
1

elfPlace: Electrostatics-based Placement for Large-Scale
Heterogeneous FPGAs

Yibai Meng, Wuxi Li Member, IEEE, Yibo Lin Member, IEEE, David Z. Pan Fellow, IEEE

Abstract—elfPlace is a flat nonlinear placement algorithm for large-
scale heterogeneous field-programmable gate arrays (FPGAs). We adopt
the analogy between placement and electrostatic systems initially pro-
posed by ePlace and extend it to tackle heterogeneous blocks in
FPGA designs. To achieve satisfiable solution quality with fast and
robust numerical convergence, an augmented Lagrangian formulation
together with a preconditioning technique and a normalized subgradient-
based multiplier updating scheme are proposed. Besides pure-wirelength
minimization, we also propose a unified instance area adjustment scheme
to simultaneously optimize routability, pin density, and downstream clus-
tering compatibility. We further propose run-to-run deterministic GPU
acceleration techniques to speedup global placement. Our experiments
on ISPD 2016 benchmark suite show that elfPlace outperforms four
state-of-the-art FPGA placers UTPlaceF, RippleFPGA, GPlace3.0,
and UTPlaceF-DL by 13.5%, 10.2%, 8.8%, and 7.0%, respectively, in
routed wirelength with competitive runtime.

I. INTRODUCTION

Placement is becoming ever more crucial and challenging due to the
drastic evolution of FPGA architecture in the past decades. Mod-
ern FPGAs have thousands of digital signal processing (DSP) and
random-access memory (RAM) blocks and millions of lookup table
(LUT) and flip-flop (FF) instances. These heterogeneous resources
are often exclusively scattered over discrete locations on the FPGA
fabric. This complexity and heterogeneity significantly challenge the
effectiveness and efficiency of modern FPGA placers, which play
an important role in determining the overall FPGA implementation
quality.

There are various core FPGA placement algorithms that have been
proposed in the literature. Simulated-annealing approaches [1], [2]
iteratively perform probabilistic swapping to progressively improve
placement solutions. Despite that the global optimum can be reached
theoretically, simulated-annealing approaches, in general, suffer from
extremely slow convergence. Min-cut approaches [3] distribute in-
stances by recursive netlist partitioning. In spite of performing well
on small designs, min-cut approaches often produce unacceptably
suboptimal solutions when the design size reaches the scale of mil-
lions. Analytical approaches, on the other hand, formulate the entire
placement problem as more sophisticated continuous optimization
problems. Quadratic approaches [4]–[11] approximate the placement
objective using quadratic functions, while nonlinear approaches [12]–
[14] use higher-order ones. Compared with quadratic approaches,
nonlinear approaches often achieve better solution quality due to their
even stronger expressive power.

In contrast to the enormous research endeavor spent on core place-
ment algorithms, there are still very limited works coping with
resource heterogeneity issue in FPGA. Most existing analytical
placers only treat highly-discrete DSP and RAM blocks specially

Y. Meng and Y. Lin are with the Center for Energy-Efficient Computing
and Applications, School of EECS at Peking University, Beijing, China.
Corresponding author: Yibo Lin (yibolin@pku.edu.cn).

W. Li is with Xilinx Inc., CA, USA.
D. Z. Pan are with The Department of Electrical and Computer Engi-

neering, The University of Texas at Austin, TX, USA.

and eliminate the heterogeneity between LUTs and FFs by either
spreading them together with adjusted areas [8], [9], [11] or simply
clustering them before placement [13]. These approaches are usually
highly sensitive to the heuristics applied, which could hamper the
solution quality and placement robustness. A more recent work [15]
proposed a multi-commodity flow-based algorithm for quadratic plac-
ers to spread heterogeneous instances, and it demonstrated significant
improvement over previous spreading heuristics. However, due to
the inherent limitation of quadratic placement, their approach still
simplifies spreading as a movement-minimization problem, which
cannot explicitly optimize wirelength nor preserve the relative order
among instances of different resource types.

There are also works on optimizing other placement objectives
to ease the downstream clustering, legalization, and routing steps.
Many works [8], [9], [11] adopted instance inflation technique
to alleviate routing congestions. Alawieh et al. [16] use neural
networks to predict the routing congestion map at the placement
stage. Li et al. [17] further considered the impact of downstream
clustering/legalization and adjusted instance areas accordingly during
placement to improve the overall solution quality. However, most of
the techniques were originally proposed for quadratic placers. Studies
on nonlinear placement for FPGA are still lacking. Meanwhile,
nonlinear placement algorithms can enable massive parallelization,
opening up possibilities for GPU acceleration [18]. Existing work
leverages GPU acceleration in both global placement [19]–[21] and
detailed placement [22], [23].

In this paper, we present elfPlace, a general, flat, nonlinear place-
ment algorithm for large-scale heterogeneous FPGAs. elfPlace
adopts the idea of casting placement to electrostatic systems initially
proposed by ePlace family [24], [25] for application-specific in-
tegrated circuits (ASICs), and it is enhanced to tackle the FPGA
heterogeneity issue in a unified and elegant way. Besides the conven-
tional wirelength objective, elfPlace also performs routability, pin
density, and clustering-aware optimizations to achieve even higher-
quality and smoother design closure. elfPlace is also massively
parallelized with GPU to achieve a competitive runtime.

Our major contributions are summarized as follows.

• We enhance the original ePlace algorithm [24], [25] for ASICs
to deal with heterogeneous resource types in FPGAs.

• We employ augmented Lagrangian method, instead of the mul-
tiplier method used in ePlace, to formulate the nonlinear
placement problem.

• We propose a preconditioning technique to improve the numer-
ical convergence given the wide spectrum of instance sizes and
net degrees in FPGA designs.

• We propose a normalized subgradient method to update density
penalty multipliers, which control the spreading of different
resource types in a self-adaptive manner.

2

• We improve the clustering-aware area adjustment technique
proposed in [17] and integrate it, together with routability and
pin density optimizations, into elfPlace.

• We demonstrate more than 7% improvement in routed wire-
length, on ISPD 2016 benchmark suite [26], over four cutting-
edge placers with very competitive runtime.

• We further explore run-to-run deterministic GPU acceleration
and achieve 6.18× speedup in global placement and 2.67×
speedup in the overall runtime compared with multi-threaded
CPU.

The rest of this paper is organized as follows. Section II introduces
the background knowledge. Section III sketches the overall flow of
elfPlace. Section IV describes the core placement algorithms and
Section V details the routability, pin density, and clustering-aware
optimizations. Section VI explains the GPU acceleration algorithm
to global placement. Section VII shows the experimental results,
followed by the conclusion and future work in Section VIII.

II. PRELIMINARIES

A. FPGA Architecture

CLB DSP RAM

(a)

LUTA

LUTB

FFA

FFB

(CK, SR, CEA)

(CK, SR, CEB)

BLE 0 BLE 1 BLE 2 BLE 3

(CKL, SRL, CEAL, CEBL)

BLE 4 BLE 5 BLE 6 BLE 7

(CKH, SRH, CEAH, CEBH)

(b)

Fig. 1: (a) A simplified column-based FPGA architecture. (b) The
configurable logic block (CLB) structure.

elfPlace is developed based on Xilinx UltraScale [27], which
is a representative column-based FPGA architecture that has been
also adopted by many other state-of-the-art commercial FPGAs (e.g.,
Xilinx UltraScale+ series). As shown in Figure 1(a), each column
in this architecture provides one type of logic resource among
configurable logic block (CLB), DSP, and RAM. Columns of different
resource types are usually unevenly interleaved over the FPGA fabric.
Figure 1(b) details the CLB structure in this architecture, where each
CLB consists of 8 basic logic elements (BLEs) and each BLE further
contains 2 LUTs and 2 FFs. The 2 LUTs in the same BLE are subject
to a maximum input pin count constraint. While FFs in the same CLB
are subject to control set constraint. More specifically, as shown in
Figure 1(b), a CLB can be divided into two half CLBs, and each of
which consists of 4 BLEs that share the same clock (CK), set/reset
(SR), and clock enable (CEA/CEB) signals. Therefore, in each half
CLB, FFs must share the same CK/SR and FFs with the same polarity
(FFA/FFB) must further share the same CE (CEA/CEB).

TABLE I: Notations used in the electrostatic system

R A finite two-dimensional region
qi The electric charge quantity of charge i
ρ(x, y) The electric charge density at (x, y) ∈ R

ψi, ψ(x, y) The electric potential at charge i and (x, y) ∈ R

ξi, ξ(x, y) The electric field at charge i and (x, y) ∈ R
Φ(x,y) The total electric potential energy of placement (x,y)

B. The ePlace Algorithm

ePlace [24], [25] is a leading-edge nonlinear global placement algo-
rithm for ASICs. It approximates half-perimeter wirelength (HPWL),

W (x,y) =
∑
e∈E

We(x,y) =
∑
e∈E

(
max
i,j∈e

|xi − xj |+ max
i,j∈e

|yi − yj |
)
,

(1)
using the weighted-average (WA) model [28], [29],

W̃ex(x) =

∑
i∈e xi exp(xi/γ)∑
i∈e exp(xi/γ)

−
∑
i∈e xiexp(−xi/γ)∑
i∈e exp(−xi/γ)

. (2)

Here x and y denote the instance locations, xi and yi denote the
location of instance i, E denotes the set of nets in the design, and
γ is a parameter to control the modeling smoothness and accuracy.
Equation (2) only gives the x-directed WA model of a net and the total
wirelength cost is defined as W̃ (x,y) =

∑
e∈E(W̃ex(x)+W̃ey (y)).

The key innovation of ePlace is that it casts the placement density
cost to the potential energy of an electrostatic system. With this
transformation, each instance i is modeled as a positive charge qi
with the quantity proportional to its area. Given the notations defined
in Table I, the electric force Fi = qiξi = −qi∇ψi will guide each
black instance / positive charge i towards the direction of minimizing
the total potential energy Φ,

Φ(x,y) =

∫∫
R

ρ(x, y)ψ(x, y), (x, y) ∈ R, (3)

Here x and y are bin indices, representing a bin in the placement
region, and x and y still denote the instance locations. The unique
solution of the electrostatic system is given by Eq. (4).

∇ · ∇ψ(x, y) = −∇ · ξ(x, y) = −ρ(x, y), (x, y) ∈ R, (4a)

n̂ · ∇ψ(x, y) = −n̂ · ξ(x, y) = 0, (x, y) ∈ ∂R, (4b)∫∫
R

ρ(x, y) =

∫∫
R

ψ(x, y) = 0, (x, y) ∈ R, (4c)

where Eq. (4a) is the Poisson’s equation to correlate electric potential,
electric field, and charge density, Eq. (4b) is Neumann boundary
condition (i.e., zero electric field on the boundary of R) to prevent
charges from moving out of R, and Eq. (4c) neutralizes the overall
electric charge and potential to ensure the solution uniqueness of
Eq. (4). ePlace honors the placement density constraints by en-
forcing the electrostatic equilibrium state, where electric density is
evenly distributed and Φ(x,y) = 0.

ePlace computes the numerical solution of Eq. (4) using spectral
methods. It divides the placement region into a grid of m×m bins
to construct the charge density map ρ, then the electric potential ψ

3

and electric field ξ = (ξx, ξy) can be obtained as follows.

au,v =
1

m2

m−1∑
x=0

m−1∑
y=0

ρ(x, y) cos (ωux) cos (ωvy), (5a)

ψ(x, y) =

m−1∑
u=0

m−1∑
v=0

au,v

ω2
u + ω2

v

cos (ωux) cos (ωvy), (5b)

ξx(x, y) =

m−1∑
u=0

m−1∑
v=0

au,vωu

ω2
u + ω2

v

sin (ωux) cos (ωvy), (5c)

ξy(x, y) =

m−1∑
u=0

m−1∑
v=0

au,vωv

ω2
u + ω2

v

cos (ωux) sin (ωvy). (5d)

Here x and y are bin indices, while u and v denote frequency indices
from 0 to m− 1, and ωu = 2πu

m
and ωv = 2πv

m
are the frequencies

of sin / cos wave functions. Equation (5) can be efficiently computed
using discrete cosine transform (DCT) and its inverse (IDCT). Note
that we eliminate the DC component by setting a0,0 = 0 to ensure
boundary condition (4c).

Finally, with both wirelength cost W̃ (x,y) and density penalty
Φ(x,y) well defined, ePlace then iteratively solves the follow-
ing unconstrained nonlinear optimization problem using multiplier
method,

min
x,y

f(x,y) = W̃ (x,y) + λΦ(x,y), (6)

where λ is the density penalty multiplier to progressively enforce the
density constraint.

III. ELFPLACE OVERVIEW

One major challenge of FPGA placement is heterogeneity handling.
elfPlace tackles this problem by maintaining separate electrostatic
systems for different resource types, including LUT, FF, DSP, and
RAM. The notations used in elfPlace are given in Table II.

TABLE II: Notations used in elfPlace

S Resource type set {LUT, FF, DSP, RAM}
V , Vs Instance set and its subset with resource type s
VP, VP

s Physical instance set and its subset of resource type s
VF, VF

s Filler instance set and its subset of resource type s
Ai Area of instance i
Bs Bin grid for resource type s ∈ S
AP
b Physical instance area in bin b

Cb Resource capacity in bin b
λ Density multiplier vector (λLUT, λFF, λDSP, λRAM)T

Φ Potential energy vector (ΦLUT,ΦFF,ΦDSP,ΦRAM)T

Os Overflow of resource type s

Rand. Initial
Placement

Rand. Filler
Insertion

λ Initial-
ization

Gradient
Computation

Nesterov’s
Optimization

λ Update

DSP/RAM
Legalization

max(OLUT, OFF) < 15%?

Previous ∆A < 1%?

max(OLUT, OFF) < 10% &

max(ODSP, ORAM) < 20%?

DSP/RAM
are Legalized?

Instance
Area Adjust.

Decrease λ

Clustering
LG/DP

Y

N

Y

N

Y

N

N Y

Fig. 2: The overall flow of elfPlace.

Figure 2 illustrates the overall flow of elfPlace. Different from
a typical initial placement that minimizes wirelength by quadratic

programming, elfPlace starts from a random initial placement,
which has been observed to achieve nearly the same quality with
considerable runtime reduction. In the random initial placement, all
movable instances are first placed at the centroid of fixed pins and an
extra Gaussian noise perturbation is injected with standard deviation
equal to 0.1% of the width and height of the placement region.

After the initial placement, filler instances are created and inserted
independently for each resource type. Fillers are needed to pad
whitespaces and produce compact placement solutions. For each
resource type s ∈ S with the bin grid Bs, its total filler area is
computed as

∑
b∈Bs Cb −

∑
i∈VP

s
Ai. In our experiments, LUT/FF

fillers are set to be squares with 1/8 CLB area, and DSP and
RAM fillers are set to be rectangles with dimensions 1.0 × 2.5 and
1.0×5.0 (CLB width), respectively, based on the FPGA architecture.
For each resource type s, fillers are randomly inserted based on
the resource capacity distribution. More specifically, elfPlace
first randomly distributes fillers of resource type s into bins based
on the probabilities Cb/

∑
b∈Bs Cb, and their final locations are

then uniformly drawn within bins. By this insertion strategy, fillers
can start with relatively low potential energy and it improves the
convergence and stability of the later placement optimization.

Based on the initial placement and filler insertion, elfPlace
initializes the density multiplier vector λ = (λLUT, λFF, λDSP, λRAM)T

and then enters the core placement optimization phase. (See Section
IV-C. for details of how λ is initialized.) In each placement iteration,
the gradient of a wirelength-density co-optimization problem is
computed and fed to a Nesterov’s optimizer [24] to take a descent
step. After that, λ is updated to balance the spreading efforts on
different resource types and universally emphasize slightly more
density penalties. When both LUT and FF overflows (OLUT and
OFF) are reduced down to 15%, elfPlace adjusts instance areas
(Section V) with the consideration of routability, pin density, and
downstream clustering compatibility (i.e., LUT input pin constraint
and FF control set constraint described in Section II-A). After the
instance area adjustment, the near equilibrium electrostatic states
are likely to be damaged, therefore, elfPlace reduces the density
multipliers λ in this case to recover the quality again. This area
adjustment step is performed each time that LUT/FF converge to
max(OLUT, OFF) < 15% until the total area change is less than 1%.
The overflow of each resource type s is given in Eq. (7).

Os =

∑
b∈Bs max(AP

b − Cb, 0)∑
b∈Bs A

P
b

, ∀s ∈ S. (7)

Once the instance area converges and the overlaps are small
enough for all resource types, i.e., max(OLUT, OFF) < 10% and
max(ODSP, ORAM) < 20%, elfPlace legalizes and fixes DSP and
RAM blocks using the minimum-cost flow approach like in [8],
[9]. Here we set a larger overflow target for DSP/RAM due to
their much higher discreteness compared with LUT/FF. After that,
LUT/FF placements are further optimized until they both meet the
overflow target again (max(OLUT, OFF) < 10%). Finally, elfPlace
adopts the clustering, legalization, and detailed placement approaches
proposed in [17] to produce the final legal solution.

IV. CORE PLACEMENT ALGORITHMS

A. The Augmented Lagrangian Formulation

With density constraint for each resource type modeled as a separate
electrostatic system, elfPlace solves the minimization problem

4

defined as follows.

min
x,y

W̃ (x,y) s.t. Φs(x,y) = 0,∀s ∈ S. (8)

However, unlike ePlace, which solves the density constrained
placement problem using the multiplier method given in Eq. (6),
elfPlace uses the augmented Lagrangian method (ALM), as
shown in Eq. (9), instead.

min
x,y

f(x,y) = W̃ (x,y)+
∑
s∈S

λs
(

Φs(x,y)+
cs
2

Φs(x,y)2
)
. (9)

Here λs and Φs are density multiplier and electric potential energy
for each resource type s ∈ S = {LUT, FF, DSP, RAM}, and
cs is a parameter to control the relative weight of the quadratic
penalty term Φs(x,y)2. The 1

2
is to eliminate the coefficient after

differentiation. One can equivalently remove the 1
2

and scale down cs.
Slightly different from the typical ALM formulation where Φ(x,y)2

has weight independent to λ, the magnitude of Φ(x,y)2 is also
determined by λ in Eq. (9). This is to better control the overall
effort on honoring the density constraints and make elfPlace less
sensitive to the initial placement.

The ALM formulation in Eq. (9) can be viewed as a mixture of the
multiplier method and the penalty method. The motivation is that,
when the resource type s has high potential energy Φs(x,y), we
want the penalty term cs

2
Φs(x,y)2 to dominate (i.e., cs

2
Φs(x,y)2 �

Φs(x,y)) and make Eq. (9) become the penalty method as shown
in Eq. (10). Since in this case, the resource type s still has lots of
overlaps, using the penalty method can enhance the convexity of the
objective function and improve the convergence.

min
x,y

fPM(x,y) = W̃ (x,y) +
∑
s∈S

λs
cs
2

Φs(x,y)2. (10)

On the other hand, when the resource type s converges to a relatively
small potential energy Φs(x,y), we want the Φs(x,y) term to
dominate (i.e., Φs(x,y)� cs

2
Φs(x,y)2) and make Eq. (9) become

the multiplier method as shown in Eq. (11). In this case, the overlaps
of the resource type s are already relatively small and using the
multiplier method can continue the optimization without suffering
the ill-conditioning problem associated with the penalty method.

min
x,y

fMM(x,y) = W̃ (x,y) +
∑
s∈S

λsΦs(x,y). (11)

The key of achieving this penalty method and multiplier method
trade-off is to properly set the value of cs, ∀s ∈ S. We observe
that, regardless of the design size, the final potential energy always
converges to 10−5 to 10−7 of the initial one. Therefore, we define
cs as follows.

cs =
β

Φs(x(0),y(0))
,∀s ∈ S, (12)

where β is set to 2×103 in our experiments and Φs(x
(0),y(0)) is the

potential energy of the random initial placement (described in Sec-
tion III). Under this setting, we will have cs

2
Φs(x,y)2 = Φs(x,y)

when Φs(x,y) = 10−3 Φs(x
(0),y(0)). Then, the penalty method

can smoothly transit to multiplier method at about the halfway of the
final convergence. The experimental result in Section VII-B shows
that our ALM formulation could improve the final routed wirelength
by 1.2% compared with the original multiplier method adopted in
ePlace.

B. Gradient Computation and Preconditioning

The x-directed gradient of our objective function defined in Eq. (9)
can be derived as shown in Eq. (13). For brevity, only x-direction

will be discussed in the rest of this section and similar conclusions
are applicable to y-direction as well.

∂f(x,y)

∂xi
=
∂W̃ (x,y)

∂xi
+ λs

(∂Φs(x,y)

∂xi
+ csΦs(x,y)

∂Φs(x,y)

∂xi

)
=
∂W̃ (x,y)

∂xi
− λsqiξxi

(
1 + csΦs(x,y)

)
, ∀i ∈ Vs.

(13)

Although our ALM-based density penalty term is initially motivated
by mathematics, there are still physical intuitions behind its gradient.
By the nature of electrostatics, the electric force qiξi on each charge
i will guide the charge towards a nearby low-potential well and
this is reflected by the λsqiξxi term in Eq. (13). Besides, the extra
λsqiξxicsΦs(x,y) term further accelerates the charge movement for
resource types with high potential energies, which often correspond
to relatively large cell overlaps in the placement problem.

The gradient defined in Eq. (13) will be preconditioned before being
finally fed to the optimizer. Preconditioning can make the local cur-
vature of the objective function become nearly spherical, and hence,
alleviate the ill-conditioning problem and improve the numerical
convergence and stability. The most commonly used preconditioner
is the inverse of the Hessian matrix Hf of the objective function
f , and the preconditioned gradient H−1

f ∇f , instead of the original
∇f , will be used as the (opposite of) descent direction. However,
due to the scale of placement problem and the complexity of our
objective function, it is impractical to compute the exact Hessian.
Instead, elfPlace adopts the much cheaper Jacobi preconditioner
to approximate the actual Hessian.

The x-directed Jacobi preconditioner is a diagonal matrix with the
i-th diagonal entry equal to ∂2f

∂x2i
. By Eq. (13), we have

∂2f(x,y)

∂x2
i

=
∂2W̃ (x,y)

∂x2
i

−λsqi
(∂ξxi
∂xi

(
1 + csΦ(x,y)

)
− csξ2

xi

)
.

(14)
The closed-form expression of ∂

2W̃ (x,y)

∂x2i
is too expensive to compute

in practice, therefore, we approximate it using

∂2W̃ (x,y)

∂x2
i

∼
∑
e∈Ei

1

|e| − 1
, (15)

where Ei denotes the set of nets incident to instance i and |e| denotes
the degree of the net e. The second-order derivative of the density
term is even more complicated. Although the numerical solution
of

∂ξxi
∂xi

can be computed again through spectral method based on
Eq. (5), we choose to only keep the λsqi term for the sake of
efficiency.

Therefore, the overall x-directed second-order derivative of the ob-
jective is approximated as follows.

∂2f(x,y)

∂x2
i

∼ hxi = max
(∑
e∈Ei

1

|e| − 1
+ λsqi, 1

)
, ∀i ∈ Vs,

(16)
where the max(·, 1) is to avoid extremely small hxi for filler
instances, who do not have incident nets, when λs is very small.
Finally, the preconditioned gradient,

H−1
f ∇f(x,y) =

(1

hx1

∂f(x,y)

∂x1
,

1

hy1

∂f(x,y)

∂y1
, · · ·

)T
, (17)

will be fed to a Nesterov’s optimizer [30] to iteratively update
the placement solution. Since in FPGA designs, net degrees (e.g.,
local signal nets and global clock nets) and instance pin counts and
sizes (e.g., small LUT/FF instances and large DSP/RAM blocks) can

5

vary significantly, this wirelength preconditioner is essential to the
numerical convergence of our optimization. The experimental result
in Section VII-B shows that elfPlace can barely converge without
our preconditioning technique.

C. Density Multipliers Setting

One important thing we have not yet discussed is the setting of
density multipliers λ, which control the spreading efforts on dif-
ferent resource types. Since there is often heavy connectivity among
different resource types, the spreading process must be capable of
achieving target densities for all resource types while not ruining the
natural physical clusters consisting of heterogeneous instances.

In elfPlace, we set the initial density multipliers λ(0) as follows.

λ(0) = η
‖∇W̃ (x(0),y(0))‖1∑

i∈V qi‖ξ(0)
i ‖1

(
1, 1, · · · , 1

)T
, (18)

where (x(0),y(0)) represent the initial placement, ξ(0)
i denotes the

initial electric field at instance i, η is a weighting parameter, and
‖ · ‖1 denotes the L1-norm of a vector. In order to emphasize the
wirelength optimization in early iterations, η is set to 10−4 in our
experiments. Note that λ(0) is an |S|-dimensional vector, where |S|
is the number of resource types, and by Eq. (18), we start from
spreading all resource types with the same weight.

Classical optimization approaches use the subgradient method to
update λ [31]. According to Eq. (9), the subgradient of λ is defined
as

∇subλ =
(
· · · ,Φs(x,y) +

cs
2

Φs(x,y)2, · · ·
)T
, s ∈ S. (19)

The reason why∇subλ is called subgradient instead of gradient is that
the dual function, l(λ) = max f(x,y)|λ, associated with Eq. (9) is
not smooth but piecewise linear [31].

However, in our placement problem, the potential energies of different
resource types, Φs, can differ by order of magnitudes. The very
sparse DSP/RAM blocks usually have significantly smaller total
potential energies compared with LUT/FF instances. As a result,
using the subgradient in Eq. (19) to guide the λ updating can
lead to severely ill-conditioned problems. To mitigate this issue,
the normalized subgradient defined in Eq. (20) is used instead in
elfPlace.

∇̂subλ =
(
· · · , 1

Φs(x(0),y(0))

(
Φs(x,y) +

cs
2

Φs(x,y)2
)
, · · ·

)T
,

=
(
· · · , Φ̂s(x,y) +

β

2
Φ̂s(x,y)2, · · ·

)T
, s ∈ S.

(20)

Here we use Φ̂s(x,y) = Φs(x,y)/Φs(x
(0),y(0)) to denote the

potential energy normalized by the potential energy of the initial
placement and cs is replaced by its definition given in Eq. (12). After
this normalization, each Φ̂s(x,y) is approximately upper bounded
by 1, which can more accurately reflect the relative level of density
violation for each resource type.

Given the λ(k) and the step size t(k) at iteration k, we compute
λ(k+1) by Eq. (21) and our step size updating scheme is further
presented by Eq. (22).

λ(k+1) = λ(k) + t(k) ∇̂subλ
(k)

‖∇̂subλ(k)‖2
. (21)

t(k) =

αH − 1, for k = 0,

t(k−1)

(
log(β‖Φ̂(k)‖2+1)

1+log(β‖Φ̂(k)‖2+1)

(
αH − αL

)
+ αL

)
, for k > 0.

(22)
Here β is the same weighting parameter used in Eq. (12) and the
parameter pair (αL, αH) defines the range of increasing rate of the
step size. The motivation of our step size updating scheme shown
in Eq. (22) is that the quadratic density penalty term often decays
much faster than the linear penalty term in our objective Eq. (9).
Therefore, we increase the step size faster when the quadratic penalty
term dominates (i.e., β‖Φ̂(k)‖2 � 1). As the instance overlaps
become smaller, the linear penalty term will start to take over and a
slower increasing rate will be used in this case. In our experiments,
we set (αL, αH) to (1.05, 1.06). It should be noted that, although
1.05 ≈ 1.06, their high-order exponents can differ by order of
magnitudes (e.g., (1.06/1.05)500 > 100). Larger αH/αL can result
in faster increase of λ, faster spreading of instances, and fewer
iterations, but it may cause wirelength degradation and potential
divergence. One the other hand, smaller αH/αL can lead to more
iterations and runtime overhead.

Figure 3 illustrates the heterogeneous spreading process in
elfPlace. As can be seen from Fig. 3(a), our λ updating scheme
can greatly preserve those natural physical clusters consisting of
heterogeneous instances. The placement right before DSP/RAM
legalization shown in Fig. 3(b) further demonstrates the capability of
elfPlace to achieve nearly overlap-free solutions even for highly-
discrete DSP/RAM blocks without explicit legalization.

(a)

(b)

Fig. 3: The distributions of physical LUT (green), FF (blue), DSP
(red), and RAM (orange) instances in (a) an intermediate placement
and (b) the placement right before DSP/RAM legalization based on
FPGA-10. Both figures are rotated by 90 degrees.

V. INSTANCE AREA ADJUSTMENT

Besides minimizing wirelength, elfPlace is also capable of tack-
ling other practical issues in real-world designs, such as routability,
pin density, and clustering compatibility. Routability and pin density
optimizations have always been the fundamental requirements of
placement to achieve routing-friendly solutions. While clustering
compatibility optimization, which was recently discussed in [17], is to
further consider the effect of downstream clustering (also referred as

6

packing) early in the placement stage. It turns out that all these issues
can be addressed by properly adjusting instance areas on top of our
wirelength-driven placement. Therefore, in this section, we propose a
unified instance area adjustment approach to simultaneously optimize
all of them.

A. The Adjustment Scheme

Compute
Routability-

Optimized Area
Aro

Compute
Pin Density-

Optimized Area
Apo

Compute
Clustering-

Optimized Area
Aco

Adjust Physical
and Filler

Instance Areas

Adjust Density
Multipliers λ

Fig. 4: The area adjustment flow in elfPlace to simultaneously
optimize routability, pin density, and downstream clustering compat-
ibility.

Figure 4 sketches the algorithm flow of our instance area adjustment.
In the beginning, for each physical instance i, we first compute three
area terms, each of which is optimized for routability (Aro

i), pin
density (Apo

i), and clustering compatibility (Aco
i) respectively. Let Ai

denote the area of instance i before the adjustment, we define the
target area increase of each physical instance i as follows.

∆Ai = max(Aro
i , A

po
i , A

co
i , Ai)−Ai, ∀i ∈ VP. (23)

In order to prevent the total adjusted area from exceeding the total
capacity of each resource type, all ∆Ai need to be further scaled by
the following factor according to the resource type s of i.

τs = min(

∑
i∈VF

s
Ai∑

i∈VP
s

∆Ai
, 1),∀s ∈ S, (24)

where VF
s denotes the set of filler instances for resource type s

and
∑
i∈VF

s
Ai is the total filler area of resource type s before the

adjustment. Basically, scaling all ∆Ai by Eq. (24) guarantees that
the total increased physical instance area is no greater than the total
available filler area for each resource type. The final adjusted area
A′i of each physical instance i is then given by Eq. (25).

A′i = Ai + τs∆Ai,∀i ∈ VP
s , ∀s ∈ S. (25)

Recall that elfPlace relies on electrostatic neutrality to meet the
density constraints Φ = 0, therefore, we also need to downsize filler
instances to keep the total positive charge quantity unchanged. The
final adjusted area A′i of each filler instance i is then defined as
follows.

A′i =

∑
j∈Vs Aj −

∑
j∈VP

s
A′j

|VF
s |

,∀i ∈ VF
s , ∀s ∈ S. (26)

Our area adjustment step is physically equivalent to redistributing
electric charges while preserving overall electrostatic neutrality. After
this redistribution, however, the previously achieved state of near
equilibrium are likely to be broken. In addition, the adjustment mag-
nitudes and the potential energy increases can be highly uneven across
different resource types (e.g., FFs can vary more than LUTs due to
the control set rules). Therefore, we reset the density multipliers λ
by Eq. (27) to adapt and recover from this perturbation.

λ′ = η′
‖∇W̃‖1

〈(· · · ,∑i∈Vs qi‖ξi‖1, · · ·)T , ∇̂subλ〉
∇̂subλ, (27)

where 〈·, ·〉 denotes the inner product of two vectors,
(· · · ,∑i∈Vs qi‖ξi‖1, · · ·)T is an |S|-dimensional vector that
contains the L1-norm of the density gradient for each resource type
s ∈ S, ∇̂subλ denotes the normalized subgradient of λ, as defined in
Eq. (20), after the area adjustment, and η′ is a weighting parameter
set to 0.1 in our experiments. Equation (27) essentially redirects λ to
its current normalized subgradient ∇̂subλ with the scale determined
by the gradient norm ratio between wirelength and density. In this
way, both the direction and scale of the adjusted λ′ can adapt the
perturbed electrostatic system and help to better heal the placement
quality. Besides, in order to smooth the placement convergence, the
density multiplier step size is also adjusted by Eq. (28), where αH

is the same parameter as used in Eq. (22).

t′ = (αH − 1) ‖λ′‖2. (28)

0 200 400 600 800 1,000

10−6

10−5

10−4

10−3

10−2

10−1

100

Placement Iteration

N
o
rm

.
P

o
te

n
ti

a
l

E
n

er
g
y

Φ̂
s

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Inst.
Area

Adjust.

N
o
rm

.
H

P
W

L

Φ̂LUT Φ̂FF Φ̂DSP Φ̂RAM Norm. HPWL

Fig. 5: The normalized potential energy Φ̂ and HPWL at different
placement iterations on FPGA-10.

Figure 5 illustrates the impact of instance area adjustment on the
placement convergence process. In this example, the adjustment is
performed twice at iteration 600 and 887, where the potential energies
increase sharply. By using our adaptive density multiplier and step
size resetting techniques, the wirelength can be gradually healed and
smoothly converges to a nearly overlap-free solution.

B. The Optimized Area Computation

As we discussed in Section V-A, for each physical instance i,
elfPlace computes three independent areas that are optimized for
routability (Aro

i), pin density (Apo
i), and clustering compatibility (Aco

i),
respectively.

1) The Routability-Optimized Area: In order to compute
the routability-optimized areas, elfPlace first performs a
RISA/RUDY-based [32], [33] routing congestion estimation. Let
uh
i and uv

i denote the resulting horizontal and vertical routing
utilizations at instance i, then we compute the routability-optimized
area of each physical instance i using Eq. (29), where the 2 is an
empirical constant to avoid overinflation.

Aro
i = Ai min

(
max

(
uh
i , u

v
i

)2
, 2
)
,∀i ∈ VP, (29)

2) The Pin Density-Optimized Area: Similarly, elfPlace also
estimates pin density by dividing the placement region into bins.
Let cp denote the unit-area pin capacity (determined by the FPGA
architecture). For each instance i, if we denote its local pin density
by up

i and denote its pin count as |Pi|, then its pin density-optimized
area is defined by Eq. (30), where the 1.5 is an empirical constant to
avoid overinflation.

Apo
i =

|Pi|
cp min

(
up
i , 1.5

)
,∀i ∈ VP. (30)

7

Different from the routability-optimized area Aro
i , the pin density-

optimized area Apo
i here is independent to the current instance area

Ai. This is because, compared with routing utilization, local pin
density is usually very noisy and sensitive to the placement. If Apo

i is
self-accumulated as in Eq. (29), it can be excessively over-inflated.

3) The Clustering Compatibility-Optimized Area: One special chal-
lenge of flat FPGA placement is that we can barely know the correct
LUT and FF areas before the actual downstream clustering solution
is formed. Recall the CLB architecture described in Section II-A,
if a LUT/FF is incompatible with most of its physical neighbors
(e.g., violating the pin count and control set rules), then it tends to
occupy a significant portion of a CLB alone. For such an instance,
we intuitively should assign it a larger area.

To estimate the instance areas in a feasible clustering solution, we first
assume the instance movement (∆x,∆y) during the downstream
clustering/legalization approximately follows Gaussian distribution.
That is, we have ∆xi ∼ N (0, σ) and ∆yi ∼ N (0, σ), where σ
is the assumed standard deviation of the movement. We empirically
set σ to

√
10−5 × |VP|. Then, we divide the placement region into

square bins with bin length equal to σ, and for each LUT/FF instance
i, we conduct the area estimation using the bin window Bi, of size
5× 5 bins, that is centered at (xi, yi). Let (Bxl

i ,Byl
i ,Bxh

i ,Byh
i) denote

the bounding box of the estimation window Bi of instance i, the
expectation of any instance j falling into Bi then can be defined as

IEj∈Bi = Pσ(Bxl
i ≤ xj < Bxh

i) Pσ(Byl
i ≤ yj < Byh

i), (31)

where Pσ(a ≤ µ < b) represents the total probability of the Gaussian
distribution N (µ, σ) in the range [a, b).

For each LUT instance i, let VP
i and VP

i denote the sets of LUTs that
can and cannot be fitted into the same BLE with i (see Section II-A),
respectively, then we define the clustering compatibility-optimized
area for LUT i as follows.

Aco
i =

1

16

∑
j∈VP

i
IEj∈Bi∑

j∈VP
LUT

IEj∈Bi
+

1

8

∑
j∈VP

i
IEj∈Bi∑

j∈VP
LUT

IEj∈Bi
, ∀i ∈ VP

LUT. (32)

Equation (32) essentially is a weighted average of the compatible and
incompatible expectations for i within the window Bi. Each Aco

i , ∀i ∈
VP

LUT, is in the range [1/16, 1/8] based on our target architecture. The
same idea is also adopted in [17] and the proposed Equation (32) is
its enhancement with Gaussian smoothing.

The estimation for FFs are more subtle due to the complicated control
set rules (see Section II-A). For an FF instance i, let θi denote its
control set (CK, SR,CE) and let Θi denote the set of control sets
that have the same CK and SR with θi. If we use ni,θ to denote the
number of FFs in Bi with the control set θ, then the area of FF i in
the tightest clustering solution formed within Bi can be estimated by
Eq. (33), as given in [17].

Aco-disc
i =

1

2ni,θi

dni,θi/4e∑
θ∈Θi
dni,θ/4e

⌈∑
θ∈Θi
dni,θ/4e
2

⌉
,∀i ∈ VP

FF.

(33)
We omit the derivation of Eq. (33) due to the page limit. However,
it still can be seen that Eq. (33) involves many ceiling operations
(d·e), which make Aco-disc

i discontinuous (disc) and very sensitive to
the estimation window Bi and the placement solution.

In elfPlace, the much smoother Eq. (34), instead of Eq. (33), is
used as the clustering compatibility-optimized areas for FF instances.

Aco
i =

1

2IEi,θi

sdc(IEi,θi , 4)∑
θ∈Θi

sdc(IEi,θ, 4)
sdc

(∑
θ∈Θi

sdc(IEi,θ, 4), 2
)
, ∀i ∈ VP

FF.

(34)

It has two notable improvements over Eq. (33): (1) it replaces each
FF count ni,θ in Eq. (33) with the smoother expectation IEi,θ , which
denotes the expected number (nonintegral in general) of FFs in
window Bi with the control set θ; (2) it replaces each division-ceiling
operation in Eq. (33) with the soft division-ceiling function sdc(x, d)
defined in Eq. (35).

sdc(x, d) =

{
x+ (1− d)

⌊
x/d

⌋
, for x/d− bx/dc < 1/d,⌈

x/d
⌉
, otherwise.

(35)
The plots of sdc(x, d) function w.r.t. x/d are illustrated in Fig. 6.
It smoothes dx/de by linearizing the beginning 1/d of each sharp
step. As d approaches to ∞, sdc(x, d) behaves more like dx/de.

0 1 2 3 4

0

1

2

3

4

x/d

s
d
c
(x
,d
)

d = 2

d = 4

d = 8

d→ ∞

Fig. 6: The plots of the soft division-ceiling function sdc(x, d) w.r.t.
x/d.

VI. GPU ACCELERATION

We observe that the majority of runtime is spent on calculating the
wirelength gradient and the electrostatic field in global placement. As
most of the computation tasks operate on the placement locations of
resources, i.e., a high dimensional vector, there is great potential for
parallelization. Therefore, we seek to accelerate the global placement
with massive parallelization on GPUs.

A. Choices of Data Structures

Most of the required data structures can be stored as simple arrays.
However, processing complicated graph-like data structures on GPU
may not be efficient, such as the circuit netlist, which is essentially a
hypergraph with information for instances, pins, and nets. The netlist
needs to be stored with mappings, between pins and instances and
pins and nets. Instances-to-pins and nets-to-pins mappings are one-to-
many, which requires structures like a vector of vectors. On GPU, we
use two flat arrays to represent nested vectors, similar to compressed
sparse row (CSR) format for storing sparse matrices, as shown in
Figure 7. In this way, we can store the netlist on GPU with simple
flat arrays.

B. Wirelength Computation with Heterogeneity of Net Degree

When computing the wirelength and its gradient in parallel, we
have to deal with workload imbalance caused by heterogeneous net
degrees. To compute the wirelength as shown in the WA model
in Eq. (2), we launch each thread to compute the gradient of pins
belonging to each net, as well as each thread for an instance to sum
up the gradient of its pins.

The calculation of wirelength gradient involves two rounds of sum-
mation: first within a net, then within an instance. Therefore, the most

8

8
7
4
2
0

7
3
2
4
1

Array 1 Array 2

Fig. 7: Two arrays used to store the one-to-many mapping between
nets and pins. Here we show the process to retrieve the pins belonging
to net 1. Array 1 stores the starting index of pins in Array 2, while
Array 2 stores the actual pin IDs.

0 20 40 60

101

103

105

Net Size

N
um

be
r

of
N

et
s.

Fig. 8: Distribution of Net Size in FPGA-03. Note the logarithmic
scale. There are also 30 nets with 2000 pins, and one net with 81507
pins. These extreme outliers are unable to be plotted on the graph.

natural idea is to launch a kernel for each individual net, calculate
the gradient of each pin for each net. Then we launch a kernel for
each instance and sum up the gradient of its pins.

However, this simple implementation may end up with extremely long
runtime. Take the FPGA-03 design for example, the unaccelerated
version has a runtime of 0.076 seconds for this step, while the
“accelerated” version has a runtime of 0.89 seconds. We observer
that the long runtime is mostly due to a few extremely large nets. As
we can see in Figure 8, most of the nets have only a few pins, but
one net has 200K pins (a.k.a the global clock signal), 100 times more
than the second largest one. To overcome this efficiency challenge, we
find it is effective to ignore those nets with large degrees, e.g., degree
larger than 3000. The reason is that large nets usually end up being
placed everywhere in the layout, so in general there is not much
room to optimize its HPWL. In our experiments, we also observe
almost no effects on the routed wirelength. We also investigate better
scheduling by running the large-degree nets first; i.e., we sort the nets
from large to small degrees. The resulting runtime is approximately
the same as the unsorted case. The possible reason is that the runtime
is dominated by computing the several extremely large nets, as the
performance of one GPU thread is not as high as that of CPU.

C. Achieving Determinism

Another issue we encounter is the potential indeterminism from
limited precisions of floating point arithmetic when computing the
density maps in parallel, which is required when computing the
density gradient. The density map is stored as a two dimensional
array (M ×N) with the layout divided into M ×N bins. Due to the
fact that the instances may be overlapping during global placement,
the density of one bin may be influenced by more than one instance.
Algorithm 1 sketches the procedure to compute the density map.

To implement the operation on GPU, we compute the contribution of
different instances in parallel, meaning that multiple threads may be

1 t = blockIdx.x ∗ blockDim.x+ threadIdx.x;
2 if t < |V| then
3 v = Vt; . Get the instance v from thread index ;
4 xl, yl, xh, yh = bottom left and top right corners of v ;
5 for x = bxl/bwc to dxh/bwe do
6 for y = byl/bhc to dyh/bhe do
7 instanceDensity = Ai/bwbh ;

/* It is possible for other
instances to overlap with this
bin as well, so we must use
atomic operations. */

8 atomicAdd(densityMap[x][y], instanceDensity) ;
9 end

10 end
11 end

Algorithm 1: Add Instances to Density Map

concurrently modifying the same bins of the density map. While the
possibility of data race can be eliminated by using atomic operations,
the order of the operations can not be guaranteed between different
runs. Since IEEE 754 floating point additions are not completely
associative, the computed density map will be slightly different every
time, making the final placement result slightly non-deterministic
between different runs. Although the quality variation is very small,
it can make it difficult to reproduce previously obtained results, and
complicates the debugging process.

To achieve completely deterministic computation, we leverage fixed
point numbers in the atomicAdd step of Algorithm 1, i.e., using
a density map with fixed point numbers instead of floating point
numbers. As integer operations are associative, the difference in order
would not affect the result. When using fixed point numbers, we
need to trade off the precision and data range, as we only have
limited budget for the decimal part and the integer part. Due to
limited number of bits, the larger data range we can represent, the
less precision we can achieve, vice versa.

To achieve automatic adjustment according to different benchmarks,
we developed an adaptive approach, estimating the upper bound of
the numbers in the density map at the start of the program, shown
as the following equation.

ρ(x, y) ≤ ρmax =

∑
i∈Vs Ai

bs
(36)

where bs is the area of an individual bin, ρ is the electric charge
density defined in Table I, and ρmax is the upper bound of density.
Placing all the instances into one bin results in the maximum density
ρmax. We set the decimal point to a specific location such that the
integer part is sufficient to represent the upper bound numbers in the
density map, and use the rest as the decimal part. We adopt 64 bits
fixed point numbers and guarantee at least 32 bits for the integer part.
The bits for integer and decimal parts can be computed as follows,

#Bitsint = max(dlog2 ρmaxe, 32),

#Bitsdec = 64−#Bitsint,
(37)

For our problem, 32 bits for the integer part and 32 bits for the
decimal part are sufficient. In general, it is unlikely to have numbers
larger than 264, so we only used 64 bits. It would not be difficult to
extend the scheme to 128 bits or more, should the need arise.

9

D. Other Acceleration Choices

Most of the computation in global placement can be accelerated using
the idea described above. A few other tasks merit special treatment.
To solve the Poisson equation, we implemented the spectral method
with NVIDIA’s cuFFT [34] library [35]. We also implemented
parallel summation reduction kernels with CUB library [36] to reduce
the runtime complexity from linear to O(logN).

VII. EXPERIMENTAL RESULTS

TABLE III: ISPD 2016 Contest Benchmarks Statistics

Design #LUT #FF #RAM #DSP #Ctrl Set
FPGA-01 50K 55K 0 0 12
FPGA-02 100K 66K 100 100 121
FPGA-03 250K 170K 600 500 1281
FPGA-04 250K 172K 600 500 1281
FPGA-05 250K 174K 600 500 1281
FPGA-06 350K 352K 1000 600 2541
FPGA-07 350K 355K 1000 600 2541
FPGA-08 500K 216K 600 500 1281
FPGA-09 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281
Resources 538K 1075K 1728 768 -

We implement elfPlace in C++ and perform experiments on a
Linux machine running with Intel Xeon Gold 6230 CPU (2.10GHz
and 20 physical cores) and 64 GiB RAM. Careful parallelization
is applied throughout the whole framework with the support of
OpenMP 4.0 [37]. The ISPD 2016 FPGA placement contest bench-
mark suite [26] released by Xilinx is adopted to demonstrate the
effectiveness and efficiency of elfPlace 1. Routed wirelength
reported by Xilinx Vivado v2015.4 is used to evaluate the placement
quality. The characteristics of the benchmarks are listed in Table III.

A. Comparison with State-of-the-Art Placers

We compare elfPlace with four state-of-the-art analytical
FPGA placers, namely, UTPlaceF [8], RippleFPGA [9], [38],
GPlace3.0 [11], and UTPlaceF-NEP [17]2. The executables
are obtained from their authors and executed on our machine.
Since UTPlaceF-NEP and elfPlace support multi-threading,
RippleFPGA supports 2-thread, and UTPlaceF and GPlace3.0
only support single-thread, we execute UTPlaceF and GPlace3.0
with a single thread, RippleFPGA with 2 threads, UTPlaceF-NEP
and elfPlace with a single thread, 10 threads, and 20 threads.

Table IV shows the comparison results. Metrics “WL” and “RT”
represent the routed wirelength in thousands and runtime in seconds,
while “WLR” and “RTR” represent the routed wirelength and runtime
ratios normalized to the 10-threaded elfPlace. It can be seen
that elfPlace achieves the best routed wirelength on eleven
out of twelve designs and outperforms UTPlaceF, RippleFPGA,
GPlace3.0, and UTPlaceF-NEP by, on average, 13.5%, 10.2%,
8.8%, and 7.0%, respectively. It is worthwhile to note that these
wirelength improvements are fairly consistent from small designs
to large ones. With only a single thread, elfPlace demon-
strates similar runtime compared with UTPlaceF, GPlace3.0,

1As this work focuses on core placement algorithms, the ISPD 2017
benchmark suite for clock-aware placement is not adopted in our experiments.

2NEP stands for no explict packing. [8] introduced a direct legalization
method that does not require explicit packing.

and UTPlaceF-NEP. By exploiting 10 threads and 20 threads,
elfPlace achieves 2.76× and 2.90× speedup, respectively, and
shows similar runtime with RippleFPGA. Among all twelve de-
signs, the speedup ratios from the 20-threaded elfPlace over
single thread are rather consistent, varying between 2.50 ∼ 3.29×.
Meanwhile, the Vivado’s routing time for elfPlace’s solutions is
also comparable with other placers, indicating that the efforts Vivado
had to make, or the potential congestion of the placed design, are
similar.

We also evaluated these designs on the 372 benchmarks provided
by Guelph FPGA CAD Group [39], as show in Table V. These
benchmarks are split into 12 groups, each procedurally generated
from the corresponding ISPD2016 benchmark, with similar resource
usage and complexity. So the performance on them can be seen as
a indicator of the algorithm’s robustness and adaptability. As we can
see, elfPlace produces a comparable number of unroutable results
with other placers, while achieving 8% to 13% wirelength reduction
and keeping its significant runtime superiority. It also processes a
comparable routing time with other placers.

B. Individual Technique Validation

Table VI further validates the effectiveness of each proposed tech-
nique. The column “w/ MM in Eq. (11)” shows the results of
using the multiplier method (MM) in Eq. (11), which is adopted
by ePlace, instead of our proposed augmented Lagrangian method
(ALM) in Eq. (9). To make a fair comparison, we set the step size
of the MM in a way that the MM and our ALM can converge within
about the same amount of time. With this setup, our proposed ALM-
based formulation can produce an average of 1.2% better routed wire-
length compared with the MM-based formulation. The column “w/o
Precond.” shows the results without the preconditioning in Eq. (16)
and it can barely converge due to the wide spectrum of instance
sizes and net degrees in FPGA designs. The column “w/ ePlace
Precond.” further gives the results of replacing our preconditioner
in Eq. (16) with the one proposed in ePlace [30]. Although the
ePlace’s preconditioning technique can achieve similar placement
quality and efficiency, it fails to converge on two benchmarks in our
experiments. The column “w/ Aco

i in [17]” presents the results of
using the clustering compatibility-optimized area proposed in [17]
instead of our Gaussian and sdc-smoothed Eq. (32) and Eq. (34).
With our smoothing techniques, elfPlace can converge 15% faster
while maintaining essentially the same solution quality. Finally, the
columns “ w/o Apo

i Pin Adj” and “w/o Aro
i Route Adj” presents the

results when pin density area adjustment and routability adjustment
are not performed, respectively. Routability adjustment has relatively
small impacts on the placement quality, as most of the benchmarks are
not very congested, except for FPGA-05. Pin density area adjustment
has larger impacts on the solution quality, without which three
benchmarks fail to route due to congestion.

Table VII shows the routed wirelength with and without running the
detailed placement. We can see that detailed placement contributes
to 1.64% average routed wirelength improvement. Combining the
7-13% average routed wirelength improvement in Table IV, we
can ascribe the benefits mostly to the proposed global placement
techniques.

C. Experimental Results on GPU Acceleration

Table IV also compares the quality and total runtime between
the CPU version and the GPU accelerated version, shown as

10

TABLE IV: Routed Wirelength (WL in 103 site size) Comparison with Other State-of-the-Art Placers

Design
UTPlaceF [8] RippleFPGA [9], [38] GPlace3.0 [11] UTPlaceF-NEP [17]

WL WLR VRRR 1-thread WL WLR VRRR 2-thread WL WLR VRRR 1-thread WL WLR VRRR 1-thread 10-thread 20-thread
RT RTR RT RTR RT RTR RT RTR RT RTR RT RTR

FPGA-01 357 1.126 1.02 162 5.43 350 1.104 1.05 32 1.08 356 1.122 1.09 83 2.77 340 1.073 1.10 153 5.13 53 1.76 58 1.93
FPGA-02 642 1.105 0.97 273 6.03 682 1.175 1.05 58 1.27 644 1.109 1.03 158 3.49 653 1.124 1.17 270 5.96 94 2.08 89 1.97
FPGA-03 3215 1.122 0.93 778 7.08 3251 1.135 1.11 209 1.90 3101 1.083 1.08 587 5.34 3139 1.096 1.08 757 6.88 343 3.12 336 3.06
FPGA-04 5410 1.115 1.00 768 7.16 5492 1.132 1.08 286 2.67 5403 1.113 1.00 630 5.87 5331 1.099 1.11 758 7.07 375 3.50 349 3.25
FPGA-05 9660 1.049 1.29 973 8.76 9909 1.076 1.01 334 3.01 10507 1.141 0.91 736 6.62 10045 1.091 1.40 864 7.78 401 3.61 381 3.43
FPGA-06 6488 1.138 1.12 1649 8.22 6145 1.078 0.95 518 2.58 5820 1.021 0.96 1189 5.93 5801 1.018 1.03 1341 6.68 635 3.16 596 2.97
FPGA-07 10105 1.156 2.97 1647 8.44 9577 1.096 0.41 558 2.86 9509 1.088 0.42 1277 6.54 9356 1.071 1.28 1282 6.57 622 3.19 597 3.06
FPGA-08 7879 1.026 0.97 1642 10.45 8088 1.054 0.97 412 2.62 8126 1.059 1.03 1400 8.90 8298 1.081 1.65 477 3.03 263 1.67 273 1.73
FPGA-09 12369 1.161 1.64 2483 11.62 11376 1.068 1.20 662 3.10 11711 1.100 0.79 1848 8.65 11633 1.092 1.57 582 2.72 346 1.62 346 1.62
FPGA-10 8795 1.449 2.51 3043 13.36 6972 1.149 0.79 1002 4.40 6836 1.127 1.02 1794 7.87 6317 1.041 1.49 564 2.48 359 1.58 353 1.55
FPGA-11 10196 0.977 3.71 2044 11.48 10918 1.047 2.56 628 3.53 10260 0.984 1.13 1709 9.60 10476 1.004 2.01 552 3.10 326 1.83 309 1.74
FPGA-12 7755 1.196 1.71 2934 13.15 7240 1.116 1.16 847 3.79 7224 1.114 1.01 2263 10.14 6835 1.054 1.42 704 3.16 457 2.05 418 1.87

Norm - 1.135 1.653 - 9.27 - 1.102 1.11 - 2.73 - 1.088 0.96 - 6.81 - 1.070 1.36 - 5.05 - 2.43 - 2.35

Design
elfPlace [40] elfPlaceGPU

WL WLR VRRR 1-thread 10-thread 20-thread WL WLR VRRR fixed64 float64
RT RTR RT RTR RT RTR RT RTR RT RTR

FPGA-01 316 0.997 1.00 273 9.18 95 3.19 96 3.22 317 1.00 1.00 29 0.98 30 1.00
FPGA-02 580 0.999 0.99 498 10.99 185 4.08 175 3.86 581 1.00 1.00 51 1.11 45 1.00
FPGA-03 2862 0.999 1.00 805 7.32 294 2.68 288 2.62 2865 1.00 1.00 110 1.00 110 1.00
FPGA-04 4844 0.998 1.00 798 7.44 279 2.60 281 2.62 4853 1.00 1.00 108 1.00 107 1.00
FPGA-05 9215 1.001 1.00 955 8.60 341 3.07 316 2.84 9206 1.00 1.00 112 1.01 111 1.00
FPGA-06 5727 1.005 1.01 1189 5.93 450 2.24 432 2.15 5699 1.00 1.00 215 1.07 201 1.00
FPGA-07 8749 1.001 1.00 1198 6.14 442 2.26 421 2.16 8740 1.00 1.00 194 0.99 195 1.00
FPGA-08 7661 0.998 1.01 1290 8.21 429 2.73 392 2.49 7676 1.00 1.00 157 1.00 157 1.00
FPGA-09 10657 1.001 0.99 1454 6.81 513 2.40 495 2.32 10650 1.00 1.00 217 1.02 214 1.00
FPGA-10 6058 0.998 1.00 1531 6.72 655 2.88 613 2.69 6068 1.00 1.00 225 0.99 228 1.00
FPGA-11 10421 0.999 1.03 1472 8.27 512 2.88 469 2.63 10432 1.00 1.00 172 0.96 178 1.00
FPGA-12 6480 0.999 0.98 1860 8.34 673 3.02 618 2.77 6484 1.00 1.00 221 0.99 223 1.00

Norm - 1.000 1.00 - 7.83 - 2.83 - 2.70 - 1.00 1.00 - 1.01 - 1.00

VRRR: Vivado routing runtime, relative to that of elfPlaceGPU’s fixed point version. All other
relative values (WLR, RTR) are computed relative to elfPlaceGPU’s fixed point version as well.

TABLE V: Routed Wirelength (WL in 103 site size) and Placement Runtime (RT in seconds) Comparison with Other State-of-the-Art Placers on
372 Guelph Benchmarks

Group
UTPlaceF [8] RippleFPGA [9], [38] GPlace3.0 [11] UTPlaceF-NEP [17] elfPlaceGPU

WLR FR VRRR 1-thread WLR FR VRRR 2-thread WLR FR VRRR 1-thread WLR FR FP VRRR 20-thread WLR FR VRRR fixed64
RTR RTR RTR RTR RTR

FPGA-01 1.14 0 1.03 4.90 1.12 0 1.05 0.98 1.15 0 1.09 2.49 1.08 0 0 1.11 1.56 1.00 0 1.00 1.00
FPGA-02 1.12 0 1.03 5.99 1.11 0 1.04 1.21 1.13 0 1.05 3.55 1.08 0 0 1.11 1.89 1.00 0 1.00 1.00
FPGA-03 1.12 0 1.02 6.92 1.18 0 1.10 1.91 1.10 1 1.08 5.28 1.07 0 0 1.09 2.99 1.00 0 1.00 1.00
FPGA-04 1.11 0 1.02 7.11 1.14 0 1.14 2.33 1.10 0 1.04 6.11 1.09 0 0 1.10 2.91 1.00 0 1.00 1.00
FPGA-05 1.04 8 2.80 7.86 1.07 3 3.21 3.84 1.09 1 2.38 6.25 1.09 0 0 2.27 3.10 1.00 0 1.00 1.00
FPGA-06 1.12 0 1.09 7.99 1.09 0 1.06 2.54 1.05 0 1.04 5.85 1.02 0 0 1.07 2.81 1.00 0 1.00 1.00
FPGA-07 1.11 10 1.78 8.90 1.08 1 0.54 4.02 1.06 0 1.23 6.88 1.05 1 0 2.13 3.10 1.00 3 1.00 1.00
FPGA-08 1.05 0 1.09 10.72 1.12 0 1.09 2.88 1.06 0 1.12 9.10 1.10 0 0 1.18 5.28 1.00 0 1.00 1.00
FPGA-09 1.14 16 2.19 11.55 1.11 1 1.55 3.57 1.07 0 1.35 8.27 1.10 1 10 1.83 6.32 1.00 2 1.00 1.00
FPGA-10 1.38 8 2.70 14.11 1.11 0 1.10 5.44 1.08 0 1.10 8.71 1.11 0 0 1.38 3.32 1.00 0 1.00 1.00
FPGA-11 1.05 1 2.81 11.84 1.08 1 2.18 4.25 1.04 0 1.10 9.81 1.07 0 7 1.57 8.96 1.00 0 1.00 1.00
FPGA-12 1.16 1 2.40 13.82 1.06 0 1.22 3.61 1.07 0 1.14 10.33 1.14 0 4 1.44 5.87 1.00 0 1.00 1.00

Norm/Sum 1.13 44 1.75 9.31 1.11 6 1.36 3.05 1.08 2 1.23 6.89 1.08 2 21 1.44 4.01 1.00 5 1.00 1.00

WLR: Average relative routed wirelength of benchmarks in the group. When computing the average numbers, we only consider the benchmarks
that are successfully placed and routed for both elfPlace and other placers.
FR: Number of benchmarks Vivado failed to route, or were unable to finish routing within 2 hours.
FP: Number of benchmarks the placer failed to place, or were unable to finish placement within 2 hours.
VRRR: Average relative Vivado routing runtime. Similiar to WLR, only the benchmarks that are successfully placed and routed for all placers
are considered.
RTR: Average relative placer runtime.

elfPlaceGPU. Figure 9 (also see Table VIII for detailed num-
bers) compares their global placement runtime. We can see that
elfPlaceGPU can achieve an average of 6.18× speedup in global
placement and 2.15 ∼ 3.86× speedup in the overall runtime over
elfPlace with 20 threads. Meanwhile, we compare the implemen-
tations using fixed point numbers with run-to-run determinism and
floating point numbers without such determinism. It can be seen that
our 64-bit fixed point implementation can not only guarantee run-
to-run determinism, but also bring no quality degradation or runtime
overhead, compared with the 64-bit floating point implementation.

D. Runtime Breakdown

Figure 10 shows the runtime breakdown of the 20-threaded
elfPlace [40] based on FPGA-11, as well as that of
elfPlaceGPU. Following is the makeup of the three major steps
of the algorithm:

1) Global Placement: compute wirelength gradient ∇W̃ ; compute
density gradient; update parameters between iterations; area
adjustment.

2) Legalization: clustering; legalization.

3) Detailed Placement.

11

TABLE VI: Normalized Routed Wirelength and Placement Runtime Comparison for Individual Technique Validation

Design
w/ MM w/o w/ ePlace w/ Aco

i w/o Apo
i w/o Aro

i elfPlacein Eq. (11) Precond. Precond. in [17] Pin Adj. Route Adj.
WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR

FPGA-01 1.021 1.02 1.009 1.01 1.006 1.02 1.004 1.12 1.129 0.91 1.000 0.96 1.00 1.00
FPGA-02 1.010 0.97 * * * * 1.001 1.16 0.996 0.95 1.000 0.97 1.00 1.00
FPGA-03 1.009 1.03 * * 0.995 1.03 0.998 1.23 1.014 1.11 1.000 0.99 1.00 1.00
FPGA-04 1.046 0.94 * * * * 1.002 1.16 1.011 1.12 1.002 1.10 1.00 1.00
FPGA-05 1.026 1.05 * * 1.002 1.03 0.996 1.07 x 1.03 t 0.81 1.00 1.00
FPGA-06 1.008 1.01 * * 1.030 0.98 1.004 1.25 1.102 1.10 1.000 0.99 1.00 1.00
FPGA-07 1.001 1.04 * * 0.988 1.04 0.986 1.20 x 1.16 0.998 1.01 1.00 1.00
FPGA-08 0.991 1.01 * * 0.996 1.01 0.999 1.14 0.974 1.05 1.000 1.04 1.00 1.00
FPGA-09 1.003 1.01 * * 0.996 1.03 1.002 1.12 1.036 1.06 0.999 1.00 1.00 1.00
FPGA-10 1.006 1.01 * * 1.000 1.01 0.996 1.03 x 1.03 1.000 0.99 1.00 1.00
FPGA-11 1.011 0.98 * * 1.002 1.05 1.009 1.15 1.018 1.04 0.999 0.99 1.00 1.00
FPGA-12 1.017 1.02 * * 0.995 1.04 1.003 1.14 1.121 1.18 1.000 0.99 1.00 1.00

Norm. 1.012 1.01 1.009 1.01 1.001 1.03 1.000 1.15 1.045 1.06 1.000 0.99 1.00 1.00

* Placement fails to converge.
x Vivado fails to route.
t Vivado router times out.

FPGA01 FPGA02 FPGA03 FPGA04 FPGA05 FPGA06 FPGA07 FPGA08 FPGA09 FPGA10 FPGA11 FPGA12

102

103

R
un

tim
e

/
Se

co
nd

elfPlace 1-thread
elfPlace 10-thread
elfPlace 20-thread
elfPlaceGPU fixed64
elfPlaceGPU float64

Fig. 9: Comparison of Global Placement Runtime between elfPlace and elfPlaceGPU. We use “fixed64” and “float64” to denote
whether using fixed point numbers or floating point numbers to compute the density map in Section VI-C.

TABLE VII: Comparison of Routed Wirelength w/ and w/o Detailed
Placement

Design WL w. DP WL w.o. DP WL Improv.

FPGA-01 326022 316156 3.03%
FPGA-02 601581 580361 3.53%
FPGA-03 2927299 2862003 2.23%
FPGA-04 4906663 4843997 1.28%
FPGA-05 9193812 9215136 -0.23%
FPGA-06 5856876 5727477 2.21%
FPGA-07 8846150 8748886 1.10%
FPGA-08 7714006 7660886 0.69%
FPGA-09 10766509 10657177 1.02%
FPGA-10 6242673 6058331 2.95%
FPGA-11 10475356 10421193 0.52%
FPGA-12 6571599 6479682 1.40%

Norm - - 1.64%

For the CPU version, the most time-consuming part is to compute
the wirelength gradient ∇W̃ , which takes 33.0% of the total run-
time. The density gradient computation is relatively efficient and it
consumes 13.3% of the total runtime on constructing the density
maps ρ, computing the electric potential ψ and electric field ξ by
Eq. (5). The parameter updating, which involves the computation of

TABLE VIII: Comparison of Global Placement Runtime in seconds be-
tween elfPlace and elfPlaceGPU. We use “fixed64” and “float64”
to denote whether using fixed point numbers or floating point numbers
to compute the density map in Section VI-C.

Design elfPlace elfPlaceGPU
1-thread 10-thread 20-thread fixed64 float64

FPGA01 205 82 86 19 19
FPGA02 373 160 156 26 31
FPGA03 494 206 210 35 35
FPGA04 493 194 212 35 36
FPGA05 652 260 250 48 48
FPGA06 704 279 277 43 43
FPGA07 698 283 281 49 49
FPGA08 738 284 270 44 45
FPGA09 832 326 325 53 53
FPGA10 850 450 429 52 53
FPGA11 843 355 342 48 48
FPGA12 1004 458 438 49 49

wirelength, overflow, potential energy Φ, etc., takes 16.7% of the
total runtime. The clustering, legalization, and detailed placement
algorithms adopted from [17] consumes total 26.3% of the runtime.
While the remaining 11.6% of the runtime is spent on parsing,
placement initialization, and the rest of runtime-insignificant tasks.

12

Actually this part is also partially accelerated (drop to 4.74% in the
GPU version) as placement initialization needs to evaluate wirelength
and density overflow according to Section IV.

As for the GPU accelerated version, the wirelength gradient and
density gradient computation are no longer the runtime bottlenecks.
Legalization and detailed placement become the new bottlenecks,
which require further optimizations in the future.

VIII. CONCLUSION

In this paper, we have presented elfPlace, a general, flat, non-
linear placement algorithm for large-scale heterogeneous FPGAs.
elfPlace resolves the traditional FPGA heterogeneity issue by
casting the density constraints of heterogeneous resource types to
separate but unified electrostatic systems. An augmented Lagrangian
formulation together with a preconditioning technique and a normal-
ized subgradient-based multiplier updating scheme are proposed to
achieve satisfiable solution quality with fast and robust numerical
convergence. Besides pure-wirelength minimization, elfPlace is
also capable of optimizing routability, pin density, and downstream
clustering compatibility based on a unified instance area adjust-
ment scheme. Our experiments show that elfPlace significantly
outperforms four state-of-the-art placers in routed wirelength with
competitive runtime. In the future, we plan to incorporate timing
optimization into elfPlace framework.

ACKNOWLEDGMENT

The authors would like to thank Dr. Gengjie Chen and Prof. Evan-
geline F.Y. Young for providing the binary of RippleFPGA and Dr.
Ziad Abuowaimer, Prof. Shawki Areibi, and Prof. Gary Grewal for
providing the binary of GPlace3.0. This work was supported in
part by the National Science Foundation of China (No. 62004006)
and the Beijing Municipal Science and Technology Program (No.
Z201100004220007).

REFERENCES

[1] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in FPL, 1997, pp. 213–222.

[2] G. Chen and J. Cong, “Simultaneous placement with clustering and
duplication,” ACM TODAES, vol. 11, no. 3, pp. 740–772, 2006.

[3] P. Maidee, C. Ababei, and K. Bazargan, “Timing-driven partitioning-
based placement for island style FPGAs,” IEEE TCAD, vol. 24, no. 3,
pp. 395–406, 2005.

[4] Y. Xu and M. A. Khalid, “QPF: efficient quadratic placement for
FPGAs,” in FPL, 2005, pp. 555–558.

[5] P. Gopalakrishnan, X. Li, and L. Pileggi, “Architecture-aware FPGA
placement using metric embedding,” in DAC, 2006, pp. 460–465.

[6] M. Xu, G. Gréwal, and S. Areibi, “StarPlace: A new analytic method
for FPGA placement,” Integration, the VLSI Journal, vol. 44, no. 3, pp.
192–204, 2011.

[7] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in FPL, 2012, pp. 143–150.

[8] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” IEEE TCAD,
vol. 37, no. 4, pp. 869–882, 2018.

[9] G. Chen, C.-W. Pui, W.-K. Chow, K.-C. Lam, J. Kuang, E. F. Young,
and B. Yu, “RippleFPGA: Routability-driven simultaneous packing and
placement for modern FPGAs,” IEEE TCAD, vol. 37, no. 10, pp. 2022–
2035, 2018.

[10] W. Li, Y. Lin, M. Li, S. Dhar, and D. Z. Pan, “UTPlaceF 2.0: A high-
performance clock-aware FPGA placement engine,” ACM TODAES,
vol. 23, no. 4, p. 42, 2018.

[11] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Gréwal,
S. Areibi, and A. Vannelli, “GPlace3.0: Routability-driven analytic placer
for UltraScale FPGA architectures,” ACM TODAES, vol. 23, no. 5, pp.
66:1–66:33, 2018.

[12] T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” in DAC, 2013, pp. 10:1–10:6.

[13] Y.-C. Chen, S.-Y. Chen, and Y.-W. Chang, “Efficient and effective
packing and analytical placement for large-scale heterogeneous FPGAs,”
in ICCAD, 2014, pp. 647–654.

[14] Y.-C. Kuo, C.-C. Huang, S.-C. Chen, C.-H. Chiang, Y.-W. Chang, and S.-
Y. Kuo, “Clock-aware placement for large-scale heterogeneous FPGAs,”
in ICCAD, 2017, pp. 519–526.

[15] N. K. Darav, A. Kennings, K. Vorwerk, and A. Kundu, “Multi-
commodity flow-based spreading in a commercial analytic placer,” in
FPGA, 2019, pp. 122–131.

[16] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale fpgas,” in
2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC), 2020, pp. 26–31.

[17] W. Li and D. Z. Pan, “A new paradigm for FPGA placement without
explicit packing,” IEEE TCAD, 2018.

[18] Y. Lin, “Gpu acceleration in vlsi back-end design: Overview and
case studies,” in Proceedings of the 39th International Conference
on Computer-Aided Design, ser. ICCAD ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3400302.3415765

[19] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled gpu acceleration for modern VLSI
placement,” in DAC, 2019.

[20] Y. Lin, D. Z. Pan, H. Ren, and B. Khailany, “Dreamplace 2.0: Open-
source gpu-accelerated global and detailed placement for large-scale
vlsi designs,” in 2020 China Semiconductor Technology International
Conference (CSTIC), 2020, pp. 1–4.

[21] J. Gu, Z. Jiang, Y. Lin, and D. Z. Pan, “Dreamplace 3.0: Multi-
electrostatics based robust vlsi placement with region constraints,” in
2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2020, pp. 1–9.

[22] S. Dhar and D. Z. Pan, “Gdp: Gpu accelerated detailed placement,” in
2018 IEEE High Performance extreme Computing Conference (HPEC),
2018, pp. 1–7.

[23] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “Abcdplace:
Accelerated batch-based concurrent detailed placement on multithreaded
cpus and gpus,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 12, pp. 5083–5096, 2020.

[24] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha,
D. Huang, Y. Luo, C.-C. Teng et al., “ePlace-MS: Electrostatics-based
placement for mixed-size circuits,” IEEE TCAD, vol. 34, no. 5, pp. 685–
698, 2015.

[25] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
TCAD, 2018.

[26] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,
“Routability-driven FPGA placement contest,” in ISPD, 2016, pp. 139–
143.

[27] Xilinx Inc., “http://www.xilinx.com,” 2019.

[28] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical
placement for 3D IC designs,” in DAC, 2011, pp. 664–669.

[29] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “Tsv-aware analytical place-
ment for 3-d ic designs based on a novel weighted-average wirelength
model,” IEEE TCAD, vol. 32, no. 4, pp. 497–509, 2013.

13

33%

13.3%

16.7%

13.4%

12.9%

11.6%

(a)

4.76%

Compute ∇W̃
Compute ρ, ψ and ξ

Update Parameters

13.8%

Clustering/LG
12.3%

DP

4.74%
Others

(b)

Fig. 10: Runtime Breakdown of FPGA-11: (a) elfPlace with 20 threads and (b) elfPlaceGPU with 64-bit fixed point numbers.

[30] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and
C.-K. Cheng, “ePlace: Electrostatics-based placement using fast fourier
transform and Nesterov’s method,” ACM TODAES, vol. 20, no. 2, p. 17,
2015.

[31] C. Lemaréchal, “Lagrangian relaxation,” in Computational combinato-
rial optimization. Springer, 2001, pp. 112–156.

[32] C.-L. E. Cheng, “RISA: Accurate and efficient placement routability
modeling,” in ICCAD, 1994, pp. 690–695.

[33] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in DATE, 2007,
pp. 1226–1231.

[34] Nvidia, “cuFFT,” https://developer.nvidia.com/cufft, accessed: 2020-06-
01.

[35] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “Dreamplace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE TCAD, 2020.

[36] NVIDIA Research, “CUB,” https://nvlabs.github.io/cub/index.html, ac-
cessed: 2020-06-01.

[37] OpenMP 4.0, http://www.openmp.org/, 2019, accessed: 2019-4-1.

[38] C.-W. Pui, G. Chen, Y. Ma, E. F. Y. Young, and B. Yu, “Clock-aware
ultrascale fpga placement with machine learning routability prediction,”
in ICCAD, 2017, pp. 915–922.

[39] D. Maarouff, A. Shamli, T. Martin, G. Grewal, and S. Areibi, “A deep-
learning framework for predicting congestion during fpga placement,” in
2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), 2020, pp. 138–144.

[40] W. Li, Y. Lin, and D. Z. Pan, “elfPlace: Electrostatics-based placement
for large-scale heterogeneous FPGAs,” in ICCAD, 2019.

Yibai Meng received the B.S. degree in Electrical
Engineering from Peking University, China in 2020.
He is currently working as a research assistant at the
Center for Energy-Efficient Computing and Appli-
cations, Department of EECS at Peking University,
China. His current research interests include VLSI
placement and GPU acceleration for VLSI design.

Wuxi Li (S’18–M’19) received the B.S. degree in
microelectronics from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2013., the M.S. and Ph.D.
degrees in computer engineering from the University
of Texas at Austin, Austin, TX, in 2015 and 2019,
respectively. He is currently a Staff Software Engi-
neer in the Vivado Implementation Team at Xilinx,
San Jose, CA, where he is primarily working on the
physical synthesis field.

Dr. Li has received the Best Paper Award at DAC
2019, the Silver Medal in ACM Student Research

Contest at ICCAD 2018, and the 1st-place awards in the FPGA placement
contests of ISPD 2016 and 2017.

Yibo Lin (S’16–M’19) received the B.S. degree in
microelectronics from Shanghai Jiaotong University
in 2013, and his Ph.D. degree from the Electrical and
Computer Engineering Department of the University
of Texas at Austin in 2018. He is current an assistant
professor in the Computer Science Department as-
sociated with the Center for Energy-Efficient Com-
puting and Applications at Peking University, China.
His research interests include physical design, ma-
chine learning applications, GPU acceleration, and
hardware security. He has received 4 Best Paper

Awards at premier venues (ISPD 2020, DAC 2019, VLSI Integration 2018,
and SPIE 2016). He has also served in the Technical Program Committees of
many major conferences, including ICCAD, ICCD, ISPD, and DAC.

14

David Z. Pan (S’97—M’00—SM’06—F’14) re-
ceived his B.S. degree from Peking University, and
his M.S. and Ph.D. degrees from University of Cali-
fornia, Los Angeles (UCLA). From 2000 to 2003, he
was a Research Staff Member with IBM T. J. Wat-
son Research Center. He is currently Engineering
Foundation Professor at the Department of Electrical
and Computer Engineering, The University of Texas
at Austin, Austin, TX, USA. His research interests
include cross-layer nanometer IC design for man-
ufacturability, reliability, security, machine learning

and hardware acceleration, design/CAD for analog/mixed signal designs and
emerging technologies. He has published over 360 journal articles and refereed
conference papers, and is the holder of 8 U.S. patents.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems (TCAD), IEEE Transactions on Very Large Scale Integration Systems
(TVLSI), IEEE Transactions on Circuits and Systems PART I (TCAS-I),
IEEE Transactions on Circuits and Systems PART II (TCAS-II), IEEE Design
& Test, Science China Information Sciences, Journal of Computer Science
and Technology, IEEE CAS Society Newsletter, etc. He has served in the
Executive and Program Committees of many major conferences, including
DAC, ICCAD, ASPDAC, and ISPD. He is the ASPDAC 2017 Program Chair,
ICCAD 2018 Program Chair, DAC 2014 Tutorial Chair, and ISPD 2008
General Chair

He has received a number of prestigious awards for his research contribu-
tions, including the SRC Technical Excellence Award in 2013, DAC Top 10
Author in Fifth Decade, DAC Prolific Author Award, ASP-DAC Frequently
Cited Author Award, 18 Best Paper Awards at premier venues (ASPDAC
2020, DAC 2019, GLSVLSI 2018, VLSI Integration 2018, HOST 2017,
SPIE 2016, ISPD 2014, ICCAD 2013, ASPDAC 2012, ISPD 2011, IBM
Research 2010 Pat Goldberg Memorial Best Paper Award, ASPDAC 2010,
DATE 2009, ICICDT 2009, SRC Techcon in 1998, 2007, 2012 and 2015)
and 15 additional Best Paper Award finalists, Communications of the ACM
Research Highlights (2014), UT Austin RAISE Faculty Excellence Award
(2014), and many international CAD contest awards, among others. He is a
Fellow of IEEE and SPIE.

