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Abstract—Lithography simulation is computationally expen-
sive for hotspot detection. Machine learning based hotspot detec-
tion is a promising technique to reduce the simulation overhead.
However, most learning approaches rely on a large amount of
training data to achieve good accuracy and generality. At the
early stage of developing a new technology node, the amount of
data with labeled hotspots or non-hotspots is very limited. In
this paper, we propose a semi-supervised hotspot detection with
self-paced multi-task learning paradigm, leveraging both data
samples w./w.o. labels to improve the model accuracy and gen-
erality. Experimental results demonstrate promising accuracy
with a limited amount of labeled training data compared to the
state-of-the-art work. The source code and trained models are
released on https://github.com/qwepi/SSL.

I. INTRODUCTIONS

As the technology node continues to shrink, the feature
sizes are getting smaller and smaller. Layout patterns are
becoming more sensitive to process variations in lithography
and lead to manufacturing defects. It is necessary to detect
these patterns before volume production to ensure yield.
These patterns are named as hotspots.

Hotspots are usually detected with lithography simulation
[1]. It is able to achieve high detection accuracy but com-
putationally expensive. Machine learning [2]-[7] and pattern
matching [8]-[11] based approaches are then proposed to
speedup the detection efficiency and meanwhile maintain
the high accuracy. Pattern matching based approaches stores
a known hotspot library and search for exact or similar
matches given a new layout clip. Yu et al. [11] extract critical
topological features of hotspots and transform them for design
rule checking (DRC) to locate the hotspot positions. Although
it has high confidence, it cannot handle unseen hotspots.
Machine learning techniques are able to learn the correlation
between layout features and hotspots/non-hotspots, develop
classifiers to differentiate hotspots and non-hotspots, and
thus recognize even unseen hotspots with high accuracy. In
addition, hybrid methods [12] of the above two techniques
are proposed to combine both their advantages.

In machine learning based hotspot detection, both con-
ventional learning approaches and deep learning approaches
are developed for hotspot detection. Models like Bayesian
and bilinear techniques have been explored with various

feature extraction techniques [13], [14]. Park ef al. [15] take
lithography imaging into consideration and train four SVM
kernels for different types of hotspots with the aerial image
intensity information to achieve high accuracy. Conventional
learning approaches usually require manual feature extraction.
Deep learning with conventional neural networks (CNN)
has then been explored to avoid the overhead of feature
engineering. Yang et al. [16] identify the label imbalance
issue in the datasets and propose a deep CNN to achieve high
classification accuracy. They then develop a biased learning
technique for the unbalanced dataset with a discrete-cosine
transformation (DCT) for feature tensor generation to further
improve accuracy with a less deep CNN [5].

For machine learning-based hotspot detection, previous
work mostly relies on supervised learning with access to a
large amount of training data available. That is, there are
enough data samples known to be either hotspots or non-
hotspots (labeled) for model training. This condition cannot
always hold in the evolution of technology nodes. At the early
stage of a new technology node, the amount of labeled data
samples tends to be limited, while unlabeled data samples
are relatively easy to access [17]. As supervised learning can
only leverage labeled data samples for training, it is likely to
encounter significant performance degradation with a small
amount of labeled training data.

To overcome the limitations of conventional supervised
hotspot detection, we present a self-paced multi-task network
for semi-supervised hotspot detection. Semi-supervised learn-
ing can leverage both labeled and unlabeled samples to help
the model training, reducing the dependence to a large amount
of labeled training data. It is being actively explored in image
recognition, neural language processing, etc [18], [19]. The
main contributions are summarized as follows.

o A multi-task neural network (MTNN) with classification
and clustering streams is proposed, in which joint model
training constructs inner relations and alleviates the
influence of labeling error for unlabeled samples.

o A self-paced learning paradigm is developed to gradually
incorporate pseudo-labeled data samples for training.
It avoids the compromise of ambiguous labeling and
improves the model performance.
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Fig. 1: (a) Hotspot and (b) non-hotspot layout clips.

o Experimental results show that the framework can
achieve the state-of-the-art accuracy with more than 3X
less labeled training data. With 10% labeled training
data, it can achieve an average of 8% higher accuracy
than previous work on the ICCAD 2012 contest bench-
marks [20].

The rest of the paper is organized as follows. Section
II introduces basic concepts and provides the problem for-
mulation. Section III presents the detailed algorithm for the
self-paced semi-supervised learning. Section IV validates the
proposed framework with experimental results. Section V
concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we will review the background of hotspot
detection and provide the problem formulation in this work.

A. Hotspot Detection

Due to small process margin in the lithography process,
hotspot patterns may cause bridges or broken lines on the
wafer after manufacturing. Fig. 1 gives examples of hotspot
and non-hotspot. The red regions indicate known hotspot or
non-hotspot. hotspots need to be detected and fixed before
mask tape-out. Conventionally, lithography simulation [21]
is used to do hotspot detection. To implement lithography
simulation, process and optical information are needed for
model calibration. The model is applied to simulate the
imaging contour of layout patterns on the wafer. Problematic
locations (a.k.a hotspot) could be easily recognized from the
contour simulation. Lithography simulation is extremely time-
consuming for full-chip verification and often slows down the
design closure.

On the other hand, machine learning technique takes an
input layout clip as an image. The information of whether the
clip contains hotspots or not could be seen as its label. Hotspot
detection based on machine learning can be formulated as an
image recognition problem in which the lithography process
information is stored in the correlation between input samples
and their labels.

B. Problem Formulation

The performance of a hotspot detector is evaluated with
following metrics [20],

# of correctly predicted hotspots

;o (la)
(1b)

accuracy =
y # of hotspots

false alarm = # of incorrectly predicted hotspots.

In the terminology of statistics, accuracy is equivalent to
the true-positive ratio and the false alarm is the number of
false-positive predictions.

The objective of hotspot detection is maximizing accuracy
with low false alarms. Recently, machine learning based
approaches formulate the hotspot detection problem into a
classification task, in which the labels need to be predicted
given input features. Related terminologies are shown as
follows.

Definition 1 (Labeled/unlabeled samples). If the class of a
sample is known, the sample is called a labeled sample;
otherwise, it is an unlabeled sample.

For hotspot detection, a sample can have two classes:
hotspot or non-hotspot. If we are sure whether a layout clip
is a hotspot or non-hotspot, then the clip is a labeled sample;
otherwise, it is unlabeled. We can obtain the label of an
unlabeled sample with lithography simulation and then the
sample becomes a labeled sample.

We then formulate the semi-supervised hotspot detection
problem as follows:

Definition 2 (Semi-supervised hotspot detection). Given a
labeled dataset containing layout clips with known labels and
an unlabeled dataset containing layout clips without known
labels, train a classifier to maximize the accuracy with low
false alarms over the entire dataset.

In practice, obtaining large labeled hotspot detection dataset
is very expensive, as numerous lithography simulations are
required to obtain the labels. However, it is relatively inex-
pensive to access unlabeled datasets by extracting layout clips
from designs without querying for the labels. Therefore, in
most of the cases, it is desired to build an accurate hotspot
detector with a very limited amount of labeled samples.
Whether the unlabeled dataset can be utilized to assist the
model training becomes very meaningful.

III. SEMI-SUPERVISED HOTSPOT DETECTION

The major challenge in semi-supervised learning is the
accuracy degradation from the insufficient labeled data and
the error in assigning pseudo-labels for unlabeled data. To
improve model performance, we adopt a multi-task network
with classification and clustering model jointly learned to al-
leviate the negative influence of inaccurate labeling [19]. The
overall flow is shown in Fig. 2. In MTNN, the classification
stream assigns pseudo-labels for unlabeled samples while the



clustering stream measures the confidence of pseudo-labels
with weights. Unlabeled samples with weights for model
training could reduce the influence of errors in labeling.
The weighted unlabeled samples are gradually introduced for
training with a self-paced learning paradigm. This self-paced
learning paradigm is connected with the data preparation part.
The original layout clip size is 1200 x 1200nm?, which is
expensive for neural networks to process. We first generate
images with 1200 x 1200 pixels and downscale to 128 x 128

with the nearest-neighbor algorithm [22].
Labeled Unlabeled
samples samples

Update data Data
weights preparation

Train the multi-task network
(classification & clustering)

Return model

Fig. 2: Overall flow of semi-supervised learning.

A. Multi-Task Neural Network Architecture

CNN is adopted as the classifier in MTNN for its good
performance in image related tasks [23]. The architecture of
MTNN is shown in Fig. 3. MTNN has two streams, with
which models for classification and clustering are jointly
learned. The two streams share layers for feature extraction
at early stages and then split into two branches [24]. The
shared layers include two convolutional layers, one ReLU
layer, and one max pooling layer. The kernel sizes and number
of kernels are annotated in the figure. The max pooling layer
performs 2 x 2 down sampling.

The individual layers for two streams are identical except
that the weights are learned separately and the loss functions
are different. The classification stream behaves as an ordinary
hotspot detector as in other neural network architectures. It
can predict labels for unlabeled samples and its loss function
for training is the weighted cross entropy where the weights
come along with data samples. The loss function is defined
as follows,

class - sz Zyz log yz ) (2)
i=1

where N is the number of input samples, K is the number of
classes, which is 2 in hotspot detection. Vectors y; and §; are
the one-hot encoding of actual class labels and the softmax
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Fig. 3: The architecture of MTNN.

output for i*" sample, respectively. Weight w; indicates the

confidence of the i*" sample’s label. The weights for labeled
samples are set to 1, while the weights for unlabeled samples
are calculated during the training with the clustering stream.

The main target of clustering stream is to determine the
weights of unlabeled samples based on their distances to
the predicted clusters. To further alleviate the influence of
untrusted labeling, pairwise constraints [25] are introduced
for the loss function of clustering. A pairwise constraint is
a pair of samples with the information of whether they are
similar.

Definition 3 (Similar pair). If the labels of two samples are
the same, they are a similar pair, vice versa.

For a labeled sample, its actual label is used. For an
unlabeled sample, the pseudo-label predicted from the classi-
fication stream is used.

Pairwise constraints can be generated by enumerating all
pairs from the labeled or pseudo-labeled data samples. Clus-
tering training with pairwise constraints enables better toler-
ance to labeling error for unlabeled data. The loss function
for the clustering stream is built with Kullback-Leibler (KL)
divergence from x; to x; with pairwise constraints.

2k
L(z;||z;) Z log( Tc 3)

J

where z; and z; is the ith and j* samples, respectively, Z;



and Z; are their corresponding clustering softmax outputs, re-
spectively. We use this KL-divergence to measure the distance
between two samples, defined as KL-distance for brevity. We
now define pairwise cost function to convert the divergence
into a cost as follows,

KL(z||z;), if (z;,2;) is a similar pair,

Lair i i) =
pair (zill;) {max<o,M—KL<mlxj>>v

otherwise,

“
where M denotes the maximum similarity of samples be-
longing to two clusters. It is set to a constant value 2 for
better convergence in training [25]. Therefore, the overall loss
function for the clustering stream considers the pairwise costs
of both sides,

N
1
Letust = Z §(LIJGLI($L|"IJ) + Lpai’!‘ (x]H'rt)) (5)

ij=1

The pseudo-label of an unlabeled sample closer to other
samples within the predicted cluster according to the KL-
distance should have higher confidence due to the correlation
between classification and clustering streams. Thus the confi-
dence of the i*" sample is defined as its average KL-distance
to other samples the same predicted cluster,

_ S5L K L(ai|2)8(xi, 7))

d; 7 ; (6)
Zj:l 6(s, ;)
where
1, if (x;,x;) is a similar pair,
O(wi, w5) = (s, 25) b )
0, otherwise.

Then weight w; of the i*" sample is defined by normalizing
d; for unlabeled samples,

exp(—d;)
u NU, b
D i exp(—d;)

where NV, is the number of unlabeled samples.

®)

w; =

B. Self-Paced Learning Paradigm

MTNN is trained only with labeled data at first. Then
pseudo-labels and weights are assigned to unlabeled samples
through predictions. If the unlabeled data are fed to the
model training directly, data with unconfident predictions
will degrade the accuracy. Therefore, a self-paced paradigm
[26] is adopted to gradually introduce unlabeled data with
high confidence for training. The procedure of the self-
paced learning is summarized in Alg. 1. The learning can
be repeated for R rounds with R = 4 in the experiment.

An indicator vector v = (vy,vs,...,vy) is used to decide
which samples are selected for the next training cycle. Se-
lected samples will have v; equal to 1; otherwise, they are O.

Labeled samples always have v; = 1. For unlabeled samples,
the selection criteria is based on following,

. K .
v 1, if—w; > yFlog gl < A,
’ 0, otherwise,

®)

where ) is the threshold to the weighted loss of each sample
for selection. The underlying assumption is that small loss
indicates high confidence.

The threshold A is determined by training an auxiliary
network [26] with the same structure as the classification
stream. After the training of multi-task network, pseudo-labels
and weights are assigned to unlabeled samples. We divide the
unlabeled dataset S, to m subsets, i.e, {S.,S92,..., 5™},
equally with ascending order of the loss in the classification
stream. Then we try training the auxiliary network indep-
dendently with S, Sl u S2, ..., {StuS2u...uUS™"}
as the training sets, respectively, and use the initially labeled
samples as the testing dataset for validation. Suppose the best
validation accuracy is achieved by subsets S. U ... U SP
(1 € h < m). Then we choose the highest loss in the
classification stream of the unlabeled samples in these subsets
as the value of .

Algorithm 1 Self-Paced Semi-Supervised MTNN

Require: Input labeled dataset S; and unlabeled dataset .S,,.
Ensure: MTNN with maximum accuracy and low false alarm.

1: Define vs as the indicator and ws as the weight for a sample s;
2: Define T as the training set;

3: Define R as the maximum rounds for self-paced learning;

4: v+ 1,ws < 1,Vs € S

5 vs + 0,ws < 0,Vs € Sy;
6
7
8
9

:fort=1— Rdo
: T+ {slvs =1,Vs € S;USu};
Generate pairwise constraints based on training dataset 77
Train MTNN with 7" and pairwise constraints;
10: Assign pseudo-labels to s € Sy, using the classification stream;
11: Compute weight ws, Vs € Sy, according to Eq. (8);
12: Update indicator vs, Vs € Sy, according to Eq. (9);
13: return MTNN;

IV. EXPERIMENTAL RESULTS

This self-paced MTNN is implemented in Python with
Tensorflow 1.2.1 [27] on a Linux server with an 8-core
3.4GHz CPU, a Nvidia GTX 1080 GPU, and 32GB memory.
The framework is validated on 28-nm industrial benchmarks
from ICCAD2012 CAD contest as described in Table I. The
benchmark b1 is omitted as it is too small. To verify modeling
performance with different amount of labeled data, the net-
work is trained using different ratios of labeled samples, i.e.,
{0.1,0.3,0.5,0.7,0.9,1.0}. When randomly generating labeled
samples from the training datasets, we keep the ratio between
hotspots and non-hotspots the same as that in the original
dataset. The unselected samples are regarded as unlabeled
samples. Moreover, to avoid statistical instability in random-
ness, each experiment is repeated for five times with different
random seeds and the average results are reported. To handle



TABLE I: Statistics on ICCAD2012 28nm Benchmarks

Dataset Train Test
#HS #NHS | #HS  #NHS
b2 174 5285 498 41298
b3 909 4643 1808 46333
b4 95 4452 177 31890
b5 26 2716 41 19327

the imbalanced dataset, biased learning [5] is adopted in
training to increase accuracy and reduce false alarms. Initial
learning rate for training is 0.001 and batch size is 32. The
unlabeled samples are divided into 15 subsets for auxiliary
network training. The self-paced learning paradigm loops for
4 rounds (R = 4).

General runtime for training the self-paced MTNN is
around 60 minutes. The prediction time for each test case
with several thousands of clips in Table I is around 2 min-
utes, which could enable huge time savings compared with
lithography simulation. Thus we will not separately report
runtime in the following discussion.

We compare accuracy and false alarm on the testing dataset
with two machine learning based detectors, as shown in Table
II. “DAC” denotes the deep biased learning approach with
DCT [5], and “SSL” denotes our self-paced semi-supervised
learning algorithm. The classification stream of ”SSL” has
the same structure as the CNN-based detector in "DAC”. At
a lower selected ratio like 0.1, 0.3, 0.5, 0.7, our framework
achieves better hotspot detection accuracy on average of
65.94%, 77.50%, 90.63% and 94.23% with slight false alarm
compromise, respectively. At a higher ratio like 0.9 and 1.0,
there is no significant difference between the average accuracy
between the two detectors, since enough labeled training data
is available.

Fig. 4 plots the average testing accuracy and the standard
deviations of five random seeds with a different amount of
training data. When the ratio increases, the accuracy of DAC
has a rising trend while the accuracy of SSL stays high
and fluctuates within a small range. With different random
seeds, the accuracy of SSL is more stable compared with
that of DAC, as the deviations are smaller. Result of SSL on
benchmark5 shows difference from other benchmarks with a
similar uptrend as DAC instead of keeping stable at a higher
accuracy. This may due to the limitated hotspot samples
of benchmark5. In the case of ratio 1.0 with all labeled
training data selected, SSL trains MTNN once without the
self-paced learning paradigm and realizes better performance
on benchmark 2 and 3. It indicates that forcing similar pairs
to become closer in the clustering stream of MTNN can help
the generalization of the discriminative model, especially for
less imbalanced training set.

We further explore the efficacy of the self-paced learning
paradigm for different ratios of training data in Fig. 5. As
unlabeled samples are gradually introduced into training, the
model is essentially training from “easy” to “mature” through
each round [28]. From the showing results, we can see that
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Fig. 4: Comparison of testing accuracy versus ratio of

training dataset. Both average and standard deviation values
are drawn for different runs.
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Fig. 5: Accuracy in training rounds of SSL for one random
seed. Curves for different ratios of training dataset o bench-
marks b2-b5 are plotted.

through each iteration, the accuracy is gradually increased.
This uptrend is sharper especially when the selected ratio is
low. We can see that for low ratios like 0.1 and 0.3, there is an
obvious trend of gradually increasing accuracy with different
rounds. For high ratios like 0.7 and 0.9, more fluctuation at
high accuracy is observed.

V. CONCLUSION

A semi-supervised hotspot detection framework with self-
paced multi-task learing is presented. With the joint learning



TABLE II: Accuracy and False Alarm Comparison for Different Amount of Labeled Training Data.

Ratio benchmark?2 benchmark3 benchmark4 benchmark5 Average
DAC SSL DAC SSL DAC SSL DAC SSL DAC SSL

0.1 accuracy 89.44% 97.99% | 97.94% 98.47% | 35.14% 52.66% | 8.29% 14.63% | 57.70%  65.94%
false alarm | 700 1643 4288 5130 230 536 3 11 1305 1830

0.3 accuracy 93.33% 98.11% | 98.34% 98.43% | 65.99% 73.45% | 27.32% 40.00% | 71.24%  77.50%
false alarm | 383 643 3569 3593 315 342 39 73 1076 1163

0.5 accuracy 96.51% 97.67% | 98.04% 98.26% | 78.19% 81.69% | 75.12% 84.88% | 86.97%  90.63%
false alarm | 297 425 3098 3083 359 379 86 104 960 998

0.7 accuracy 97.11% 97.87% | 98.17% 98.15% | 77.85% 84.29% | 90.73% 96.59% | 90.97%  94.23%
false alarm | 294 265 3001 2740 261 261 72 141 907 852

0.9 accuracy 97.79% 97.51% | 98.22% 98.24% | 90.73% 88.81% | 93.66% 94.71% | 95.10%  94.82%
false alarm | 287 211 2780 2665 387 317 79 100 883 823

1.0 accuracy 97.19% 97.75% | 98.22% 98.27% | 91.75% 90.62% | 95.61% 95.12% | 95.69%  95.44%
false alarm | 239 231 2878 2854 309 306 90 94 879 871

of a classification model and a clustering model, MTNN
is able to leverage unlabeled data samples for training. By
gradually incorporating the unlabeled samples through a self-
paced learning paradigm, the model can achieve the state-
of-the-art accuracy with a much smaller amount of labeled
training data. Future work includes the exploration of various
feature representations such as the discrete cosine transfor-
mation [5] to improve the generalization of models.
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