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Abstract
Large-scale multi-FPGA systems are widely used in modern emula-

tion systems. As a critical part of the multi-FPGA system design

flow, TDM signal grouping and package pin assignment directly

impact the final placement and routing in the FPGA physical im-

plementation. Poor pin assignments cause severe congestion and

timing degradation at the logic-element level, while existing ap-

proaches lack accurate congestion modeling during system-level

partitioning. This paper presents Chimew, a novel pin assignment

methodology that leverages placement prototyping to predict logic-

element-level congestion before physical implementation precisely.

The proposed method co-optimizes signal grouping and pin place-

ment through iterative refinement guided by congestion-aware cost

functions derived from fast global placement. Experimental results

demonstrate a 28% congestion reduction and up to 2.87ns less worst

negative slack (WNS) compared to industrial tools while achieving

a 100% success rate across diverse multi-FPGA benchmarks.
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• Hardware → Simulation and emulation; Reconfigurable
logic and FPGAs; Placement.
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1 Introduction
Field-Programmable Gate Arrays (FPGAs) have become essential

components in modern emulation systems, offering reconfigurable

hardware acceleration for design verification and validation. The

increasing complexity of modern designs requires multi-FPGA em-

ulation platforms, where modern 2.5D FPGAs (e.g., AMD Versal

Premium VP1902 [1]) integrate multiple dies, referred to as Super

Logic Regions (SLRs) in AMD/Xilinx architectures, interconnected

through super long lines (SLLs) [2, 3]. As illustrated in Figure 1(a),

cross-FPGA communication occurs through dedicated I/O channels

between package pins. Due to limited I/O bandwidth, time-division

multiplexing (TDM) [4] enables multiple signals to share a single

channel within one system clock cycle, as demonstrated in Fig-

ure 1(b).

The computer-aided design (CAD) flow of multi-FPGA systems

usually splits into two parts: system-level flow and logic-element-

level flow. At the system level, the design is partitioned across de-

vices, with cross-FPGA nets assigned routing topologies and TDM

ratios. Recent approaches have evolved from traditional FPGA-level

flows to die-level strategies, which enable more accurate perfor-

mance estimation and are now widely adopted in both industrial

tools like Synopsys Zebu [5] and S2C OmniDrive [6], and academic

research [7, 8]. Following the TDM ratio assignment results, signals

are grouped by their ratio and direction, then mapped to physical

channels connecting package pins through a process known as

TDM signal grouping and package pin assignment. The subsequent

logic-element-level flow, typically executed by commercial tools

such as AMD Vivado [9] and Altera Quartus Prime [10], performs

placement and routing for logic elements (e.g., LUT, FF, DSP, BRAM,

etc.) to generate final bitstreams.

The TDM signal grouping and package pin assignment process is

a critical part of the multi-FPGA CAD process, as it directly builds a

bridge between system-level flow and logic-element-level flow. The

results of such a process directly assign the I/O placement on each
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Figure 1: (a) An example of a multi-FPGA system with 2
FPGAs, and each FPGA has 4 dies. There are cross-FPGA
channels between die 2 of FPGA 0 and die 1 of FPGA 1. (b)
The clock waveforms of the system clock and the TDM clock.

FPGA and impact the intra-FPGA placement and routing process.

However, prior works mainly focus on optimizing performance met-

rics at the system-level while ignoring logic-element-level. For ex-

ample, [11] takes the FPGA-level routing results as inputs, and uses

min-cost-flow for signal grouping and integer-linear-programming

(ILP) for the TDM pin assignment process to optimize the total

SLL crossing. Given that modern FPGAs accommodate large-scale

design partitions on each device, limited consideration at the TDM

stage can lead to severe placement and routing congestion or timing

violations during subsequent physical implementation.

Considering the logic-element-level implementation at the TDM

signal grouping and package pin assignment stage requires a looka-

head logic-element-level placement. With the placement results,

we can group TDM signals with closer positions to the same group,

and assign each TDM signal group or common signal to closer

package pins. Recent open-source FPGA CAD frameworks [12]

can quickly generate global placement results, which creates op-

portunities to estimate routing congestion and guide system-level

design flows. On the infrastructure side, FPGA Interchange For-

mat [13] and RapidWright [14] have enabled broader access to

modern large-scale commercial FPGA architectures. On the algo-

rithmic side, many modern open-source FPGA placers have shown

the ability to do placement on modern commercial FPGAs. Repre-

sentative works include robust multi-electrostatics-based methods

for handling cascaded macro groups and fence regions [12], multi-

die-aware algorithms optimizing inter-die connections [15], and

tools with native support for FPGA Interchange Format [16].

However, there are still three challenges to consider placement

lookahead for the TDM signal grouping and package pin assignment

stage. The first is that we need to consider both the system-level

and the logic-element-level optimization targets, which challenge

the effectiveness of the TDM signal grouping and package pin as-

signment algorithms. The second is that the placement results shall

be highly correlated with the logic-element-level placement result

of the commercial FPGA CAD tools, which challenges the quality

of the placement results. The third is that the scale of FPGA devices

used for modern emulation tasks is extremely huge compared to

the scale of FPGA devices considered by academic FPGA placers,

which challenges the efficiency of the FPGA placer.

In this paper, we propose Chimew, a TDM signal grouping and

pin assignment framework considering logic-element-level intra-

FPGA global placement results. Our framework supports the latest

AMD Versal Premium 1902 FPGA [1], a large-scale FPGA with 2×2
dies (i.e., dies arranged in a 2-row-by-2-column configuration) and

a capacity of 10
7
logic-elements. We load the die-level routing result

and netlist as inputs, and leverage OpenPARF 3.0 [12], an open-

source FPGA CAD tool with a GPU-accelerated global placement

engine, as our basic placement platform. We develop novel algo-

rithms for TDM signal grouping and pin assignment considering

the placement results. To the best of our knowledge, this is the first

work to consider placement lookahead at the TDM signal group-

ing and pin assignment stage. Our contribution is summarized as

follows:

• We propose a system-level TDM signal grouping and pin

assignment framework for multi-FPGA system design flow,

considering logic-element-level placement impacts.

• We propose a novel placement-aware TDM signal grouping

algorithm to effectively reduce the die crossing for cross-

FPGA signals and a min-cost-flow model for TDM pin as-

signment based on the lookahead placement results.

• Compared to the industrial emulation tool [6], our frame-

work acquires 28% less congestion and fixes an up to 2.87ns

WNSwith a 100% logic-element-level flow success rate, while

the industrial tool fails on 3 of 6 cases due to the negative

slack.

The rest of this paper is organized as follows. Section 2 describes

the architecture of multi-FPGA systems and the problem formu-

lation of the TDM signal grouping and pin assignment routing

problem. Section 3 demonstrates the algorithm flow of our algo-

rithm. Section 4 validates our routing algorithm with experimental

results. Section 5 concludes the paper.

2 Preliminaries
In this section, we first introduce the background of modern em-

ulation systems and the modern multi-FPGA system design flow.

We then introduce the background of FPGA global placement and

congestion estimation. Next, we demonstrate the design rules and

the formulation of the TDM signal grouping and pin assignment

problem.

2.1 Emulation System based on 2.5D
Multi-FPGA Systems

2.1.1 Modern emualtion system with 2.5D multi-FPGA system Em-

ulation is vital in chip design for pre-silicon verification, using
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Figure 2: Modern multi-FPGA system CAD flow at die-level, with our work having a lookahead placement before TDM signal
grouping and pin assignment.

hardware models to achieve near-real-time execution speeds. As

design complexity grows, multi-FPGA systems with modern large-

scale FPGAs have become the standard emulation platform.

Modern large-scale FPGAs employ multi-die architectures for

increased capacity. While earlier designs like AMD VU19P [17]

use a linear (1×4) die arrangement, recent FPGAs such as AMD

VP1902 [1] adopt a 2×2 layout, improving inter-die routability

through additional SLL connections between neighboring dies, as

shown in Figure 1(a).

In multi-FPGA systems, inter-FPGA connections are established

via I/O channels between package pins on different FPGAs. These

channels support two signal types: TDM signals and common sig-

nals. TDM channels transmit multiple signals per system clock

cycle with higher latency, whereas common-signal channels carry

only one signal per cycle with lower latency.

2.1.2 System-level design flow of multi-FPGA systems To precisely

estimate the performance of designs and effectively optimize the

system frequency, modern system-level multi-FPGA CAD flows

typically employ a die-level flow rather than the conventional FPGA-

level flow. As shown in Figure 2, unlike the traditional FPGA-level

flow, which partitions the netlist to different FPGAs, the input

design is first fine-grained partitioned onto each die of different

FPGAs in the die-level flow. For those die-crossing nets, system-

level routing and TDM ratio assignment are then performed to

assign the die-level routing topology and TDM ratios. After that,

each cross-FPGA signal needs to be grouped by its TDM ratio

and direction and assigned to an I/O channel between the two

dies it connects in the typical die-level flow. In this work, we do

an additional step to lookahead a global placement result before

the TDM signal grouping process to estimate the logic-element-

level placement and routing congestion and guide the TDM signal

grouping and package pin assignment process, which is novel to

typical system-level design flows.

2.2 Multi-Electrostatics Nonlinear FPGA
Placement with Fence Region Constraints

Placement is crucial in the FPGA CAD flow, assigning logic ele-

ments to physical sites and significantly impacting final circuit

performance. The process involves three stages: global placement

(GP), legalization (LG), and detailed placement (DP). GP generates

near-legal positions for logic elements, minimizing wirelength and

reducing overlap, while LG and DP assign elements to legal sites

and refine the solution. As the foundation of physical design, GP’s

quality ultimately determines routability and timing closure.

State-of-the-art nonlinear placers [12, 18–20] address density

overflow in GP by modeling it as an electrostatic equilibrium prob-

lem. Logic elements are treated as charged particles, with the solver

seeking a low-energy state that disperses cells and alleviates con-

gestion. While effective for ASICs, this approach is less suitable for

FPGAs due to their heterogeneous primitives (e.g., LUTs, FFs, DSPs,

BRAMs), which require type-specific density models. To adapt it,

elfPlace [21] extends the electrostatic formulation with multiple

field solvers—one per resource type—capturing heterogeneity at

the cost of increased computational complexity.

Additionally, modern FPGA placers must handle fence-region

constraints, which partition the fabric into designer-specified re-

gions to support hierarchical design and timing closure in large-

scale designs. To enforce these constraints, OpenPARF 3.0 [12]

enhances its electrostatic optimization with fence-aware auxiliary

fields for each element type within every region. This force-based

model guides primitives to their designated areas while preventing

boundary violations, maintaining placement objectives without

disrupting convergence.

2.3 Routing Congestion Estimation with RUDY
Routing congestion occurs when local routing demand exceeds

available physical resources defined by the underlying architec-

tural fabric, compromising design routability despite achieving
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other timing and area targets. Early congestion estimation enables

CAD flows to identify congestion-prone regions, guide logic ele-

ments toward routability-friendly spreading, and eliminate infeasi-

ble placement solutions before invoking computationally expensive

routing. We employ the Rectangular Uniform wire DensitY (RUDY)

model [22] to estimate routing utilization by uniformly distributing

each multi-pin net’s demand across its bounding box.

Consider a net 𝑛 with its axis-aligned bounding box B𝑛 posi-

tioned at lower-left corner (𝑥 ll

𝑛, 𝑦
ll

𝑛) with width 𝑤𝑛 and height ℎ𝑛 .

The bounding box area is A𝑛 = 𝑤𝑛ℎ𝑛 . To estimate the consump-

tion of routing resources, we compute the effective wire area as

Ω𝑛 = 𝐿𝑛𝑝 , where 𝐿𝑛 represents the estimated routing length (typ-

ically half-perimeter wire length, HPWL) and 𝑝 = 𝑝/ℓ captures
the average wire pitch 𝑝 distributed between the available routing

layers ℓ .

RUDY models routing demand by assuming uniform wire distri-

bution within each net’s bounding box, yielding a constant density:

𝑑𝑛 =
Ω𝑛

A𝑛
=

𝐿𝑛𝑝

𝑤𝑛ℎ𝑛
. This uniform distribution is mathematically

expressed through an indicator function:

𝑅𝑛 (𝑥,𝑦) =
{

1, if (𝑥,𝑦) ∈ B𝑛

0, otherwise

where (𝑥,𝑦) ∈ B𝑛 means 𝑥 ll

𝑛 ≤ 𝑥 ≤ 𝑥 ll

𝑛 +𝑤𝑛 and 𝑦ll

𝑛 ≤ 𝑦 ≤ 𝑦ll

𝑛 + ℎ𝑛 .
The global routing demand map aggregates contributions from

all nets: 𝐷
dem
(𝑥,𝑦) = ∑

𝑛∈N 𝑑𝑛𝑅𝑛 (𝑥,𝑦) . For congestion analysis,

we integrate this demand over each bin Ω𝑔 to obtain the expected

load 𝜌𝑔 =
∫
Ω𝑔

𝐷
dem
(𝑥,𝑦) d𝐴. By comparing 𝜌𝑔 against the direc-

tional routing capacity of each bin, we can identify potential conges-

tion hotspots before routing. The RUDY method is widely adopted

because it is router-independent and avoids enumerating Steiner

trees, providing a fast yet predictive congestion metric that inte-

grates seamlessly into our multi-FPGA placement flow.

2.4 Design Rules
The TDM signal grouping and pin assignment process shall follow

the following design rules:

TDM signal grouping rule. The cross-FPGA signals within a

TDM signal group shall have the same TDM ratio and the same

TDM direction. Also, the number of signals within a TDM signal

group shall not exceed the TDM ratio of the group.

I/O channel direction rule. When assigning signals to an I/O

bank, TDM signals shall be assigned first, while common signals

shall be assigned after the TDM signals. Moreover, if there are two

clusters of TDM signal groups with different directions assigned to

the same I/O bank, groups with the same direction shall be assigned

to nearby channels. Figure 3 shows an example of the difference

between legal and illegal TDM pin assignment results.

2.5 Problem Formulation
We formally define the die-level TDM signal grouping and pin

assignment problem as follows:

Problem. Given the die-level system routing and TDM ratio as-
signment results for a design on a multi-FPGA system, assign each
TDM signal a TDM signal group, and assign each TDM signal group

I/O Bank

Channel 0 1 2 3 4 5 6 7 8 9

I/O Bank

Channel 0 1 2 3 4 5 6 7 8 9

I/O Bank

Channel 0 1 2 3 4 5 6 7 8 9

Legal Pin Assignment

Legal Pin Assignment

Illegal Pin Assignment

TDM Signal
Direction 1

TDM Signal
Direction 2

Common Signal
Direction 1

Common Signal
Direction 2

Figure 3: An example showing the TDM channel direction
rule. The first 2 assignments are legal as they assign the TDM
signal groups direction by direction, the last one is illegal as
there is a TDM signal group by direction 2 between two TDM
signals by direction 1.

and each common cross-FPGA signal an I/O channel and two pack-
age pins within two FPGAs, following the design rules above, and
optimize the performance after the logic-element-level process (delay,
congestion, etc.).

3 Algorithm
In this section, we first introduce the overall flow of our TDM signal

grouping and pin assignment algorithm. Then we demonstrate how

we do the global placement for die-level netlists. Next, we explain

our TDM signal grouping and pin assignment algorithms.

3.1 Overall Flow
As shown in Figure 4, our framework mainly consists of three parts:

1) logic-element-level global placement, 2) TDM signal grouping,

and 3) package pin assignment.

The target of our logic-element-level global placement is to looka-

head global placement results at the early system-level design stage.

The result can not only be used to guide the following TDM signal

grouping and pin assignment process, but can also be used to esti-

mate the congestion level of the partitioned design. In this work,

we use RUDY [22] to estimate the design congestion, and if the

congestion level is larger than a certain threshold, we terminate

the current CAD flow and re-partition the design.

As mentioned in the previous section, our TDM signal grouping

and pin assignment process is to group all the cross-FPGA TDM

signals and then assign all the cross-FPGA signals to package pins.

In this work, we use the global placement results as guidance to

enhance the process.

3.2 Speed-Boosted Lookahead Placement
Our logic-element-level global placement takes die-partitioned

netlists as input and outputs placement lookahead results for each

FPGA. This lookahead offers two key advantages in the multi-FPGA

CAD flow: first, it identifies cross-FPGA signals with similar logic

positions (e.g., fanins of a logic element tend to cluster together);
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second, it detects potential congestion early, enabling designers to

terminate highly congested designs before further investment.

As shown in Figure 4, our global placement consists of three

steps. Since the partitioned netlists contain only core logic without

I/O buffers, we first invoke Vivado’s link_design command to map

each sub-netlist to target FPGA devices and insert I/O buffers. Next,

we load all netlists along with system-level routing and TDM ratio

assignments to generate complete netlists for each FPGA in the

system. Finally, we perform global placement using our accelerated

placer, which incorporates optimizations to the original OpenPARF

framework to handle the large-scale designs typical of emulation

tasks.

3.2.1 FPGA-level netlist construction FPGA placers take the netlist

of the FPGA-level and the FPGA placement architecture as their

inputs. As our input netlist is at the die-level, we need to construct

an FPGA-level netlist before we call our placer. The FPGA-level

netlist is merged from each die-level netlist with the following

modification from the system-level routing results.

Fence region for each die. To restrict that each logic element

is placed on the die it is partitioned into, we regard each die as a

fence region and use fence region constraints to restrict the die

each logic element shall be placed on.

Cross-FPGA signals.We call Vivado to add input/output buffers

at each input/output port of each die-level netlist. For those cross-

FPGA signals, as shown in Figure 5(a), we move their corresponding

I/O buffers to the die that the signal inputs to/outputs from the

FPGA based on the result of system-level routing.

Cross-die signals. The previous Vivado process also adds I/O

buffers to the ports corresponding to die-crossing signals. To pre-

cisely estimate the die-crossing congestion, as shown in Figure 5(b),

we remove those I/O buffers and add die-crossing nets to those

signals.

Bypass signals. An FPGA in a multi-FPGA system can also be

used to bypass signals between two FPGAs. Die-level netlists do not

have information about such signals. Thus, as shown in Figure 5(c),

we add an input buffer to the die that the signal enters, and add

output buffers to the dies that the signal exits for bypass signals

following the system-level routing results.

3.2.2 Global placement acceleration Existing academic open-source

placers are designed for single-die FPGAs, which have far fewer

resources than modern multi-die platforms. For instance, the 4-die

AMDVP1902 [1] FPGA is roughly 20 times larger than the single-die

AMD XCVU3P [23] FPGA used in MLCAD 2023 benchmarks [24].

This expanded capacity also leads to much larger netlists, imposing

significant computational demands on placement algorithms. To

efficiently generate placement results for downstream tasks such as

TDM signal grouping and pin assignment, we propose the following

enhancements to the baseline OpenPARF 3.0 placer [12].

Accelerated placer engine. To address runtime challenges

in large-scale netlists, we implement a hardware-adaptive accel-

eration mechanism in the core placement engine. Our approach

implements optimized density and wirelength kernels that leverage

hardware-level vectorization for enhanced computational efficiency.

Combined with adaptive lambda scheduling and shared density-

map caching, this hardware-level optimization enables faster elec-

trostatic descent convergence while preserving placement quality

across large-scale multi-die density maps. We elaborate on these

techniques in the following subsections.

The adaptive lambda scheduling strategy introduces two key

enhancements. First, we adjust the initial lambda factor between

wirelength and density objectives, deliberately biasing the opti-

mization toward density constraints during early placement stages.

Second, we accelerate the lambda update rate to expedite the transi-

tion between optimization phases. This configuration targets rapid

lookahead scenarios by prioritizing density convergence while

maintaining guidance quality for subsequent TDM signal grouping

and package pin assignment workflows.

The shared density-map caching mechanism further enhances

computational efficiency by identifying and eliminating redundant

calculations within the baseline density map computation pipeline.

Our caching approach pre-computes and reuses density maps for

frequently accessed spatial regions, achieving measurable speedup

in multi-die placement scenarios where regions are repeatedly eval-

uated.

Optimized data marshalling. The heterogeneous C++/Python
framework we base on [12] for large-scale FPGA design flows ex-

hibits a critical data marshalling bottleneck. The bottleneck requires

a careful rethinking of memory management strategies. To address

this challenge, we propose a selective zero-copy data bridge that

directly exposes C++ data structures as shared memory tensors,

eliminating redundant serialization overhead. This approach em-

ploys a Structure of Arrays (SoA) memory layout that maximizes

spatial locality and enhances cache utilization patterns, which is
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Figure 5: Examples showing how we process the special signals during FPGA-level netlist construction. (a) Cross-FPGA signals.
(b) Cross-die signals. (c) Bypass signals.
especially useful for accessing sparse connectivity matrices com-

mon in FPGA netlists. This optimized memory organization reduces

database initialization time by two orders of magnitude for designs

exceeding 100K logic elements. This zero-copy method is particu-

larly effective for placement tasks that frequently access the same

data structures.

Placement layout approximation. To handle the large-scale

multi-die FPGA layout, we made assumptions about the placement

layout. We first modify the I/O capacity and area to deal with

large-scale I/O buffers. With the TDM technique, the number of

input/output ports of each sub-design on each FPGA is much more

than the number of I/O buffers on each FPGA. As the TDM IP is

inserted after the package pin assignment process, we need to ap-

proximate the I/O architecture before global placement. To quickly

generate a global placement result, we increase the capacity of each

I/O tile and decrease the area demand of each I/O buffer. We also

modify the capacity of CLE tiles. In modern AMD VP1902 FPGA

devices [1], there are a SLICEL and a SLICEMwithin a CLE tile. The

LUTs in SLICEM can be used to implement LUTRAMwhile the LUTs

in SLICEL do not have such an ability. Although OpenPARF [25]

has the ability to deal with the differences between SLICEL and

SLICEM by constructing different electrostatic fields, it takes much

more time to get the placement results. As the number of LUTRAM

within a netlist is much less than the number of common LUTs, we

ignore the difference between SLICEL and a SLICEM, and assign

each LUTRAM an area demand as the number of LUT5 it uses to

quickly generate the global placement results. Such approximations

allow us to obtain the global placement results with high accuracy

quickly.

3.3 Placement-Aware TDM Signal Grouping
Algorithm

The target of our TDM signal grouping process is to assign each

TDM signal a signal group following the TDM signal grouping rule.

The TDM signals within a TDM signal group will be transmitted

by the same package pin channel.

As shown in Figure 6(a) and Figure 6(b), if a TDM signal group

crosses more dies in the FPGA-to-FPGA pair, it will lead to a large

SLL usage and may cause congestion during the logic-element-

level place and route process. Thus, we need to optimize the total

group die crossing during the TDM signal grouping process. To

deal with this problem, we propose a novel encoding for the cross-

FPGA signals and use an encoding-based algorithm to resolve the

TDM signal grouping problem. Also, to reduce the congestion and

delay, we consider the global placement lookahead results to further

optimize the process.

3.3.1 Cross-FPGA signal encoding and problem formulation To fur-

ther optimize the TDM signal grouping results, we propose a binary

encoding for each cross-FPGA TDM signal. The encoding of each

signal can help us quickly identify signals crossing the same SLLs,

which can be used to avoid the circumstances in Figure 6(b). As

shown in Figure 6(c), we encode each cross-FPGA signal as an 8-bit

binary number representing the SLLs crossed by the signal. The

lower 4 bits of the encoding represent the SLLs the signal crosses

on the source FPGA (FPGA 0 in Figure 6(c)), and the upper 4 bits

represent the SLLs on the sink FPGA (FPGA 1 in Figure 6(c)). If a

bit of the encoding is 1, it means that the signal crosses the SLL

that the bit represents.

With the encoding of a TDM signal, we can calculate its die

crossing by the bits set to 1 in the encoding. For example, signal 1

in Figure 6(c) has 2 die crossings (die 0 to die 3 in FPGA 0, and die

0 to die 1 in FPGA 2), and there are 2 bits of 1 in its encoding.

In the TDM signal grouping process, if we group two TDM

signals together, the encoding of the TDM signal group will be

the result of OR of the two signals. For example, in Figure 6(c),

if we group signal 1 and signal 2 together, the encoding of the

signal group will be 00100001. With the encoding of a TDM

signal group, we can calculate its die crossing by the bits of 1

in the encoding. For example, the group of signal 1 and signal 2

in Figure 6(c) crosses 2 SLLs, and there are 2 bits of 1 in its encoding.

We hope each group crosses the least number of dies as possi-

ble. As the number of signals within a TDM signal group cannot

exceed the TDM ratio, and the number of FPGA-to-FPGA channels

is limited, we conclude the problem formulation as follows:

Given a set 𝑆 of TDM signals with the same direction and the

same TDM ratio 𝑟 , group the signals into ⌈ ∥𝑆 ∥𝑟 ⌉ groups:

min

𝑥𝑠,𝑔

∑︁
𝑔∈𝐺

ONES(
∨
𝑠∈𝑆

encode(𝑠) · 𝑥𝑠,𝑔),

𝑠 .𝑡 .
∑︁
𝑠∈𝑆

𝑥𝑠,𝑔 ≤ 𝑟 ∀𝑔 ∈ 𝐺,
(1)

where 𝐺 is the set of the signal groups, 𝑥𝑠,𝑔 is the binary variable

representing whether signal 𝑠 is grouped into group 𝑔. ONES rep-

resents the bits of 1 in a binary number, and encode represents our

signal encoding function.
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Figure 6: An example showing how TDM signal routing results can impact the SLL congestion. (a) A good TDM signal grouping
with small and balanced die crossing for each TDM signal group. (b) A TDM signal grouping result with a large die crossings. (c)
An example showing the signal encoding of two cross-FPGA TDM signals.

3.3.2 Encoding-based grouping algorithm It is difficult to directly

find an optimal solution to the problem (1), thus, we propose a

greedy-based algorithm to quickly find an approximate solution.

Note that the number of die crossing of a TDM signal group is

dominated by the TDM signal with the maximum die crossing. For

example, in Figure 6(c), if we have signal 1 in a signal group, the

signal group will cross at least 2 SLLs. However, if we group signal

1 and signal 2 in Figure 6(c) together, the number of the die crossing

will not increase, as the encoding of signal 1 can cover the encoding

of signal 2. Based on such properties, we list our encoding-based

algorithm in Algorithm 1.

Algorithm 1: TDM Signal Grouping for Signals with the

Same Direction and TDM Ratio

Input: Set 𝑆 of TDM signals, TDM ratio 𝑟

Output: TDM signal groups 𝐺

1 Calculate the signal encoding.

2 Sort 𝑆 based on the number of die crossings in decreasing

order.

3 while Exists a not grouped signal 𝑠 do
4 Initialize a new group 𝑔.

5 𝑡 ← encode(𝑠).
6 while |𝑔| < 𝑟 and have remaining signals do
7 select signal 𝑠′ with the nearest encoding to 𝑡 .

8 𝑡 ← 𝑡 ∨ encode(𝑠′).
9 add 𝑠′ to 𝑔.

Based on the TDM signal grouping rule, the TDM signals within

a TDM signal group shall have the same direction and TDM ratio.

Thus, we extract a set 𝑆 of TDM signals between 2 dies on different

FPGAs with the same TDM ratio 𝑟 and direction, and calculate

their signal encoding first (line 1). As those signals with a large

number of die crossing dominate the number of die crossing in the

final results, we sort all the signals based on the bits of 1 in their

encodings in decreasing order (line 2). If two signals have the same

bits of 1 in their signal encodings, signals with higher bits of 1 will

have a smaller index.

Our TDM signal grouping algorithm builds the signal groups

iteratively. As the signals crossing more dies dominate the final

results, for an empty group, we set the target die crossing as the die

crossing of the first remaining sorted signal. We then iteratively add

the signals with the nearest encoding to the signal group until the

size of the signal group reaches the TDM ratio 𝑟 , or all the signals

have been grouped.

We then demonstrate how we find the nearest signal in line

7. For a target signal encoding, we first select those signals with

the same encoding and add them to the signal group. After all

the signals with the same encoding have been grouped, we then

check signals with the encodings that can be totally covered by

the target encoding. To decrease the number of die crossing in the

final results, we add the signals with more die crossing and fewer

signals with the same encoding to the group first. For example, if

the current target encoding is 00111001, and there are 3 signals

with encoding 00011001, 5 signals with encoding 00111000,
and 3 signals with encoding 00011000. We will first add those

signals with encoding 00011001 to the group, then those signals

with encoding 00011100, and finally those 00011000 signals.

After all the signals whose encoding can be covered by the target

encoding are inserted into the signal group, if the size of the group

does not reach the TDM ratio, we then increase the bits of 1 in the

target encoding. We check all the remaining signals to choose those

signals with the least different bits of 1 in their encodings and add

them to the signal group to fulfill the signal group.

We then refine the initial signal grouping results based on the

positions of each logic element in the global placement lookahead

results. Our refinement process shall not increase the die crossing

of each TDM signal group, and shall make those nearby signals

cluster into the same group.

To refine the initial grouping results, we sort all the TDM signals

with the same encoding by the increasing order of the y-axis of

the source logic element of each TDM signal. Our TDM signal

grouping refinement process swaps the signals within each group

of the initial grouping results, and makes groups with similar y-axis

in the same group. Such an assignment can make the final package

pin assignment results have less SLL congestion.

3.4 Min-Cost-Flow-based Package Pin
Assignment

The target of our package pin assignment process is to assign each

cross-FPGA common signal or TDM signal group a channel consist-

ing of 2 package pins on different FPGAs. To handle the I/O channel

direction rule, we split the package pin assignment process into 2

stages. We first assign each signal to a pair of I/O banks where the
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Figure 7: The min-cost-flow model of our bank assignment
process.
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Figure 8: The min-cost-flow model of our pin assignment
process.
package pins are located. Next, we assign each signal a cross-FPGA

channel bank by bank. We use the min-cost flow model for the two

steps to obtain the package pin assignment results.

3.4.1 I/O bank assignment As shown in Figure 7, our I/O bank

assignment process is based on a min-cost flow model. Besides the

source vertex and sink vertex, there are two kinds of vertices in our

model. The first kind of vertices represent the banks (bank vertices),

while the second kind of vertices represent the TDM signal groups

or common signals (signal vertices). There are three kinds of edges

in the model. The edges from the source vertex to the bank vertices

have a capacity of the number of available channels within each

bank pair and have zero cost. The edges from the bank vertices to

the signal vertices have a capacity of 1, and the cost of those edges

is calculated by the methods described in Section 3.4.3. The edges

from the signal vertices to the sink vertex have a capacity of 1 and

have no edge cost. After solving the min-cost-flow model, each

signal vertex will have exactly one input edge with flow demand,

and the signal or signal group will be assigned to the bank from

which the edge comes.

3.4.2 Package pin assignment Our package pin assignment process

is shown in Figure 8. To handle the I/O channel direction rule, we

construct two minimum-cost-flow models for a bank-to-bank pair

during this process. In each model, we select a direction of TDM

signal groups and give them a higher priority. After solving the

two min-cost flow problems, we check the cost of the two solutions

and choose the solution with the smaller cost as the package pin

assignment results.

The min-cost-flow model for package pin assignment is similar

to the model of I/O bank assignment. There are also two kinds of

vertices besides the source vertex and sink vertex. Channel vertices

are used to represent each channel between two package pinswithin

the bank pair, and signal vertices are used to represent common

signals or TDM signal groups assigned to the bank pair. The edges

from the source vertex to the channel vertices and the edges from

the signal vertices to the sink vertex have a capacity of 1 and no

edge cost. To satisfy the I/O channel direction rule, there are only

edges from each channel vertex to available signal vertices. For

example, suppose we have direction 1 with high priority. In that

case, we have the first few channel vertices connected to signal

vertices representing TDM signal groups by direction 1, and the

next few channel vertices connected to signal vertices representing

TDM signal groups by direction 2. The other channel vertices are

connected to the vertices representing the common signals. Those

edges have a capacity of 1, and their edge costs are also calculated

by the algorithms in Section 3.4.3.

Note that the min-cost-flow model described in this section is

actually a maximum-weighted bipartite-graph matching problem.

Thus, we use the K-M algorithm [26] to get the solution and assign

each signal or signal group to the package pin channel they are

matched to in the solution.

3.4.3 Edge Cost Calculation We list how we calculate the cost

of the edges to the signal vertices in our min-cost-flow models

in Algorithm 2. Note that in Algorithm 2, we regard a common

signal as a signal group with a single signal. The edge cost function

is based on the global placement lookahead results and the locations

of the I/O banks and the package pins on the FPGA layout.

Algorithm 2: Edge Cost Calculation
Input: Signal group 𝑔, I/O bank pair or package pin pair 𝑝

Output: Edge cost 𝑐𝑔,𝑝
1 𝑐𝑜𝑢𝑡 ← 0, 𝑐𝑖𝑛 ← 0.

2 foreach Signal 𝑠 ∈ 𝑔 do
3 𝑐𝑜𝑢𝑡 += 𝑑𝑖𝑠𝑡 (𝑠fanout

, 𝑝𝑜𝑢𝑡 ).
4 𝑁

fanin
← 0, 𝑑

fanin
← 0.

5 foreach fanin logic-element 𝑠
fanin

of 𝑠 do
6 𝑑

fanin
+= 𝑑𝑖𝑠𝑡 (𝑠

fanin
, 𝑝𝑖𝑛).

7 𝑁
fanin

+= 1.

8 𝑐𝑖𝑛 +=
𝑑

fanin

𝑁
fanin

.

9 𝑐𝑔,𝑝 ← 𝑤𝑜𝑢𝑡𝑐𝑜𝑢𝑡 +𝑤𝑖𝑛𝑐𝑖𝑛 .

As a cross-FPGA signal connects two FPGAs, we need to con-

sider the placement results synergistically. Thus, the edge cost is a

weighted sum of the output cost 𝑐𝑜𝑢𝑡 and the input cost 𝑐𝑖𝑛 (line

9). In this work, we set𝑤𝑜𝑢𝑡 as 1 and𝑤𝑖𝑛 as the reciprocal of the

number of fanin logic elements. A cross-FPGA signal can have one

fanout logic-element and several fanin logic-elements. The output

cost 𝑐𝑜𝑢𝑡 is the sum of the Manhattan distance between each fanout

logic-element 𝑠
fanout

and the output bank or package pin 𝑝𝑜𝑢𝑡 (line

3). To deal with the imbalanced distribution of the number of fanin

logic-elements of each signal, the input cost is the sum of the aver-

age of the Manhattan distance between each fanin logic-element

and the input bank or package pin (lines 4-8).

4 Experimental Results
In this section, we first introduce our experimental setups. Then, we

validate the effectiveness of our TDM signal grouping and package

pin assignment algorithms. We also present experiments on our



TDM Signal Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with Lookahead Placement FPGA ’26, February 22–24, 2026, Seaside, CA, USA

Table 1: The number of FPGAs (#FPGAs), the number of dies
(#Dies), the number of cross-FPGA signals (#Conns), and the
number of logic-elements (#Bels) of our benchmarks.

Design #FPGAs #Dies #Conns #Bels

IND01 4 16 59.73K 5.53M

IND02 4 16 47.92K 17.55M

IND03 4 16 31.61K 23.41M

IND04 4 16 53.49K 23.46M

IND05 16 64 66.99K 30.21M

IND06 8 32 53.9K 54.06M

placer to demonstrate the efficacy and necessity of global placement

lookahead at the early system-level design stage.

4.1 Experimental Setups
We implement our TDM signal grouping and package pin assign-

ment algorithms in C++, while our placer is implemented based on

OpenPARF 3.0 [12] in C++, CUDA, and Python. Our experiments

were conducted on a 2.10 GHz Intel Xeon Gold 6230 CPU plat-

form with 512 GB of memory and an NVIDIA A40 GPU. We do the

I/O buffer insertion process using Vivado 2025.1 [9] and generate

the FPGA placement architecture file using the FPGA Interchange

Format [13] and RapidWright [14].

We collect 6 industrial designs as our benchmarks from an indus-

trial vendor [27], and their statistics are listed in Table 1. The FPGA

devices used in all 6 cases are the AMD Versal Premium 1902 [1]

device. The number of FPGA devices can be up to 16, with each

FPGA device having 4 dies. The number of logic-elements can be

at most 5 × 10
7
. As the partition for each device is not balanced,

there can be at most around 10
7
logic-element-level cells within

an FPGA-level netlist. The scale of each FPGA-level netlist is way

much larger than common academic benchmarks like ISPD 16&17

benchmarks [28, 29] and MLCAD 23 benchmarks [24], where the

scales of netlists in those benchmarks are at most 10
6
.

4.2 Validations on TDM Signal Grouping and
Package Pin Assignment

We collect the reports of Vivado, and list the results of the SLL rout-

ing congestion, post-routing delay, and whether the logic-element-

level flow of Vivado reaches the 24-hour time limit in Table 2. We

also collect the industrial emulation tool from the same industrial

vendor. We use the die-level routing and TDM ratio assignment

results of the industrial tool as the input of our framework, and

generate the package pin assignment results. We also use the in-

dustrial tool to generate the package pin assignment results using

the same die-level partition results. We collect both sets of results

and use Vivado 2025.1 to finish the intra-FPGA logic-element-level

design flow by running the default logic-element-level flow of the

industrial tool. Our logic-element-level flow is run on the cloud

computing clusters provided by the industrial vendor, and we run

the flow of each FPGA in parallel. Normally, the runtime of the

logic-element-level flow will be around 8 to 16 hours, as the scale

of the design is very large, and there are some additional steps,

like inserting the TDM IP in the industrial flow. There is a 24-hour

runtime limitation for the logic-element-level flow, as the default

Vivado setting of the industrial tool will try to fix the negative slack

by significantly more rip-up and reroute iterations.

Our average maximum placement congestion level comes from

the post-placement congestion estimation by Vivado. Vivado esti-

mates the SLL congestion at the beginning of the routing phase, and

reports the SLL congestion regions with a utilization threshold of

1.000 for each SLR cut. We collect the average overflow utilization

of each SLR cut of each FPGA, and list them in Table 2. As there

are multiple clocks within a multi-FPGA design, to estimate the

post-routing delay of each design, we collect the WNS and the total

negative slack (TNS) reported by Vivado. The WNS is the smallest

WNS of all the FPGA-level designs reported by Vivado, and the

TNS is the summary of all the TNS of different FPGA-level designs.

If the WNS is 0, it means that there are no slack violations in the

routing results. Additionally, due to the significant fluctuations in

the offload of cloud computing clusters, the runtime of the logic-

element-level flow of both the results of the industrial tool and our

framework can vary by hours. Thus, we cannot collect an exact

runtime of our logic-element-level flow. Usually, the runtime of

the logic-element-level flow can be 8 to 16 hours using both the

system-level results of the industrial tool and our frameworks.

As shown in Table 2, we achieve a 28% reduction in SLL routing

congestion and up to 2.87ns WNS reduction compared to the in-

dustrial tool. Furthermore, with the default setting of the industrial

tool, the results generated by the industrial tool have negative slack

on 3 of 6 benchmarks, and our results do not have any negative

slack, which shows the effectiveness of our TDM signal grouping

and pin assignment process. Note that although the SLL congestion

of the results of the industrial tool in design IND05 is smaller than

our results, the industrial tool fails to generate a legal result with

no negative slack on that design.

Note that [11] also does the TDM signal grouping and package

pin assignment process. We do not compare with their work for

two reasons. The first is that their work is based on the FPGA-

level multi-FPGA system CAD flow, which is totally different from

the modern die-level design flow. Also, the FPGA device used in

their works has a 1 × 4 die shape, which is different from the 2 × 2

die shape of the AMD VP1902 device. The different die shapes of

FPGA devices will make it impossible to use the methods in [11] to

calculate the die crossing of TDM signal grouping. Thus, we do not

compare our algorithms with theirs in this paper.

We also collect the runtime of the different steps in our frame-

work, and the total runtime of our framework, and list them in Ta-

ble 3. As shown in Table 3, our framework takes at most 69 minutes

to get the results. Most of our runtime is used for data initializa-

tion and global placement lookahead, which take 40% and 58% of

the total runtime. As the logic-element-level flow for each FPGA

is around 8 to 16 hours, it is reasonable to use the runtime to do

global placement for finding out the possible congestion at the

early design stage. Note that we do the global placement for each

FPGA serially. As the task of global placement for each FPGA is

independent of the others, the global placement process can be

further accelerated. Furthermore, as the TDM signal grouping and

package pin assignment process in the industrial tool does not have

the global placement step, and it is difficult to extract the exact

runtime of the process in industrial tools, we do not compare our

runtime with the industrial tool in this paper.
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Table 2: The SLL routing congestion (SLL Cong.), the post routing worst negative slack (WNS, ns), total negative slack (TNS,
ns), and whether the runtime of the logic-element-level flow exceeds the 24-hour time limitation (TLE) on the industrial
benchmarks between the industrial tool and our framework.

Design

Industrial Tool Ours

SLL Cong. Delay

TLE

SLL Cong. Delay

TLE
Overflow Ratio WNS TNS Overflow Ratio WNS TNS

IND01 1.50% 1.36 0.000 0.000 N 1.10% 1.00 0.000 0.000 N
IND02 1.88% 2.04 0.000 0.000 N 0.92% 1.00 0.000 0.000 N
IND03 0.65% 1.02 2.870 15.878 Y 0.64% 1.00 0.000 0.000 N
IND04 1.32% 1.31 0.000 0.000 N 1.01% 1.00 0.000 0.000 N
IND05 1.80% 0.87 1.244 3.677 Y 2.08% 1.00 0.000 0.000 N
IND06 1.35% 1.07 0.845 11.913 Y 1.26% 1.00 0.000 0.000 N
Norm. - 1.28 - - 3/6 - 1.00 - - 0/6

Table 3: The runtime (s) of the data initialization (INIT), the
global placement (GP), and the TDM signal grouping and
package pin assignment (SG & PA) process of our framework,
and the total runtime (s) of our framework.

Design INIT GP SG & PA Total

IND01 166 387 6 561

IND02 534 692 24 1250

IND03 674 923 32 1629

IND04 683 915 32 1630

IND05 966 1484 43 2493

IND06 1885 2168 87 4140

Norm. 0.40 0.58 0.02 1.00

4.3 Validations on Lookahead Placement
The target of the experiments about global placement lookahead

is to prove the effectiveness and efficiency of our global placer. To

prove the effectiveness of our global placer, we collect the post-

placement wirelength reported by Vivado and the Half-Perimeter

WireLength (HPWL) of our global placement results on our bench-

marks, and show their correlations in Figure 9. As shown in Figure 9,

the wirelength reported by Vivado and our placer are highly corre-

lated, which shows the effectiveness of our global placer. Note that

the wirelength unit and model used in Vivado and our placer are

different, resulting in a gap of two orders of magnitude between

the wirelength reported by Vivado and our placer.
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Figure 9: The correlation between the HPWL reported by
our placer and the post-placement wirelength reported by
Vivado.

To show the efficiency of our modification to the original Open-

PARF 3.0 [12], we list the global placement runtime of the original

Table 4: The number of failed cases and the average (AVG)
and maximum (MAX) global placement runtime (s) for each
FPGA-level design of the original OpenPARF 3.0 [12] and our
speed-boosted global placer on our benchmarks.

Design

Original OpenPARF 3.0 [12] Ours

FAILED AVG MAX FAILED AVG MAX

IND01 0/4 389 649 0/4 77 104
IND02 2/4 430 525 0/4 115 175
IND03 1/4 643 766 0/4 157 211
IND04 0/4 667 805 0/4 152 228
IND05 1/16 396 744 0/16 86 156
IND06 6/8 671 764 0/8 174 229
Norm. 10/40 4.29 4.08 0/40 1.00 1.00

OpenPARF 3.0 and our placer in Table 4. Due to the extremely large

scale of the FPGA layout and netlist, the original OpenPARF 3.0 fails

to generate the global placement results for 10 FPGA-level netlists

within 4 designs, and the modified version successfully generates

all the global placement results. We list the average runtime and the

maximum runtime of each design, and as there are system schedul-

ing runtimes, the product of the average runtime of our placer and

the number of FPGAs within each design is smaller than the placer

runtime reported in Table 3. As Table 4 shows, our speed-boosted

global placer has a more than 4× speedup compared to the original

OpenPARF 3.0 and shows a high efficiency.

5 Conclusion
In this paper, we propose Chimew, a TDM signal grouping and

package pin assignment framework for modern large-scale multi-

FPGA systems. We conduct speed-boosted global placement looka-

head at the early system-level design stage and utilize the global

placement results to optimize the TDM signal grouping and package

pin assignment processes. We propose a novel TDM signal group-

ing formulation and a min-cost-flow-based package pin assignment

algorithm. Compared to the industrial tool, our framework can

achieve a 28% less congestion and fix at most 2.87ns WNS with

a 100% successful rate logic-element-level placement and routing

flow.
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