhanced:

L = LMaxSE + αLPEB-FL + βLDiv. (22)

TABLE I Important parameters in photoresist simulation process.
PEB

Normal Diffusion
Length LN,A, LN,B

70, 15 nm
Lateral Diffusion

Length LL,A, LL,B
10, 10 nm

catalysis coefficient kc 0.9 /s reaction coefficient kr 8.6993 /s
transfer coefficient hA, hB 0.027, 0 saturation concentration [A]sat, [B]sat 0.9, 0

[I](t = 0) 1.0 [B](t = 0) 0.4
Baseline Time step 0.1 s Duration 90 s

Develop
Rmax 40 nm/s Rmin 0.0003 nm/s
Mth 0.5 n 30

Duration 60 s

TABLE II Comparison with different PEB solvers.

Methodologies
Inhibitor Develop Rate CD Error

RT/sRMSE NRMSE RMSE NRMSE x y
(e-3) (%) (nm/s) (%) (nm) (nm)

DeepCNN [41] 8.25 12.53 0.65 1.63 3.14 6.26 1.01
TEMPO-resist [5] 7.67 12.55 0.50 1.26 2.12 2.45 6.48

FNO [19] 7.91 11.68 0.68 1.69 2.34 3.71 1.15
DeePEB [15] 3.99 5.70 0.48 1.19 0.98 1.24 1.37

SDM-PEB 2.78 3.70 0.35 0.86 0.74 0.93 1.06

IV. EXPERIMENTS

We generate 100 mask clips from [42], each sized at 2×2µm2, which
proved sufficient in our experiments. These mask clips are designed
with contact sizes and distribution patterns suitable for technology
nodes at 28nm and below. Rigorous simulations are conducted using
S-Litho. The wavelength is λ = 193nm and numerical aperture is
NA = 1.35 for the optical exposure simulation, the optical influence
range of 5λ/NA and simulation resolution of 0.5nm in three
directions are configured for the 2 × 2µm2 simulation window. For
the PEB simulation and development simulation, the resist thickness
is 80nm, and resolutions in x, y and z directions are 2nm, 2nm, and
1nm respectively. Other important simulation parameters included are
listed in TABLE I.

In the SDM-PEB configuration, the spatial sizes of feature maps
from encoder layers 1 to 4 are reduced to [ 1

16
, 1

32
, 1

64
, 1

128
] of

raw input, achieved using patch sizes of [15,3,3,3] and strides of
[8,2,2,2]. The feature dimensions for these layers are [64, 128, 320,
512], respectively. Self-attention reduction ratios are [64,16,4,1]. The
MLP in the feature fusion layer has 768 dimensions. The decoder
includes 3 transpose convolution layers, with LeakyReLU activations
between them. The training was conducted on 2 NVIDIA RTX 3090
GPUs for 500 epochs using a step decay scheduler, beginning at a
learning rate of 0.03 with a step size of 100 and a decay factor of
0.7. We used a batch size of 8 by accumulating gradients over 8 clips
before updating the model each epoch, considering the restriction of
GPU memory. For a fair comparison, we followed the same train-test
split as prior methods and tested runtime on our machines.

Compare With Learning-based PEB solvers. There exists few prior
works focused on modeling photoresist simulation. We compared
our SDM-PEB with previous state-of-the-art (SOTA) learning-based
photoresist solvers. DeepCNN is customized from [41] with a residual
connection for adaption to our problem. TEMPO-resist is modified
from TEMPO [5], which originally used a conditional-GAN to predict
3D aerial images at various heights, to suit our 3D PEB simulation.
DeePEB [15] extends FNO [19] by integrating CNN-based local
learning branches to capture high-frequency information.

As is shown in TABLE II, our SDM-PEB outperforms all compared
learning-based methods by a significant margin. Compared to the
previous best method, DeePEB, SDM-PEB achieves 43.5% lower
average RMSE and 54.1% lower NRMSE for inhibitor concentration
predictions. For development rate prediction, with values bounded
between Rmin and Rmax, our method reduces RMSE by 37.1% and
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Fig. 7 Percentage counts of CD errors using different methods: (a) error in the x direction
and (b) error in the y direction.

TABLE III Ablation study

Methodologies
NRMSE/% CD Error

Inhibitor Rate x/nm y/nm

Single Layer Encoder 13.09 1.71 2.93 3.49
2-D Scan 8.83 1.58 2.07 3.05

w/o. Focal Loss 5.91 1.22 1.14 1.37
w/o. Regularization 5.98 1.24 1.15 1.42

SDM-PEB 3.70 0.86 0.74 0.93
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Fig. 8 Top-down visualization examples of predicted distribution
results. The upper row is the top surface and the lower row is the
bottom surface. (a) Ground truths, (b) predictions and (c) differences.

NRMSE by 38.4%. This superior predictive accuracy extends to the
final resist profile, improving CD error by 32.4% in the x-direction
and 33.3% in the y-direction. Compared to DeepCNN, TEMPO-resist,
and FNO, the accuracy improvements are even more pronounced
across all evaluated metrics.

The distributions of CD errors in the x and y directions are shown
in Fig. 7. Compared to other methods, the CD errors of SDM-PEB
are more concentrated within the range of 0-1 nm, demonstrating
superior prediction accuracy. Furthermore, the CD error distributions
in the x and y directions are more consistent, demonstrating the
robustness and stability of our approach.

SDM-PEB also demonstrates high efficiency, achieving an average
runtime (RT) of 1.06s, which is 138× faster than S-Litho’s 147s. It
achieves a 6× speedup compared to TEMPO-resist and reduces run-
time by 8.5% and 29.2% compared to FNO and DeePEB, respectively.
Although it takes 4.7% more time than DeepCNN, this slight runtime
overhead is justified by its substantial performance improvements.

Visualization of Simulation Results. Fig. 8 presents examples
comparing the ground truth with SDM-PEB results at both the top
layer and bottom surface. The predicted inhibitor shows minimal
deviation from the ground truth, with absolute errors across most
positions on the plane remaining within 0.1. Spatial information is
effectively extracted and translated, as evidenced by the consistency
of results at both the center and the corner. Fig. 9 compares the
vertical profiles of contacts at the center and corner, corresponding
to contacts within the red box and blue box in Fig. 8. Leveraging
the three-direction PEB selective scan for depthwise information
gathering, SDM-PEB successfully captures relationships between ad-
jacent depth distributions and models causal variations across different
depths, achieving consistent simulations along the depth direction.
The primary discrepancies occur at the edges of contacts, where
concentration changes are more drastic. At the top layer, the inhibitor
concentration is lower than at the bottom and is confined to a smaller

Center

Corner

(a) (b) (c)
Fig. 9 Vertical visualization of predicted results: the upper row shows
the center contact, the lower row shows the corner contact. (a) Ground
truths, (b) predictions, (c) differences.

region, adding to the challenges for the model.

Ablation Study. We conducted an ablation study on each component
of our method, with the results presented in TABLE III. In the
Single Layer Encoder setting, only the feature map from the first
encoder layer is used, which fails to capture complex features and
results in the lowest accuracy. In the 2-D scan setting, only the
depth-forward and depth-backward scans shown in Fig. 5(b) are
utilized, which is adapted from [24] for our 3D tasks. Compared
to this setting, SDM-PEB achieves significant improvements across
all metrics, demonstrating the importance of depth dependencies in
enhancing PEB modeling. Furthermore, we remove the PEB focal
loss and differential depth divergence regularization in the ‘w/o. Focal
Loss’ and ‘w/o. Regularization’, respectively, while retaining the other
two optimization objectives. The results show noticeable degradation
compared to the full SDM-PEB, highlighting the critical role of each
component in refining the framework.

V. CONCLUSION

This paper introduces SDM-PEB, a novel modeling framework de-
signed to enhance 3D PEB simulation. It effectively captures spatial
and depthwise dependencies to model the physical and chemical
interactions underlying the inhibitor distributions while maintaining
efficiency. Our framework integrates hierarchical feature extraction
with efficient self-attention and spatial-depthwise Mamba-based atten-
tion to capture long-range dependencies. To address data imbalances
and improve sensitivity to 3D variations, we propose a PEB focal loss
and differential depth divergence regularization. Experimental results,
validated with an industry-grade software S-Litho under real man-
ufacturing conditions demonstrate the superior performance of our
method. Through the development of modeling advanced photoresist
simulation, we aim to further progress lithography techniques.
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