
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Semi-Supervised Hotspot Detection with Self-Paced
Multi-Task Learning

Ying Chen Student Member, IEEE, Yibo Lin Member, IEEE, Tianyang Gai Student Member, IEEE, Yajuan Su,
Yayi Wei, Member, IEEE, David Z. Pan Fellow, IEEE

Abstract—Lithography simulation is computationally expen-
sive for hotspot detection. Machine learning based hotspot detec-
tion is a promising technique to reduce the simulation overhead.
However, most learning approaches rely on a large amount of
training data to achieve good accuracy and generality. At the
early stage of developing a new technology node, the amount of
data with labeled hotspots or non-hotspots is very limited. In
this paper, we propose a semi-supervised hotspot detection with
self-paced multi-task learning paradigm, leveraging both data
samples w./w.o. labels to improve model accuracy and generality.
Experimental results demonstrate that our approach can achieve
4.6%-6.5% better accuracy at the same false alarm levels than
the state-of-the-art work using 10%-50% of training data.

I. INTRODUCTIONS

As the technology node continues to shrink, the feature
sizes are getting smaller and smaller. Layout patterns are
becoming more sensitive to process variations in lithography
and lead to manufacturing defects. It is necessary to detect
these patterns before volume production to ensure yield.
These patterns are named as hotspots.

Hotspots are usually detected with lithography simulation
[1]. It is able to achieve high detection accuracy but com-
putationally expensive. Machine learning [2]–[7] and pattern
matching [8]–[12] based approaches are then proposed to
speedup the detection efficiency and meanwhile maintain
the high accuracy. Pattern matching based approaches stores
a known hotspot library and search for exact or similar
matches given a new layout clip. Yu et al. [11] extract critical
topological features of hotspots and transform them for design
rule checking (DRC) to locate the hotspot positions. Although
it has high confidence, it cannot handle unseen hotspots.
Machine learning techniques are able to learn the correlation
between layout features and hotspots/non-hotspots, develop
classifiers to differentiate hotspots and non-hotspots, and
thus recognize even unseen hotspots with high accuracy. In
addition, hybrid methods [13] of the above two techniques

The preliminary version has been presented at the Asia and South
Pacific Design Automation Conference (ASP-DAC) in 2019. This work
is supported by National Science and Technology Major Project of China
(Grant No.2017ZX02315001 and 2017ZX02101004), US National Science
Foundation (#1718570) and China Scholarship Council (No.201704910587)
during Y. Chen’s visit to UT Austin (Corresponding author: Yayi Wei, David
Z. Pan, Yajuan Su).

Y. Chen, T. Gai Y. Su and Y. Wei are with Key Laboratory of Micro-
electronics Devices Integrated Technology, Institue of Microelectronics of
Chinese Academy of Science and University of Chinese Academy of Science,
Beijing, China (e-mail: weiyayi@ime.ac.cn; suyajuan@ime.ac.cn).

Y. Chen, Y. Lin, D. Z. Pan are with The Department of Electrical and
Computer Engineering, The University of Texas at Austin, TX, USA (e-mail:
dpan@ece.utexas.edu).

are proposed to combine both their advantages. Mostafa et
al. [13] adopt a machine learning system to filter patterns,
and then apply pattern matching to detect outliers. They
aim to identify previously observed hotspots accurately while
achieving better predictability of unseen hotspots.

In machine learning based hotspot detection, both conven-
tional learning approaches and deep learning approaches are
developed for hotspot detection. Models like Bayesian and
bilinear techniques have been explored with various feature
extraction techniques [14], [15]. Park et al. [16] consider
lithography imaging and train four SVM kernels for different
types of hotspots with the aerial image intensity information
to achieve high accuracy. Conventional learning approaches
usually require manual feature extraction. Deep learning with
conventional neural networks (CNN) has then been explored
to avoid the overhead of feature engineering. Yang et al. [17]
identify the label imbalance issue in the datasets and propose
a deep CNN to achieve high classification accuracy. They then
develop a biased learning technique for the unbalanced dataset
with a discrete-cosine transformation (DCT) for feature tensor
generation to further improve accuracy with a less deep CNN
[4]. They also propose a batch active learning to improve the
data efficiency by active selection of data samples for training.
The active learning scheme assumes that it is possible to query
the labels of data samples by lithography simulation during
model construction.

For machine learning-based hotspot detection, previous
work mostly relies on supervised learning with access to a
large amount of training data available. That is, there are
enough data samples known to be either hotspots or non-
hotspots (labeled) for model training. This condition cannot
always hold in the evolution of technology nodes. At the early
stage of a new technology node, the amount of labeled data
samples tends to be limited, while unlabeled data samples
are relatively easy to access [18]. As supervised learning can
only leverage labeled data samples for training, it is likely to
encounter significant performance degradation with a small
amount of labeled training data.

Facing the situation that labeled data samples are difficult
to obtain while unlabeled data samples are abundant and
easily collected, semi-supervised learning which could make
full use of vast unlabeled data has attracted attention. Semi-
supervised learning can leverage both labeled and unlabeled
samples to help the model training, reducing the dependence
to a large amount of labeled training data. It is actively
explored in image recognition, neural language processing,
etc [19], [20]. Co-training and graph-based method are two

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

classical semi-supervised learning methods. In co-training,
two learning algorithms are trained separately on two distinct
views of each sample, and their predictions on new unlabeled
samples are used for the enlargement of each other’s training
set [21]. Zhou et al. [22] present a co-training algorithm
called tri-training which uses three classifiers instead of two.
An unlabeled sample can be labeled with two classifiers’
agreement on the label assignment of this sample. This could
alleviate the time-consuming problem in the labeling confi-
dence measurement of a standard co-training. Caldas et al.
[23] propose a co-training method based on minimal learning
machine, and mitigate the heavy computational cost problem
with the recursive formulation in parameters learning step and
a nearest neighbor procedure in the output estimation step.
Label propagation algorithm is a widely used graph-based
method [24]–[27], which predicts class for unlabeled samples
by propagating labels of labeled samples to unlabeled samples
based on the data distribution. Yu et al. [28] classify the labels
of new observations based on label propagation results and
the consensus rates computed from multiple clustering results.

For correlated tasks, designing the architecture with sharing
layers could be effective. For example, Li et al. [29] perform
saliency detection task and object class segmentation task
together with a shared convolution part. Zhang et al. [30]
utilize a multi-task deep neural network with shared hidden
layers for acoustic emotion recognition. Self-paced learning
could introduce samples for training from easy ones to hard
ones gradually. With its benefit of alleviating the influence
of ambiguous data, self-paced learning has been adopted
in many semi-supervised learning related researches. Lin et
al. [31] combine active learning and self-paced learning, the
model performance is improved by selecting high confident
samples with self-paced learning and querying real label of
low confident samples with active learning. Zhou et al. [32]
apply self-paced learning to alleviate the side effects of noisy
samples or outliers and outperform state-of-art approaches in
person re-identification.

In our preliminary work [33], we first apply multi-task
network and self-paced learning on hotspot detection to
overcome the limitations of conventional supervised hotspot
detection. High-confidence pseudo-labeled samples are grad-
ually incorporated for model training through self-paced
learning. However, this self-paced learning approach may
introduce wrongly pseudo-labeled samples for training due
to the mix-up of pseudo hotspots and nonhotspots. We
propose an imbalance-aware self-paced learning algorithm,
which separates the pseudo hotspots and nonhotspots and
selects confident samples from each dataset for training. We
can obtain more confident pseudo-labeled samples for model
training.

The main contributions are summarized as follows.
• A multi-task neural network (MTNN) with classification

and clustering streams is proposed, in which joint model
training constructs inner relations and alleviates the
influence of labeling error for unlabeled samples.

• A self-paced learning paradigm is developed to incorpo-
rate pseudo-labeled data samples for training gradually.
It avoids the compromise of ambiguous labeling and

(a) (b)

Fig. 1: (a) Hotspot and (b) non-hotspot layout clips.

improves the model performance.
• We develop an imbalance-aware self-paced learning

algorithm to incorporate pseudo hotspots and pseudo
nonhotspots separately. It further avoids labeling error
and introduces more confident pseudo-labeled samples
for training.

• The experimental results show that the framework can
achieve 4.6%-6.5% better accuracy at the same false alar-
m levels than the state-of-the-art work using 10%-50%
of training data on the ICCAD 2012 contest benchmarks
[34].

The rest of the paper is organized as follows. Section
II introduces basic concepts and provides the problem for-
mulation. Section III presents the detailed algorithm for the
self-paced semi-supervised learning. Section IV validates the
proposed framework with experimental results. Section V
concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we will review the background of hotspot
detection and provide the problem formulation in this work.

A. Hotspot Detection

Due to small process margin in the lithography process,
hotspot patterns may cause bridges or broken lines on the
wafer after manufacturing. Figure 1 gives examples of hotspot
and non-hotspot. The red regions indicate known hotspot or
non-hotspot. Hotspots need to be detected and fixed before
mask tape-out. Conventionally, lithography simulation [35]
is used to do hotspot detection. To implement lithography
simulation, process and optical information are needed for
model calibration. The model is applied to simulate the
imaging contour of layout patterns on the wafer. Problematic
locations (a.k.a hotspot) could be easily recognized from the
contour simulation. Lithography simulation is extremely time-
consuming for full-chip verification and often slows down the
design closure.

On the other hand, machine learning technique takes an
input layout clip as an image. The information of whether the
clip contains hotspots or not could be seen as its label. Hotspot
detection based on machine learning can be formulated as an
image recognition problem in which the lithography process
information is stored in the correlation between input samples
and their labels.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

B. Problem Formulation

The performance of a hotspot detector is evaluated with
following metrics [34],

accuracy =
of correctly predicted hotspots

of hotspots
, (1a)

false alarm = # of incorrectly predicted hotspots. (1b)

In the terminology of statistics, accuracy is equivalent to
the true-positive ratio and the false alarm is the number of
false-positive predictions.

The objective of hotspot detection is maximizing accuracy
with low false alarms. Recently, machine learning based
approaches formulate the hotspot detection problem into a
classification task, in which the labels need to be predicted
given input features. Related terminologies are shown as
follows.

Definition 1 (Labeled/unlabeled samples). If the class of a
sample is known, the sample is called a labeled sample;
otherwise, it is an unlabeled sample.

For hotspot detection, a sample can have two classes:
hotspot or non-hotspot. If we are sure whether a layout clip
is a hotspot or non-hotspot, then the clip is a labeled sample;
otherwise, it is unlabeled. We can obtain the label of an
unlabeled sample with lithography simulation and then the
sample becomes a labeled sample.

We then formulate the semi-supervised hotspot detection
problem as follows:

Definition 2 (Semi-supervised hotspot detection). Given a
labeled dataset containing layout clips with known labels and
an unlabeled dataset containing layout clips without known
labels, train a classifier to maximize the accuracy with low
false alarms over the entire dataset.

In practice, obtaining large labeled hotspot detection dataset
is very expensive, as numerous lithography simulations are
required to obtain the labels. However, it is relatively inex-
pensive to access unlabeled datasets by extracting layout clips
from designs without querying for the labels. Therefore, in
most of the cases, it is desired to build an accurate hotspot
detector with a very limited amount of labeled samples.
Whether the unlabeled dataset can be utilized to assist the
model training becomes very meaningful.

III. ALGORITHMS

In this section, we will explain how our self-paced multi-
task learning model works. Figure 2 shows the overall train-
ing flow. The main stages of our framework include data
preparation, classifier updating, and sample pseudo labeling
& weights updating.

Data preparation: In the beginning, labeled layout clips are
randomly selected for each class. The original layout clip size
is 1200 × 1200nm2, which is expensive for neural networks
to process. To get a good feature representation, we apply
DCT [4] on layout clips. In following training loops, apart
from original labeled samples, weighted unlabeled samples
with pseudo labels are selected for training with a self-paced
learning paradigm based on their labeling confidence.

Classifier updating: At first, only a small amount of labeled
samples are used for classifier training. As the framework gets
mature, samples pseudo-labeled are growing, we add them
into the training set along with original labeled samples and
retrain the classifier.

Sample pseudo-labeling & weights updating: In our frame-
work, we adopt a multi-task network with classification and
clustering model jointly learned to alleviate the negative
influence of inaccurate labeling [20]. In each iteration, the
classification stream assigns pseudo-labels for unlabeled sam-
ples while the clustering stream measures the confidence of
pseudo-labels with weights.

A. Convolutional Neural Networks

Convolutional neural network (CNN) is adopted as the
classifier for its good performance in image related tasks [36].
CNN is mainly built with convolution layers and fully con-
nected layers, where convolution layers extract features and
fully connected layers perform classification or regression.
Typically, a rectified linear unit (ReLU) layer is applied for
activation following the convolution layer for its benefit to
fast convergence and nonlinearity to the network. The ReLU
function is defined as,

f(x) = max(x, 0). (2)

Then the max-pooling layer performs down-sampling with the
benefit of feature map dimensions reducing and translation-
invariance.

B. Multi-Task Neural Network Architecture

The major challenge in semi-supervised learning is the
accuracy degradation from the insufficient labeled data and
the error in assigning pseudo-labels for unlabeled data. To
improve model performance, we adopt a multi-task network
with classification and clustering model jointly learned to
alleviate the negative influence of inaccurate labeling [20].

Data
preparation

Labeled
samples

Unlabeled
samples

Train the multi-task network
(classification & clustering)

Update data
weights

Converge?

Return model

N

Y

Fig. 2: Overall flow of semi-supervised learning.

The architecture of MTNN is shown in Figure 3. MTNN
has two streams, with which models for classification and

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Input/12x12x32

Conv/3x3x16

Conv/3x3x16

MaxPool/2x2

Conv/3x3x32Conv/3x3x32

Conv/3x3x32Conv/3x3x32

MaxPool/2x2MaxPool/2x2

FC/250FC/250

FC/2FC/2

SoftmaxSoftmax

Pairwise
contrastive

loss

Weighted
cross entropy

ẑi
<latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c=">AAADUnicfZLPbtQwEMa9CX9KKNDCkYtFisRplWQP7bFSLxyLxLaV4mjleCcbax0nsp3CNs1jcIWX4sKrcMJJU6mblo5k6dPMfP6NrUkrwbUJgj8Tx33y9NnznRfey91Xr9/s7b8902WtGMxZKUp1kVINgkuYG24EXFQKaJEKOE/XJ139/BKU5qX8ajYVJAVdSZ5xRo1NxQckp6a5ahf8YLHnB9OgD3xfhIPw0RCni30nJMuS1QVIwwTVOg6DyiQNVYYzAa1Hag0VZWu6gthKSQvQSdPP3OKPNrPEWanskQb32buOhhZab4rUdhbU5Hpc65IP1eLaZEdJw2VVG5DsBpTVApsSdx+Al1wBM2JjBWWK21kxy6mizNhv8jyPSPjGyqKgctmQVNE2DpOGgNS1go7WEAGZIYLKlQA/JIqvcnPdttvGNZiHjde3FqL6G8ZGS2S9OXqMislllVNpyqLxo3aYAfc9U+xHd8th+yjPXq74dxBtPPs/EI+I/qzFt9CO1j8M+7Mtrh0Mj9F2ycLxSt0XZ9E0DKbhl8g/PhrWbQe9Rx/QJxSiQ3SMPqNTNEcMlegH+ol+Ob+dv+7EdW9ancngeYe2wt39B+h5FM8=</latexit><latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c=">AAADUnicfZLPbtQwEMa9CX9KKNDCkYtFisRplWQP7bFSLxyLxLaV4mjleCcbax0nsp3CNs1jcIWX4sKrcMJJU6mblo5k6dPMfP6NrUkrwbUJgj8Tx33y9NnznRfey91Xr9/s7b8902WtGMxZKUp1kVINgkuYG24EXFQKaJEKOE/XJ139/BKU5qX8ajYVJAVdSZ5xRo1NxQckp6a5ahf8YLHnB9OgD3xfhIPw0RCni30nJMuS1QVIwwTVOg6DyiQNVYYzAa1Hag0VZWu6gthKSQvQSdPP3OKPNrPEWanskQb32buOhhZab4rUdhbU5Hpc65IP1eLaZEdJw2VVG5DsBpTVApsSdx+Al1wBM2JjBWWK21kxy6mizNhv8jyPSPjGyqKgctmQVNE2DpOGgNS1go7WEAGZIYLKlQA/JIqvcnPdttvGNZiHjde3FqL6G8ZGS2S9OXqMislllVNpyqLxo3aYAfc9U+xHd8th+yjPXq74dxBtPPs/EI+I/qzFt9CO1j8M+7Mtrh0Mj9F2ycLxSt0XZ9E0DKbhl8g/PhrWbQe9Rx/QJxSiQ3SMPqNTNEcMlegH+ol+Ob+dv+7EdW9ancngeYe2wt39B+h5FM8=</latexit><latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c=">AAADUnicfZLPbtQwEMa9CX9KKNDCkYtFisRplWQP7bFSLxyLxLaV4mjleCcbax0nsp3CNs1jcIWX4sKrcMJJU6mblo5k6dPMfP6NrUkrwbUJgj8Tx33y9NnznRfey91Xr9/s7b8902WtGMxZKUp1kVINgkuYG24EXFQKaJEKOE/XJ139/BKU5qX8ajYVJAVdSZ5xRo1NxQckp6a5ahf8YLHnB9OgD3xfhIPw0RCni30nJMuS1QVIwwTVOg6DyiQNVYYzAa1Hag0VZWu6gthKSQvQSdPP3OKPNrPEWanskQb32buOhhZab4rUdhbU5Hpc65IP1eLaZEdJw2VVG5DsBpTVApsSdx+Al1wBM2JjBWWK21kxy6mizNhv8jyPSPjGyqKgctmQVNE2DpOGgNS1go7WEAGZIYLKlQA/JIqvcnPdttvGNZiHjde3FqL6G8ZGS2S9OXqMislllVNpyqLxo3aYAfc9U+xHd8th+yjPXq74dxBtPPs/EI+I/qzFt9CO1j8M+7Mtrh0Mj9F2ycLxSt0XZ9E0DKbhl8g/PhrWbQe9Rx/QJxSiQ3SMPqNTNEcMlegH+ol+Ob+dv+7EdW9ancngeYe2wt39B+h5FM8=</latexit><latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c=">AAADUnicfZLPbtQwEMa9CX9KKNDCkYtFisRplWQP7bFSLxyLxLaV4mjleCcbax0nsp3CNs1jcIWX4sKrcMJJU6mblo5k6dPMfP6NrUkrwbUJgj8Tx33y9NnznRfey91Xr9/s7b8902WtGMxZKUp1kVINgkuYG24EXFQKaJEKOE/XJ139/BKU5qX8ajYVJAVdSZ5xRo1NxQckp6a5ahf8YLHnB9OgD3xfhIPw0RCni30nJMuS1QVIwwTVOg6DyiQNVYYzAa1Hag0VZWu6gthKSQvQSdPP3OKPNrPEWanskQb32buOhhZab4rUdhbU5Hpc65IP1eLaZEdJw2VVG5DsBpTVApsSdx+Al1wBM2JjBWWK21kxy6mizNhv8jyPSPjGyqKgctmQVNE2DpOGgNS1go7WEAGZIYLKlQA/JIqvcnPdttvGNZiHjde3FqL6G8ZGS2S9OXqMislllVNpyqLxo3aYAfc9U+xHd8th+yjPXq74dxBtPPs/EI+I/qzFt9CO1j8M+7Mtrh0Mj9F2ycLxSt0XZ9E0DKbhl8g/PhrWbQe9Rx/QJxSiQ3SMPqNTNEcMlegH+ol+Ob+dv+7EdW9ancngeYe2wt39B+h5FM8=</latexit>

ŷi
<latexit sha1_base64="VgNKHd8VlvHhnm6RpYKQiz9yt04=">AAADUnicfZLPbtQwEMa9G/6UUKCFIxeLFInTKske6LESF45FYttKcbRyvJONtbYT2U5hleYxuMJLceFVOOGkqdRNS0ey9GlmPv/G1mSV4MaG4Z/J1Hv0+MnTvWf+8/0XL18dHL4+M2WtGSxYKUp9kVEDgitYWG4FXFQaqMwEnGebT139/BK04aX6arcVpJKuFc85o9alkiNSUNts2yU/Wh4E4SzsA98V0SACNMTp8nAakVXJagnKMkGNSaKwsmlDteVMQOuT2kBF2YauIXFSUQkmbfqZW/zeZVY4L7U7yuI+e9vRUGnMVmauU1JbmHGtS95XS2qbH6cNV1VtQbFrUF4LbEvcfQBecQ3Miq0TlGnuZsWsoJoy677J932i4BsrpaRq1ZBM0zaJ0oaAMrWGjtYQAbklgqq1gCAimq8Le9W2u8YN2PuNVzcWovsbxkZHZL05foiKyWVVUGVL2QRxO8yA+54ZDuLb5ah9kOcu1/w7iDaZ/x+IR8Rg3uIbaEfrH4aD+Q7XDYbHaLdk0Xil7oqzeBaFs+hLHJwcD+u2h96id+gDitBHdII+o1O0QAyV6Af6iX5Nf0//ehPPu26dTgbPG7QT3v4/5ZEUzg==</latexit><latexit sha1_base64="VgNKHd8VlvHhnm6RpYKQiz9yt04=">AAADUnicfZLPbtQwEMa9G/6UUKCFIxeLFInTKske6LESF45FYttKcbRyvJONtbYT2U5hleYxuMJLceFVOOGkqdRNS0ey9GlmPv/G1mSV4MaG4Z/J1Hv0+MnTvWf+8/0XL18dHL4+M2WtGSxYKUp9kVEDgitYWG4FXFQaqMwEnGebT139/BK04aX6arcVpJKuFc85o9alkiNSUNts2yU/Wh4E4SzsA98V0SACNMTp8nAakVXJagnKMkGNSaKwsmlDteVMQOuT2kBF2YauIXFSUQkmbfqZW/zeZVY4L7U7yuI+e9vRUGnMVmauU1JbmHGtS95XS2qbH6cNV1VtQbFrUF4LbEvcfQBecQ3Miq0TlGnuZsWsoJoy677J932i4BsrpaRq1ZBM0zaJ0oaAMrWGjtYQAbklgqq1gCAimq8Le9W2u8YN2PuNVzcWovsbxkZHZL05foiKyWVVUGVL2QRxO8yA+54ZDuLb5ah9kOcu1/w7iDaZ/x+IR8Rg3uIbaEfrH4aD+Q7XDYbHaLdk0Xil7oqzeBaFs+hLHJwcD+u2h96id+gDitBHdII+o1O0QAyV6Af6iX5Nf0//ehPPu26dTgbPG7QT3v4/5ZEUzg==</latexit><latexit sha1_base64="VgNKHd8VlvHhnm6RpYKQiz9yt04=">AAADUnicfZLPbtQwEMa9G/6UUKCFIxeLFInTKske6LESF45FYttKcbRyvJONtbYT2U5hleYxuMJLceFVOOGkqdRNS0ey9GlmPv/G1mSV4MaG4Z/J1Hv0+MnTvWf+8/0XL18dHL4+M2WtGSxYKUp9kVEDgitYWG4FXFQaqMwEnGebT139/BK04aX6arcVpJKuFc85o9alkiNSUNts2yU/Wh4E4SzsA98V0SACNMTp8nAakVXJagnKMkGNSaKwsmlDteVMQOuT2kBF2YauIXFSUQkmbfqZW/zeZVY4L7U7yuI+e9vRUGnMVmauU1JbmHGtS95XS2qbH6cNV1VtQbFrUF4LbEvcfQBecQ3Miq0TlGnuZsWsoJoy677J932i4BsrpaRq1ZBM0zaJ0oaAMrWGjtYQAbklgqq1gCAimq8Le9W2u8YN2PuNVzcWovsbxkZHZL05foiKyWVVUGVL2QRxO8yA+54ZDuLb5ah9kOcu1/w7iDaZ/x+IR8Rg3uIbaEfrH4aD+Q7XDYbHaLdk0Xil7oqzeBaFs+hLHJwcD+u2h96id+gDitBHdII+o1O0QAyV6Af6iX5Nf0//ehPPu26dTgbPG7QT3v4/5ZEUzg==</latexit><latexit sha1_base64="VgNKHd8VlvHhnm6RpYKQiz9yt04=">AAADUnicfZLPbtQwEMa9G/6UUKCFIxeLFInTKske6LESF45FYttKcbRyvJONtbYT2U5hleYxuMJLceFVOOGkqdRNS0ey9GlmPv/G1mSV4MaG4Z/J1Hv0+MnTvWf+8/0XL18dHL4+M2WtGSxYKUp9kVEDgitYWG4FXFQaqMwEnGebT139/BK04aX6arcVpJKuFc85o9alkiNSUNts2yU/Wh4E4SzsA98V0SACNMTp8nAakVXJagnKMkGNSaKwsmlDteVMQOuT2kBF2YauIXFSUQkmbfqZW/zeZVY4L7U7yuI+e9vRUGnMVmauU1JbmHGtS95XS2qbH6cNV1VtQbFrUF4LbEvcfQBecQ3Miq0TlGnuZsWsoJoy677J932i4BsrpaRq1ZBM0zaJ0oaAMrWGjtYQAbklgqq1gCAimq8Le9W2u8YN2PuNVzcWovsbxkZHZL05foiKyWVVUGVL2QRxO8yA+54ZDuLb5ah9kOcu1/w7iDaZ/x+IR8Rg3uIbaEfrH4aD+Q7XDYbHaLdk0Xil7oqzeBaFs+hLHJwcD+u2h96id+gDitBHdII+o1O0QAyV6Af6iX5Nf0//ehPPu26dTgbPG7QT3v4/5ZEUzg==</latexit>

Clustering
Stream

Classification
Stream

Dropout 50% Dropout 50%

Fig. 3: The architecture of MTNN.

Labeled hotspots

Labeled non-hotspots

Unlabeled samples

Cluster0

xi

xj

di

dj

Cluster1

Learned boundary

Real boundary
Labeled hotspots

Labeled non-hotspots

Unlabeled samples

Labeled hotspots

Labeled non-hotspots

Unlabeled samples

Fig. 4: Illustration of how MTNN works.

clustering are jointly learned. The two streams share layers for
feature extraction at the early stages and then split into two
branches [29]. The shared layers include two convolutional
layers, one ReLU layer, and one max pooling layer. The
kernel sizes and the number of kernels are annotated in the
figure. The max pooling layer performs 2× 2 downsampling.

For hotspot detection, the classification stream is used to
do pseudo-labeling and the final hotspot detection, while the
clustering stream is used to estimate labeling confidence with
weights. Fig. 4 illustrates how the MTTNN works. The blue
and orange dots are labeled hotspots and labeled nonhotspots

separately, the solid red line is the real boundary between
them. With jointly learned clustering and classification, we
got the green dash line as the learned boundary. The grey
square is the unlabeled samples. For unlabeled samples xi
and xj , if we used the trained model to assign pseudo labels,
sample xi is pseudo-labeled wrongly while sample xj is
pseudo-labeled correctly. If we start the next training using the
pseudo-labeled samples without computing weight through
clustering, then wrongly-labeled xi could compromise the
final prediction performance. Clustering analyzes samples’
distributions and divides samples into two clusters. Samples
with the same labels tend to be in the same cluster due to
their similar distributions. A sample’s average distance to
the predicted cluster represents its labeling confidence. The
longer the distance is, the less the labeling confidence is. As
shown in Fig 4, di > dj , it means that the wrongly pseudo-
labeled sample xi has lower confidence than correctly pseudo-
labeled sample xj . xi should have less influence on model
training. Therefore, lower weight is assigned to xi to alleviate
its influence.

The individual layers for two streams are identical except
that the weights are learned separately and the loss functions
are different. The classification stream behaves as an ordinary
hotspot detector as in other neural network architectures. It
can predict labels for unlabeled samples and its loss function
for training is the weighted cross entropy where the weights
come along with data samples. The loss function is defined
as follows,

Lclass = −
N∑
i=1

wi(
K∑

k=1

yki log ŷ
k
i), (3)

where N is the number of input samples, K is the number of
classes, which is 2 in hotspot detection. Vectors yi and ŷi are
the one-hot encoding of actual class labels and the softmax
output for ith sample, respectively. Weight wi indicates the
confidence of the ith sample’s label. The weights for labeled
samples are set to 1, while the weights for unlabeled samples
are calculated during the training with the clustering stream.

The main target of clustering stream is to determine the
weights of unlabeled samples based on their distances to
the predicted clusters. To further alleviate the influence of
untrusted labeling, pairwise constraints [37] are introduced
for the loss function of clustering. A pairwise constraint is
a pair of samples with the information of whether they are
similar.

Definition 3 (Similar pair). If the labels of the two samples
are the same, they are a similar pair, vice versa.

For a labeled sample, its actual label is used. For an
unlabeled sample, the pseudo-label predicted from the classi-
fication stream is used.

Pairwise constraints can be generated by enumerating al-
l pairs from the labeled or pseudo-labeled data samples.
Clustering training with pairwise constraints enables better
tolerance to labeling error for unlabeled data. The output
of the final softmax layer in the clustering stream could be
seen as the distribution probability over different clusters.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Kullback-Leibler (KL) divergence could evaluate the simi-
larity between two distributions by measuring their statistical
distance. Therefore, the loss function for the clustering stream
is built with Kullback-Leibler (KL) divergence from xj to xi
with pairwise constraints.

KL(xi||xj) =
K∑

k=1

ẑki log(
ẑki
ẑkj

), (4)

where xi and xj is the ith and jth samples, respectively,
ẑi = (ẑ1i , ẑ

2
i , . . . , ẑ

k
i) and ẑj = (ẑ1j , ẑ

2
j , . . . , ẑ

k
j) are the final

softmax layer outputs of the clutstering stream for samples xi
and xj , respectively. K is the number of clusters, which equals
2 in hotspot detection problem. We use the KL-divergence in
Equation 4 to evaluate the similarity between two samples,
defined as KL-distance for brevity. The larger the KL-distance
is, the less similar the two samples are. We now define
pairwise cost function to convert the divergence into a cost
as follows,

Lpair(xi||xj) =

{
KL(xi||xj), if (xi, xj) is a similar pair,
max(0,M −KL(xi||xj)), otherwise,

(5)
where M denotes the maximum similarity of samples be-
longing to two clusters. It is set to a constant value 2 for
better convergence in training [37]. Therefore, the overall loss
function for the clustering stream considers the pairwise costs
of both sides,

Lclust =
N∑

i,j=1

1

2
(Lpair(xi||xj) + Lpair(xj ||xi)). (6)

The pseudo-label of an unlabeled sample closer to other
samples within the predicted cluster according to the KL-
distance should have higher confidence due to the correlation
between classification and clustering streams. Thus the confi-
dence of the ith sample is defined as its average KL-distance
to other samples the same predicted cluster,

di =

∑N
j=1KL(xi||xj)δ(xi, xj)∑n

j=1 δ(xi, xj)
, (7)

where

δ(xi, xj) =

{
1, if (xi, xj) is a similar pair,
0, otherwise.

(8)

Then weight wi of the ith sample is defined by normalizing
di for unlabeled samples,

wi = Nu
exp(−di)∑Nu
i=1 exp(−di)

, (9)

where Nu is the number of unlabeled samples.

C. Self-Paced Learning Paradigm

MTNN is trained only with labeled data at first. Then
pseudo-labels and weights are assigned to unlabeled samples
through predictions. If the unlabeled data are fed to the
model training directly, data with unconfident predictions will
degrade the accuracy. Therefore, a self-paced paradigm [38]

Selected

Selected

λ

SPL ISPL

𝑁𝐼ℎ

𝑁𝐼𝑛

Pseudo

hotspots

Pseudo

nonhotspots

Selected

Weighted

loss

Fig. 5: Comparison of the selected pseudo-labeled samples
between SPL and ISPL.

is adopted to introduce unlabeled data with high confidence
for training gradually. The learning can be repeated for R
rounds with R = 4 in the experiment.

An indicator vector v = (v1, v2, . . . , vN) is used to decide
which samples are selected for the next training cycle. Se-
lected samples will have vi equal to 1; otherwise, they are 0.
Labeled samples always have vi = 1. For unlabeled samples,
the selection criteria is based on following,

vi =

{
1, if− wi

∑K
k=1 y

k
i log ŷ

k
i < λ,

0, otherwise,
(10)

where λ is the threshold to the weighted loss of each sample
for selection. Vectors yi and ŷi are the one-hot encoding of
pseudo class labels and the softmax output of classification
stream for ith sample, respectively. Weight wi indicates the
confidence of the ith sample’s label, which is determined by
Equation 9 for unlabeled samples. −wi

∑K
k=1 y

k
i log ŷ

k
i is the

weight loss of the classification stream for the ith sample.
The underlying assumption is that small loss indicates high
confidence.

The threshold λ is determined by training an auxiliary net-
work [38] with the same structure as the classification stream.
After the training of the multi-task network, pseudo-labels
and weights are assigned to unlabeled samples. We divide
the unlabeled dataset Su to m subsets, i.e, {S1

u, S
2
u, . . . , S

m
u },

equally with ascending order of the loss in the classification
stream. Then we try training the auxiliary network indep-
dendently with S1

u, S1
u ∪ S2

u, . . . , {S1
u ∪ S2

u ∪ · · · ∪ Sm
u }

as the training sets, respectively, and use the initially labeled
samples as the testing dataset for validation. Suppose the best
validation accuracy is achieved by subsets S1

u ∪ · · · ∪ Sh
u

(1 ≤ h ≤ m). Then we choose the highest loss in the
classification stream of the unlabeled samples in these subsets
as the value of λ. The procedure of self-paced learning (SPL)
is summarized in Algorithm 1.

D. Imbalance-aware Self-Paced Learning

Definition 4 (Pseudo hotspots (PHS) and pseudo nonhotspots
(PNHS)). For an unlabeled sample, if it is predicted as a
layout that contains hotspots by the classifier, we call it as a
pseudo hotspot, vice versa.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Algorithm 1 Self-Paced Learning [33]

Require: Trained MTNN model MMTNN , input labeled
dataset Sl, unlabeled dataset Su.

Ensure: The training dataset T for next round MTNN train-
ing;

1: Define λ as the threshold and accmax as the max model
prediction accuracy;

2: Define Tu as the training set for auxiliary network;
3: Define vs as the indicator and lws as the weighted loss

for a sample s.
4: accmax ← 0;
5: vs ← 1,∀s ∈ Sl;
6: vs ← 0,∀s ∈ Su;
7: Assign pseudo labels and compute weighted loss lw for

samples in Su with MMTNN ;
8: Sort Su and lw in ascending order of lw, then di-

vide Su and lw into m subsets, i.e, {S1
u, S

2
u, . . . , S

m
u },

{l1w, l2w, . . . , lmw }, equally;
9: for h = 1→ m do

10: Tu ← S1
u ∪ · · · ∪ Sh

u ;
11: Train an auxiliary network with the same structure as

the classification stream as MTNN with Tu;
12: Compute the prediction accuracy acch with Sl as

testing samples for the trained model;
13: if acch ≥ accmax then
14: accmax ← acch;
15: λ← max(lws),∀s ∈ Sh

u ;
16: end if
17: end for
18: Update indicator vs,∀s ∈ Su according to Eq. (10);
19: T ← {s|vs = 1,∀s ∈ Sl ∪ Su};
20: return T

Definition 5 (Pseudo false alarms). If the real label class for
a pseudo hotspot is nonhotspot, then this pseudo hotspot is
called a pseudo false alarm.

In our preliminary work [33], we improve the hotspot
detection accuracy with SPL but suffering the false alarms
compromise. Therefore, we assume that SPL might introduce
some pseudo false alarms for model training. This leads to an
increasing number of false alarms during the final prediction.
In Algorithm 1, pseudo hotspots and nonhotspots are mixed.
Due to the different distributions between pseudo hotspots
and pseudo nonhotspots, some pseudo false alarms may have
a smaller weighted loss than some correctly predicted pseudo
nonhotspots. In another word, comparing to other pseudo
hotspots, these pseudo false alarms are less confident, but they
are still more confident than most of the pseudo nonhostpots
due to lower weighted loss, including ones that assigned with
the right label. When choosing unlabeled samples based on
the value of λ, SPL could select more pseudo false alarms
before introducing high confident pseudo nonhotspots. There-
fore, we further develop imbalance-aware self-paced learning
(ISPL). In ISPL, we separate pseudo hotspots and pseudo
nonhotspots, then consider the labeling confidence on their
pseudo-labeled class. ISPL is summarized in Algorithm 2.

Algorithm 2 Imbalance-aware Self-Paced Learning

Require: MMTNN , Sl, Su.
Ensure: The training dataset T for next round MTNN train-

ing;
1: Define SIh, SIn as the imbalance-aware pseudo hotspot

dataset and nonhotspot dataset for training;
2: Define NIh, NIn as the number of confident pseudo

hotspots and pseudo nonhotspots;
3: Define si as the ith sample in dataset;
4: SIh = ∅, SIn = ∅;
5: Assign pseudo labels and compute weighted loss lw for

samples in Su with MMTNN ;
6: Divide Su into pseudo hotspot subset Suh and pseudo

nonhotspot subset Sun;
7: Sort Suh and Sun in ascending order of lw, respectively;
8: Compute NIh and NIn according to Eq. (11);
9: SIh ← si, s ∈ Suh, i = 1, . . . , Nih;

10: SIn ← si, s ∈ Sun, i = 1, . . . , Nin;
11: T ← Sl ∪ SIh ∪ SIn;
12: return T

We divide unlabeled dataset Su into pseudo hotspot dataset
Suh and pseudo nonhotspot dataset Sun based on assigned
pseudo labels. Suh and Sun are then sorted with ascending
order of the loss in the classification stream. Samples with
smaller loss tend to be more confident. In that case, we only
select samples at the front from each subset for model training
of next round. Since the classifier model gets mature through
each iteration, the number of selected samples of each subset
changes with iteration round, as shown in Equation (11);

NIh = Nuh ∗ [1− p+ pd ∗ (R− 1)] (11a)
NIn = Nun ∗ [1− p+ pd ∗ (R− 1)] (11b)

where NIh, NIn is the number of selected samples with
pseudo labels as hotspot and nonhotspot, respectively, Nuh,
Nun is the number of samples in Suh and Sun, p and pd are
two manually determined hyper-parameters that control NIh

and NIn, R is the number of interation rounds. The values
of these hyperparameters are shown in Table II.

Figure 5 shows the difference of the selected pseudo-
labeled samples between these two self-paced learning al-
gorithms. SPL sorts unlabeled dataset Su with ascending
order of the weighted loss lws, then selects pseudo-labeled
samples with weighted loss less than λ. λ is determined
through the auxiliary network training. Since all pseudo-
labeled samples are mixed-up, the selected dataset could be
highly imbalanced and contain some wrongly pseudo-labeled
samples. Meanwhile, ISPL separates pseudo hotspot dataset
and pseudo nonhotspot dataset, then selects samples with a
small weighted loss from each subset. The number of selected
samples, NIh and NIn, is determined by Equation (11).
Comparing to SPL, more highly confident pseudo hotspots
and pseudo nonhotspots could be selected. Also, the highly
imbalanced dataset could be avoided.

The procedure of the whole self-paced semi-supervised
MTNN is summarized in Algorithm 3. We first initialize

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

weights and the training dataset (lines 4-6), then update them
through each iteration until the neural network training is over
(lines 6-17). Within each iteration, we first train the MTNN
with selected training samples (line 8-9), then we compute
weights for unlabeled samples and update the training dataset
through SPL or ISPL(line 10-16).

Algorithm 3 Self-Paced Semi-Supervised MTNN

Require: Sl, Su.
Ensure: MTNN with maximum accuracy and low false alar-

m.
1: Define ws as the weight for a sample s;
2: Define T as the training set;
3: Define R as the maximum rounds for self-paced learning;
4: ws ← 1,∀s ∈ Sl;
5: ws ← 0,∀s ∈ Su;
6: T ← Sl;
7: for t = 1→ R do
8: Generate pairwise constraints based on training

dataset T ;
9: Train MTNN with T and pairwise constraints;

10: Compute weight ws,∀s ∈ Su according to Eq. (9);
11: if Apply SPL then
12: Update dataset T , according to Algorithm 1;
13: else if Apply ISPL then
14: Updata dataset T , according to Algorithm 2;
15: end if
16: end for
17: return MTNN;

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

This self-paced MTNN is implemented in Python with
Tensorflow 1.2.1 [39] on a Linux server with an 8-core
3.4GHz CPU, a Nvidia GTX 1080 GPU, and 32GB memory.
The framework is validated on 28-nm industrial benchmarks
from ICCAD2012 CAD contest as described in Table I.
The benchmark b1 is omitted as it is too small. ”#HS” and
”#NHS” in ”train” column denote the total number of hotspots
and the total number of nonhotspots in the training set. ”#HS”
and ”#NHS” in ”test” column denote the total number of
hotspots and the total number of nonhotspots in the testing
set.

To verify modeling performance with different amount of
labeled data, the network is trained using different ratios of
labeled samples, i.e., {0.1,0.3,0.5,0.7,0.9,1.0}. When random-
ly generating labeled samples from the training datasets, we
keep the ratio between hotspots and non-hotspots the same
as that in the original dataset. The unselected samples are
regarded as unlabeled samples. Moreover, to avoid statistical
instability in randomness, each experiment is repeated for five
times with different random seeds and the average results are
reported. To handle the imbalanced dataset, biased learning
[4] is adopted in training to increase accuracy and reduce

TABLE I: Statistics on ICCAD2012 28nm Benchmarks

Dataset
Train Test

#HS #NHS #HS #NHS

b2 174 5285 498 41298

b3 909 4643 1808 46333

b4 95 4452 177 31890

b5 26 2716 41 19327

TABLE II: Training Configurations

Configurations Value

Optimizer Adam [40]

Initial Learning Rate 0.001

Learning Rate Decay 0.65

Bias Function Coefficient(β) 6

Bias Function Coefficient(tb) 0, 0.15 and 0.3

LR Decay Step 3200

Batch Size 32

Loops Round (R) 4

Unlabeled Subsets Number (m) 15

ISSL Controling Constant(p) 0.2

ISSL Controling Constant(pd) 0.058

false alarms. The bias function is defined as follows:

ε =

{
1

1+eβl
, if l ≤ tb

0, if l > tb
(12)

where l is the training loss of the current batch with respect to
unbiased ground truth, β and tb are both manually determined
parameters, β controls the influence of loss to bias, while tb
represents the threshold controling bias learning.

Table II shows the details of the training configurations.
Particularly, tb varies with training steps.

B. Performance Evaluation

Training a CNN model needs about 8 minutes, general
runtime for training the self-paced MTNN [33] is around 60
minutes. When applying ISPL, without multiple training of
the auxiliary network, the runtime reduces to 40 minutes. The
prediction time for each test case with several thousands of
clips in Table I is around 2 minutes, which could enable huge
time savings compared with lithography simulation. Thus we
will not separately report runtime in the following discussion.

We compare accuracy and false alarm on the testing dataset
with our preliminary results in [33], as shown in Table III.
“DAC” denotes to the deep biased learning approach with
DCT [4]. “SSL” denotes to the original self-paced semi-
supervised learning algorithm that is applied in our prelimi-
nary work [33], ”ISSL” denotes to our imbalance-aware self-
paced semi-supervised learning algorithm proposed in this
paper. The classification stream of ”ISSL” and ”SSL” has the
same structure as the CNN-based detector in ”DAC”. At ratio
0.1, both accuracy and false alarms are improved with ISSL
on average of 2.78% (65.94% vs. 68.73%) and 45.3% (1830
vs. 1001). They are improved on average of 0.82% (90.63%

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

vs. 91.45%) and 8.92% (998 vs. 809) at ratio 0.5. At ratio 0.3,
ISSL realizes comparable hotspot detection accuracy as SSL
with much less false alarms. At a higher ratio like 0.9 and 1.0,
there is no significant difference between the average accuracy
among the three detectors, since enough labeled training data
is available. At a lower selected ratio, comparing to SSL, ISSL
reduces the numbers of false alarms greatly while keeping
a competitive accuracy. The reason it happens is that ISPL
could select less pseudo false alarms comparing to SPL, we
will have a further discussion in Section IV-C. Particularly,
the benchmark 5 is highly biased. When selecting labeled
samples, we only get a small number of hotspots at first.
That is the reason why the improvement of ISSL is not clear
for benchmark 5, especially when the selected ratio is 0.1 (we
only got 2 labeled hotspots samples).

Figure 6 plots the average testing accuracy and the standard
deviations of five random seeds with different amounts of
training data. When the ratio increases, the accuracy of DAC
has a rising trend while the accuracy of ISSL and SSL
stays high and fluctuates within a small range. With different
random seeds, the accuracy of ISSL and SSL is more stable
compared with that of DAC, as the deviations are smaller.
Particularly, Fig. 6(b) shows an exception, there is no obvious
change in accuracy when ratio changes from 0.1 to 0.9 among
three detectors on benchmark 3. This may because that the
original database of benchmark 3 is much larger than others,
even ten percent of labeled samples contains enough hotspot
and non-hotspot information for model training. The result
of ISSL and SSL on benchmark 5 shows the difference from
other benchmarks with a similar uptrend as DAC instead of
keeping stable at a higher accuracy. This might be due to
the limited hotspot samples of benchmark 5. In the case of
ratio 1.0 with all labeled training data selected, ISSL and SSL
trains MTNN once without the self-paced learning paradigm
and realizes better performance on benchmark 2 and 3. It
indicates that forcing similar pairs to become closer in the
clustering stream of MTNN can help the generalization of
the discriminative model, especially for the less imbalanced
training set. Correspondingly, Figure 7 shows the average
number of false alarms and the standard deviations of five
random seeds. ISSL shows improvement on false alarms
comparing to SSL at a lower selected ratio. Furthermore,
for a fair comparison, we adjust the decision boundary of
each model to achieve the same number of false alarms and
compare the accuracy, as shown in Table IV. Comparing to
SSL, the accuracy of ISSL for training data ratio 0.1, 0.3,
and 0.5 are much better, with the improvements on average
of 2.54%, 1.99% and 1.66%.

We further explore the efficacy of the imbalance-aware self-
paced learning paradigm for different ratios of training data
in Figure 8. As unlabeled samples are gradually introduced
into training, the model is essentially training from “easy”
to “mature” through each round [41]. From the showing
results, we can see that through each iteration, the accuracy is
gradually increased. This uptrend is sharper especially when
the selected ratio is low. We can see that for low ratios like
0.1 and 0.3, there is an obvious trend of gradually increasing
accuracy with different rounds. For high ratios like 0.7 and

0.9, more fluctuation at high accuracy is observed.

C. ISPL vs. SPL

We develop ISPL under the assumption that pseudo
hotspots and pseudo nonhotspots have a different standard
of labeling confidence measurement. Due to that, SPL could
introduce some less confident pseudo hotspots before se-
lecting high confident pseudo nonhotspots. By considering
the labeling confidence separately, ISPL could select more
confident samples and improve the trained model perfor-
mance. The experimental results shown in Table III proves
the effectiveness of ISPL.

To demonstrate our assumption, we extract both the pseudo
labels and the true labels for all unlabeled samples, then
compare the number of samples in different pseudo-labeled
situations. For a clear illustration, we set the selected ratio
as 0.1 and random seed as 150, the pseudo-labeled situation
for all four benchmarks are as shown in Fig. 9. We also
compute the exact numbers of samples in different pseudo-
labeled status, as shown in Table V. ”Total #PHS” and ”Total
#PNHS” denote the total number of PHS and the total number
of PNHS in the unlabeled dataset. ”Selected #PHS” and
”Selected #PNHS” denote the total number of PHS and the
total number of PNHS in the selected dataset for next training.
”Selected #CPHS” and ”Selected #CPNHS” denote the total
number of correctly predicted pseudo hotspots (CPHS) and
the total number of correctly predicted pseudo nonhotspots
(CPNHS) in the selected dataset for next training. ”Selected
#WPHS” and ”Selected #WPNHS” denote the total number
of wrongly predicted pseudo hotspots (WPHS) and the total
number of wrongly predicted pseudo nonhotspots (WPNHS)
in the selected dataset for next training.

In Fig. 9, all samples are sorted with the ascending order
of their weighted loss, the dots with different colors represent
the pseudo-labeling status of the unlabeled samples. Take
benchmark 2 as an example, as shown in Fig. 9 (a), PNHS
distribute evenly among the range of the weighted loss,
while PHS tends to have the larger or smaller weighted loss.
Fig. 9 (b) and Fig. 9 (c) shows the weighted loss distribution
of samples with correctly predicted and wrongly predicted
pseudo labels. Most PNHS are predicted correctly, while the
CPHS tends to have the small weighted loss. In Fig. 9 (d),
we compare the weighted loss of the CPNHS and the WPHS.
Many WPHS have a smaller weighted loss than CPNHS.
NIh, NIn for ISPL and λ for SPL are shown with three
dash lines. Clearly, in the selected unlabeled samples for
the next training, ISPL introduces less wrongly predicted
pseudo samples, especially WPHS. Table V also proves it.
SPL could select about 30% less wrongly predicted pseudo
samples comparing to SPL. Therefore, comparing to SPL,
ISPL could select less wrongly predicted pseudo samples,
especially pseudo false alarms. With less pseudo false alarms
forming the new training dataset, the numbers of false alarms
predicted by the newly trained model could be reduced
greatly.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

D. Receiver Operating Characteristic Curves

As a binary classification problem, hotspot detection could
have four cases of prediction results: (1) true positive (TP):
correctly predicted hotspots; (2) false positive (FP): incor-
rectly predicted hotspots (a.k.a false alarm); (3) true negative
(TN): correctly predicted nonhotspots; (4) false negative (FN):
incorrectly predicted nonhotspots. True positive rate (TPR)
and false positive rate (FPR) are defined as follows:

TPR =
TP

TP + FN
, (13a)

FPR =
FP

FP + TN
. (13b)

TPR corresponds to hotspot detection accuracy, while FPR
denotes false alarm rate. By shifting the decision boundary
of each model, we plot the receiver operating characteristic
(ROC) curves which depict the trade-off between TPR and
FPR to evaluate the performance of the three detectors.
The ROC curves of each benchmark with different ratios
of selected labeled samples are as shown in Figure 10, the
vertical line refers to the same FPR values reported by the
DAC work [4]. ISSL achieves the best performance at a lower
selected ratio like 0.1 and 0.3. At a higher selected ratio like
0.9 and 1.0, the ROC curves of ISSL, SSL and DAC overlap
with each other since there is no significant performance
improvement among these three detectors. Particularly, for
benchmark 5, we found that the TPR fluctuates heavily across
random seeds when the selected ratio is 0.1 and 0.3. As
mentioned before, this might be due to the limited hotspot
samples of benchmark 5.

DAC SSL ISSL

0.2 0.4 0.6 0.8 1.0

Ratio

0.84

0.88

0.92

0.96

1.00

A
cc

u
ra

cy

b2

(a)

0.2 0.4 0.6 0.8 1.0

Ratio

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

b3

(b)

0.2 0.4 0.6 0.8 1.0

Ratio

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

b4

(c)

0.2 0.4 0.6 0.8 1.0

Ratio

0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

b5

(d)

Fig. 6: Comparison of testing accuracy versus ratio of
training dataset. Both average and standard deviation values
are drawn for different runs.

V. CONCLUSION

A semi-supervised hotspot detection framework with self-
paced multi-task learning is presented for lithography hotspot
detection. With the joint learning of a classification model
and a clustering model, MTNN is able to leverage unlabeled

CNN SSL ISSL

0.1 0.3 0.5 0.7 0.9 1.1
Ratio

0

500

1000

1500

2000

F
al

se
A

la
rm

b2

(a)

0.1 0.3 0.5 0.7 0.9 1.1
Ratio

0

2000

4000

6000

F
al

se
A

la
rm

b3

(b)

0.1 0.3 0.5 0.7 0.9 1.1
Ratio

0

200

400

600

800

1000

F
al

se
A

la
rm

b4

(c)

0.1 0.3 0.5 0.7 0.9 1.1
Ratio

0

50

100

150

200

F
al

se
A

la
rm

b5

(d)

Fig. 7: Comparison of testing false alarms versus ratio of
training dataset. Both average and standard deviation values
are drawn for different runs.

0.1 0.3 0.5 0.7 0.9

1 2 3 4

Round

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

u
ra

cy

b2, seed150

(a)

1 2 3 4

Round

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

u
ra

cy

b3, seed150

(b)

1 2 3 4

Round

0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

b4, seed150

(c)

1 2 3 4

Round

0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

b5, seed150

(d)

Fig. 8: Accuracy in training rounds of ISSL for one random
seed. Curves for different ratios of training dataset from
benchmarks b2-b5 are plotted.

data samples for training. The classification stream of MTNN
assigns pseudo labels for unlabeled samples while the clus-
tering stream measures the confidence of the pseudo-labeling
with weights. This could help alleviate the negative influence
of samples with unconfident pseudo labels. Additionally, we
propose an imbalance-aware self-paced learning paradigm
to incorporate confident pseudo hotspots and nonhotspots
separately, which can reduce the number of wrongly labeled
samples introduced for training. The experimental results
demonstrate the efficiency of imbalance-aware self-paced
learning. Also, our framework can achieve 4.6%-6.5% better
accuracy at the same false alarm levels than the state-of-the-
art work using 10%-50% of training data. This framework

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE III: Accuracy and False Alarm Comparison for Different Amount of Labeled Training Data.

Ratio
b2 b3 b4 b5 Average

DAC SSL ISSL DAC SSL ISSL DAC SSL ISSL DAC SSL ISSL DAC SSL ISSL

0.1
Accuracy(%) 89.44 97.99 96.91 97.94 98.47 97.77 35.14 52.66 54.35 8.29 14.63 25.85 57.70 65.94 68.72

#FA 700 1643 968 4288 5130 2524 230 536 454 3 11 59 1305 1830 1001

0.3
Accuracy(%) 93.33 98.11 96.95 98.34 98.43 97.83 65.99 73.45 72.54 27.32 40.00 40.49 71.24 77.50 76.95

#FA 383 643 305 3569 3593 2345 315 342 282 39 73 43 1076 1163 744

0.5
Accuracy(%) 96.51 97.67 97.99 98.04 98.26 97.83 78.19 81.69 81.69 75.12 84.88 88.29 86.97 90.63 91.45

#FA 297 425 307 3098 3083 2513 359 379 309 86 104 107 960 998 809

0.7
Accuracy(%) 97.11 97.87 97.51 98.17 98.15 97.95 77.85 84.29 81.24 90.73 96.59 93.17 90.97 94.23 92.47

#FA 294 265 227 3001 2740 2701 261 261 256 72 141 97 907 852 820

0.9
Accuracy(%) 97.79 97.51 97.47 98.22 98.24 98.25 90.73 88.81 82.82 93.66 94.71 95.12 95.10 94.82 93.42

#FA 287 211 212 2780 2665 2618 387 317 272 79 100 75 883 823 794

1.0
Accuracy(%) 97.19 97.75 97.79 98.22 98.27 98.16 91.75 90.62 89.60 95.61 95.12 93.17 95.69 95.44 94.68

#FA 239 231 207 2878 2854 2938 309 306 343 90 94 87 879 871 894

TABLE IV: Accuracy Comparison at the Same Numbers of False Alarm as the DAC work [4]

Ratio

b2 b3 b4 b5 Average

#FA Accuracy(%) #FA Accuracy(%) #FA Accuracy(%) #FA Accuracy(%) Accuracy(%)

DAC DAC SSL ISSL DAC DAC SSL ISSL DAC DAC SSL ISSL DAC DAC SSL ISSL DAC SSL ISSL

0.1 700 89.44 93.11 95.24 4288 97.94 98.30 98.29 230 35.14 42.71 44.16 3 8.29 10.67 17.29 57.70 61.20 63.74

0.3 383 93.33 97.03 97.28 3569 98.34 98.52 98.10 315 65.99 73.36 75.59 39 27.32 34.21 40.12 71.24 75.78 77.77

0.5 297 96.51 97.19 97.90 3098 98.04 98.25 97.96 359 78.19 80.82 82.95 86 75.12 83.24 87.32 86.97 89.87 91.53

0.7 294 97.11 98.00 97.93 3001 98.17 98.24 98.12 261 77.85 84.43 82.17 72 90.73 93.17 94.00 90.97 93.46 93.05

0.9 287 97.79 98.38 97.83 2780 98.22 98.27 98.30 387 90.73 89.87 86.94 79 93.66 94.15 95.12 95.10 95.17 94.55

1.0 239 97.19 98.20 98.28 2878 98.22 98.26 98.17 309 91.75 90.96 90.28 90 95.61 95.61 92.68 95.69 95.76 94.85

TABLE V: The Number of Selected Samples in Different
Pseudo Label Status (Ratio=0.1, seed=150)

b2 b3 b4 b5

SPL ISPL SPL ISPL SPL ISPL SPL ISPL

Total #PHS 412 1173 81 6

Total #PNHS 4502 3824 4012 2462

Selected #PHS 217 186 959 804 74 35 6 5

Selected #PNHS 3638 3744 3107 3192 3993 3238 2462 1969

Selected #CPHS 126 122 774 735 28 22 4 3

Selected #CPNHS 3632 3737 3098 3183 3944 3211 2442 1949

Selected #WPHS 91 64 185 69 46 13 2 2

Selected #WPNHS 6 7 9 9 49 27 20 20

has the potential to provide satisfactory hotspots detection at
the early stage of new technology node development when
hotspot data is limited.

REFERENCES

[1] C.-W. Lin, M.-C. Tsai, K.-Y. Lee, T.-C. Chen, T.-C. Wang, and Y.-W.
Chang, “Recent research and emerging challenges in physical design
for manufacturability/reliability,” in IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC). IEEE, 2007, pp. 238–243.

[2] M. Shin and J.-H. Lee, “Accurate lithography hotspot detec-
tion using deep convolutional neural networks,” Journal of Mi-
cro/Nanolithography, MEMS, and MOEMS (JM3), vol. 15, no. 4, p.
043507, 2016.

[3] B. Yu, J.-R. Gao, D. Ding, X. Zeng, and D. Z. Pan, “Accurate lithog-
raphy hotspot detection based on principal component analysis-support
vector machine classifier with hierarchical data clustering,” Journal of
Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 14, no. 1, p.
011003, 2014.

[4] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Young, “Layout hotspot
detection with feature tensor generation and deep biased learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2018.

[5] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang, “Machine-learning-
based hotspot detection using topological classification and critical fea-
ture extraction,” in ACM/IEEE Design Automation Conference (DAC).
ACM, 2013, p. 67.

[6] D. Ding, J. A. Torres, and D. Z. Pan, “High performance lithography
hotspot detection with successively refined pattern identifications and
machine learning,” IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), vol. 30, no. 11, pp. 1621–1634, 2011.

[7] H. Zhang, B. Yu, and E. F. Young, “Enabling online learning in lithogra-
phy hotspot detection with information-theoretic feature optimization,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). ACM, 2016, p. 47.

[8] S.-Y. Lin, J.-Y. Chen, J.-C. Li, W.-y. Wen, and S.-C. Chang, “A novel
fuzzy matching model for lithography hotspot detection,” in ACM/IEEE
Design Automation Conference (DAC). IEEE, 2013, pp. 1–6.

[9] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang, “A fuzzy-
matching model with grid reduction for lithography hotspot detection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 33, no. 11, pp. 1671–1680, 2014.

[10] H. Yao, S. Sinha, C. Chiang, X. Hong, and Y. Cai, “Efficient process-
hotspot detection using range pattern matching,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). ACM, 2006,

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

PHS PNHS CPHS CPNHS WPHS WPNHS

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b2, pesudo labels

(a)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b2, correctly predicted pseudo labels

(b)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b2, wrongly predicted pesudo labels

(c)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b2, WPHS and CPNHS

(d)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b3, pesudo labels

(e)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b3, correctly predicted pseudo labels

(f)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b3, wrongly predicted pesudo labels

(g)

0 1000 2000 3000 4000 5000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b3, WPHS and CPNHS

(h)

0 1000 2000 3000 4000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b4, pesudo labels

(i)

0 1000 2000 3000 4000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b4, correctly predicted pseudo labels

(j)

0 1000 2000 3000 4000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b4, wrongly predicted pesudo labels

(k)

0 1000 2000 3000 4000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIh NIn

b4, WPHS and CPNHS

(l)

0 1000 2000 3000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIhNIn

b5, pesudo labels

(m)

0 1000 2000 3000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIhNIn

b5, correctly predicted pseudo labels

(n)

0 1000 2000 3000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIhNIn

b5, wrongly predicted pesudo labels

(o)

0 1000 2000 3000

sample id

0.0

0.2

0.4

0.6

w
ei

gh
te

d
lo

ss

λ

NIhNIn

b5, WPHS and CPNHS

(p)

Fig. 9: Pseudo label status illustration (ratio=0.1, seed=150)

pp. 625–632.
[11] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang, “Accurate

process-hotspot detection using critical design rule extraction,” in
ACM/IEEE Design Automation Conference (DAC). ACM, 2012, pp.
1167–1172.

[12] A. B. Kahng, C.-H. Park, and X. Xu, “Fast dual-graph-based hotspot
filtering,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 9, pp. 1635–1642, 2008.

[13] S. Mostafa, J. A. Torres, P. Rezk, and K. Madkour, “Multi-selection
method for physical design verification applications,” in Design for
Manufacturability through Design-Process Integration V, vol. 7974.
International Society for Optics and Photonics, 2011, p. 797407.

[14] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction
with hierarchical bayes model,” in Optical Microlithography XXVIII,
vol. 9426. International Society for Optics and Photonics, 2015, p.
94260X.

[15] H. Zhang, F. Zhu, H. Li, E. F. Young, and B. Yu, “Bilinear lithography
hotspot detection,” in Proceedings of the 2017 ACM on International
Symposium on Physical Design. ACM, 2017, pp. 7–14.

[16] J. W. Park, A. Torres, and X. Song, “Litho-aware machine learning
for hotspot detection,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 37, no. 7, pp. 1510–
1514, 2018.

[17] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware

lithography hotspot detection: a deep learning approach,” Journal of
Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 16, no. 3, p.
033504, 2017.

[18] Y. Lin, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, M. Li,
and D. Z. Pan, “Data efficient lithography modeling with residual
neural networks and transfer learning,” in Proceedings of the 2018
International Symposium on Physical Design. ACM, 2018, pp. 82–89.

[19] X. Zhu, “Semi-supervised learning literature survey,” Computer Sci-
ence, University of Wisconsin-Madison, vol. 2, no. 3, p. 4, 2006.

[20] S. Wu, Q. Ji, S. Wang, H.-S. Wong, Z. Yu, and Y. Xu, “Semi-
supervised image classification with self-paced cross-task networks,”
IEEE Transactions on Multimedia, vol. 20, no. 4, pp. 851–865, 2018.

[21] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference
on Computational learning theory. ACM, 1998, pp. 92–100.

[22] Z.-H. Zhou and M. Li, “Tri-training: Exploiting unlabeled data using
three classifiers,” IEEE Transactions on knowledge and Data Engineer-
ing, vol. 17, no. 11, pp. 1529–1541, 2005.

[23] W. L. Caldas, J. P. Gomes, and D. P. Mesquita, “Fast co-mlm: An
efficient semi-supervised co-training method based on the minimal
learning machine,” New Generation Computing, vol. 36, no. 1, pp. 41–
58, 2018.

[24] X. Zhu, J. Lafferty, and R. Rosenfeld, “Semi-supervised learning
with graphs,” Ph.D. dissertation, Carnegie Mellon University, language

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

DAC SSL ISSL

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b2, ratio0.1

(a)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b3, ratio0.1

(b)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b4, ratio0.1

(c)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b5, ratio0.1

(d)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b2, ratio0.3

(e)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b3, ratio0.3

(f)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b4, ratio0.3

(g)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b5, ratio0.3

(h)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b2, ratio0.5

(i)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b3, ratio0.5

(j)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b4, ratio0.5

(k)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b5, ratio0.5

(l)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b2, ratio0.7

(m)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b3, ratio0.7

(n)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b4, ratio0.7

(o)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b5, ratio0.7

(p)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b2, ratio0.9

(q)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b3, ratio0.9

(r)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b4, ratio0.9

(s)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b5, ratio0.9

(t)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b2, ratio1

(u)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b3, ratio1

(v)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b4, ratio1

(w)

0.00 0.05 0.10
FPR

0.0

0.5

1.0

TP
R

b5, ratio1

(x)

Fig. 10: The Comparison of ROC curves. Both average and standard deviation values are drawn for different runs.

technologies institute, school of computer science Pittsburgh, PA, 2005.
[25] B. Wang and J. Tsotsos, “Dynamic label propagation for semi-

supervised multi-class multi-label classification,” Pattern Recognition,
vol. 52, pp. 75–84, 2016.

[26] C. Xiong and T.-K. Kim, “Set-based label propagation of face images,”
in Image Processing (ICIP), 2012 19th IEEE International Conference
on. Citeseer, 2012, pp. 1433–1436.

[27] A. Blum and S. Chawla, “Learning from labeled and unlabeled data
using graph mincuts,” 2001.

[28] J. Yu and S. B. Kim, “Consensus rate-based label propagation for semi-
supervised classification,” Information Sciences, vol. 465, pp. 265–284,
2018.

[29] X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling,
and J. Wang, “Deepsaliency: Multi-task deep neural network model

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

for salient object detection,” IEEE Transactions on Image Processing,
vol. 25, no. 8, pp. 3919–3930, 2016.

[30] Y. Zhang, Y. Liu, F. Weninger, and B. Schuller, “Multi-task deep neural
network with shared hidden layers: Breaking down the wall between
emotion representations,” in 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 2017, pp.
4990–4994.

[31] L. Lin, K. Wang, D. Meng, W. Zuo, and L. Zhang, “Active self-paced
learning for cost-effective and progressive face identification,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 1, pp. 7–19, 2018.

[32] S. Zhou, J. Wang, D. Meng, X. Xin, Y. Li, Y. Gong, and N. Zheng,
“Deep self-paced learning for person re-identification,” Pattern Recog-
nition, vol. 76, pp. 739–751, 2018.

[33] Y. Chen, Y. Lin, T. Gai, Y. Su, Y. Wei, and D. Z. Pan, “Semi-supervised
hotspot detection with self-paced multi-task learning,” in IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC),
2019.

[34] J. A. Torres, “Iccad-2012 cad contest in fuzzy pattern matching for
physical verification and benchmark suite,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2012, pp.
349–350.

[35] J. Kim and M. Fan, “Hotspot detection on post-opc layout using
full-chip simulation-based verification tool: a case study with aerial
image simulation,” in 23rd Annual BACUS Symposium on Photomask
Technology, vol. 5256. International Society for Optics and Photonics,
2003, pp. 919–926.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[37] Y.-C. Hsu and Z. Kira, “Neural network-based clustering using pairwise
constraints,” arXiv preprint arXiv:1511.06321, 2015.

[38] L. Jiang, D. Meng, S.-I. Yu, Z. Lan, S. Shan, and A. Hauptmann,
“Self-paced learning with diversity,” in Advances in Neural Information
Processing Systems, 2014, pp. 2078–2086.

[39] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015. [Online]. Available: https://www.tensorflow.org

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[41] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 41–48.

Ying Chen received the B.S. degree in microelec-
tronics and finance from Xi’an Jiaotong University,
Xi’an, China, in 2013. She is currently pursuing the
Ph.D. degree at the Department of Microelectronics
and Solid State Electronics, Institute of Micro-
electronics of the Chinese Academy of Sciences.
Her research interests include physical design and
design for manufacturability.

Yibo Lin (S’16-M’18) received the B.S. degree in
microelectronics from Shanghai Jiaotong University
in 2013, and his Ph.D. degree from the Electrical
and Computer Engineering Department of the Uni-
versity of Texas at Austin in 2018. He is currently a
postdoctoral researcher at the same university. His
research interests include physical design, machine
learning applications, emerging technology in VLSI
CAD, and hardware security.

He is a recipient of the Best Paper Award at
Integration, the VLSI Journal 2018, Franco Cerrina

Memorial Best Student Paper Award at SPIE Advanced Lithography Con-
ference 2016, and the University Continuing Fellowship at the University of
Texas at Austin in 2017. He has interned at Toshiba, IMEC, Cadence, and
Oracle.

Tianyang Gai received the B.S. degree in Physics
and Microelectronics from Shandong University,
Qingdao, China, in 2016. He is currently pursuing
the M.S. degree at the Department of Microelec-
tronics and Solid State Electronics, Institute of Mi-
croelectronics of the Chinese Academy of Sciences.
His research interests include physical design and
design for manufacturability.

Yajuan Su received her B.S. And M.S. degree
in microelectronics from University of Electronic
Science and Technology of China in 1995 and
1998 respectively, and the Ph.D degree in mi-
croelectronics from Tsinghua University in 2005.
She is currently an associate professor in Institute
of Microelectronics of the Chinese Academy of
Sciences. Her research interests include graphene
devices and MEMS/NEMS switching devices.

Yayi Wei received his M.S. degrees in Electrics
from Institute of Electrics, Chinese Academy of
Sciences in 1992, and the Ph.D. degree from Max
Planck Institute for Solid State Research/ University
Stuttgart in 1998. He was a postdoctoral researcher
in Oak Ridge National Laboratory from 1998 to
2001, a senior/staff engineer in Infineon Technolo-
gies from 2001 to 2007, a senior staff scientist
in AZ Electronic Materials from 2007 to 2008,
a principal member of technical staff in Global
Foundries from 2009 to 2013. Currently, he is

a professor in Institute of Microelectronics of the Chinese Academy of
Sciences. His research interests include immersion lithography process and
computational lithography, lithography materials and equipment.

David Z. Pan (S’97-M’00-SM’06-F’14) received
his B.S. degree from Peking University, and his
M.S. and Ph.D. degrees from UCLA. From 2000
to 2003, he was a Research Staff Member with
IBM T. J. Watson Research Center. He is currently
the Engineering Foundation Professor at the De-
partment of Electrical and Computer Engineering,
The University of Texas at Austin. His research
interests include cross-layer nanometer IC design
for manufacturability, reliability, security, physical
design, analog design automation, and CAD for

emerging technologies such as 3D-IC and nanophotonics. He has published
over 340 technical papers, and is the holder of 8 U.S. patents. He has
graduated 25 PhD students who are now holding key academic and industry
positions.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems (TCAD), IEEE Transactions on Very Large Scale Integration Sys-
tems (TVLSI), IEEE Transactions on Circuits and Systems PART I (TCAS-I),
IEEE Transactions on Circuits and Systems PART II (TCAS-II), IEEE Design
& Test, Science China Information Sciences, Journal of Computer Science
and Technology, IEEE CAS Society Newsletter, etc. He has served in the
Executive and Program Committees of many major conferences, including
DAC, ICCAD, ASPDAC, and ISPD. He is the ASPDAC 2017 Program Chair,
ICCAD 2018 Program Chair, DAC 2014 Tutorial Chair, and ISPD 2008
General Chair.

He has received a number of awards for his research contributions,
including the SRC 2013 Technical Excellence Award, DAC Top 10 Author
in Fifth Decade, DAC Prolific Author Award, ASP-DAC Frequently Cited
Author Award, 16 Best Paper Awards at premier venues (GLSVLSI 2018,
VLSI Integration 2018, HOST 2017, SPIE 2016, ISPD 2014, ICCAD 2013,
ASPDAC 2012, ISPD 2011, IBM Research 2010 Pat Goldberg Memorial
Best Paper Award, ASPDAC 2010, DATE 2009, ICICDT 2009, SRC Techcon
in 1998, 2007, 2012 and 2015) plus 14 additional Best Paper Award
nominations at DAC/ICCAD/ASPDAC/ISPD, Communications of the ACM
Research Highlights (2014), ACM/SIGDA Outstanding New Faculty Award
(2005), NSF CAREER Award (2007), SRC Inventor Recognition Award three
times, IBM Faculty Award four times, UCLA Engineering Distinguished
Young Alumnus Award (2009), UT Austin RAISE Faculty Excellence Award
(2014), and many international CAD contest awards, among others. He is a
Fellow of IEEE and SPIE.

https://www.tensorflow.org

