TDM Signal Grouping and Package Pin Assignment for 2.5D
Multi-FPGA Systems with Lookahead Placement

Jiarui Wang
School of Computer Science, School
of Integrated Circuits
Peking University, Beijing, China

Runzhe Tao
School of Integrated Circuits
Peking University, Beijing, China

Jing Mai
School of Computer Science, School
of Integrated Circuits
Peking University, Beijing, China

Xun Jiang Shenghua Wang Yibo Lin*
School of Integrated Circuits Cuiliu Yang School of Integrated Circuits, Institute
Peking University, Beijing, China Haoyu Jie of EDA
Peking University, Beijing, China
Kan Huang .
. Advanced Innovation Center for
Richard Y. Sun

Integrated Circuits, Beijing, China

S2C Inc., Shenzhen, China

Abstract

Large-scale multi-FPGA systems are widely used in modern emula-
tion systems. As a critical part of the multi-FPGA system design
flow, TDM signal grouping and package pin assignment directly
impact the final placement and routing in the FPGA physical im-
plementation. Poor pin assignments cause severe congestion and
timing degradation at the logic-element level, while existing ap-
proaches lack accurate congestion modeling during system-level
partitioning. This paper presents Chimew, a novel pin assignment
methodology that leverages placement prototyping to predict logic-
element-level congestion before physical implementation precisely.
The proposed method co-optimizes signal grouping and pin place-
ment through iterative refinement guided by congestion-aware cost
functions derived from fast global placement. Experimental results
demonstrate a 28% congestion reduction and up to 2.87ns less worst
negative slack (WNS) compared to industrial tools while achieving
a 100% success rate across diverse multi-FPGA benchmarks.

CCS Concepts

« Hardware — Simulation and emulation; Reconfigurable
logic and FPGAs; Placement.

Keywords

FPGA, Multi-FPGA System, Emulation, Signal Grouping & Package
Pin Assignment, FPGA Placement

ACM Reference Format:

Jiarui Wang, Runzhe Tao, Jing Mai, Xun Jiang, Shenghua Wang, Cuiliu Yang,
Haoyu Jie, Kan Huang, Richard Y. Sun, and Yibo Lin. 2026. TDM Signal
Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with
Lookahead Placement . In Proceedings of the 2026 ACM/SIGDA International

“Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.
FPGA °26, Seaside, CA, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2079-6/2026/02

https://doi.org/10.1145/3748173.3779199

Symposium on Field Programmable Gate Arrays (FPGA °26), February 22—
24, 2026, Seaside, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3748173.3779199

1 Introduction

Field-Programmable Gate Arrays (FPGAs) have become essential
components in modern emulation systems, offering reconfigurable
hardware acceleration for design verification and validation. The
increasing complexity of modern designs requires multi-FPGA em-
ulation platforms, where modern 2.5D FPGAs (e.g., AMD Versal
Premium VP1902 [1]) integrate multiple dies, referred to as Super
Logic Regions (SLRs) in AMD/Xilinx architectures, interconnected
through super long lines (SLLs) [2, 3]. As illustrated in Figure 1(a),
cross-FPGA communication occurs through dedicated I/O channels
between package pins. Due to limited I/O bandwidth, time-division
multiplexing (TDM) [4] enables multiple signals to share a single
channel within one system clock cycle, as demonstrated in Fig-
ure 1(b).

The computer-aided design (CAD) flow of multi-FPGA systems
usually splits into two parts: system-level flow and logic-element-
level flow. At the system level, the design is partitioned across de-
vices, with cross-FPGA nets assigned routing topologies and TDM
ratios. Recent approaches have evolved from traditional FPGA-level
flows to die-level strategies, which enable more accurate perfor-
mance estimation and are now widely adopted in both industrial
tools like Synopsys Zebu [5] and S2C OmniDrive [6], and academic
research [7, 8]. Following the TDM ratio assignment results, signals
are grouped by their ratio and direction, then mapped to physical
channels connecting package pins through a process known as
TDM signal grouping and package pin assignment. The subsequent
logic-element-level flow, typically executed by commercial tools
such as AMD Vivado [9] and Altera Quartus Prime [10], performs
placement and routing for logic elements (e.g., LUT, FF, DSP, BRAM,
etc.) to generate final bitstreams.

The TDM signal grouping and package pin assignment process is
a critical part of the multi-FPGA CAD process, as it directly builds a
bridge between system-level flow and logic-element-level flow. The
results of such a process directly assign the I/O placement on each

Email: jiaruiwang@pku.edu.cn, yibolin@pku.edu.cn

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748173.3779199
https://doi.org/10.1145/3748173.3779199
https://doi.org/10.1145/3748173.3779199

FPGA 26, February 22-24, 2026, Seaside, CA, USA

SLL Wire Cross-FPGA Channel

EE BN EEEN
/ FPGA1
1/0 Package Pin

@

\ FPGA O
1/0 Bank

System Clock | | | | |

Common Signals | | |

TDM Clock

TDM Signals

(b)
Figure 1: (a) An example of a multi-FPGA system with 2
FPGAs, and each FPGA has 4 dies. There are cross-FPGA
channels between die 2 of FPGA 0 and die 1 of FPGA 1. (b)
The clock waveforms of the system clock and the TDM clock.

FPGA and impact the intra-FPGA placement and routing process.
However, prior works mainly focus on optimizing performance met-
rics at the system-level while ignoring logic-element-level. For ex-
ample, [11] takes the FPGA-level routing results as inputs, and uses
min-cost-flow for signal grouping and integer-linear-programming
(ILP) for the TDM pin assignment process to optimize the total
SLL crossing. Given that modern FPGAs accommodate large-scale
design partitions on each device, limited consideration at the TDM
stage can lead to severe placement and routing congestion or timing
violations during subsequent physical implementation.
Considering the logic-element-level implementation at the TDM
signal grouping and package pin assignment stage requires a looka-
head logic-element-level placement. With the placement results,
we can group TDM signals with closer positions to the same group,
and assign each TDM signal group or common signal to closer
package pins. Recent open-source FPGA CAD frameworks [12]
can quickly generate global placement results, which creates op-
portunities to estimate routing congestion and guide system-level
design flows. On the infrastructure side, FPGA Interchange For-
mat [13] and RapidWright [14] have enabled broader access to
modern large-scale commercial FPGA architectures. On the algo-
rithmic side, many modern open-source FPGA placers have shown
the ability to do placement on modern commercial FPGAs. Repre-
sentative works include robust multi-electrostatics-based methods
for handling cascaded macro groups and fence regions [12], multi-
die-aware algorithms optimizing inter-die connections [15], and
tools with native support for FPGA Interchange Format [16].
However, there are still three challenges to consider placement
lookahead for the TDM signal grouping and package pin assignment

Jiarui Wang et al.

stage. The first is that we need to consider both the system-level
and the logic-element-level optimization targets, which challenge
the effectiveness of the TDM signal grouping and package pin as-
signment algorithms. The second is that the placement results shall
be highly correlated with the logic-element-level placement result
of the commercial FPGA CAD tools, which challenges the quality
of the placement results. The third is that the scale of FPGA devices
used for modern emulation tasks is extremely huge compared to
the scale of FPGA devices considered by academic FPGA placers,
which challenges the efficiency of the FPGA placer.

In this paper, we propose Chimew, a TDM signal grouping and
pin assignment framework considering logic-element-level intra-
FPGA global placement results. Our framework supports the latest
AMD Versal Premium 1902 FPGA [1], a large-scale FPGA with 2x2
dies (i.e., dies arranged in a 2-row-by-2-column configuration) and
a capacity of 107 logic-elements. We load the die-level routing result
and netlist as inputs, and leverage OpenPARF 3.0 [12], an open-
source FPGA CAD tool with a GPU-accelerated global placement
engine, as our basic placement platform. We develop novel algo-
rithms for TDM signal grouping and pin assignment considering
the placement results. To the best of our knowledge, this is the first
work to consider placement lookahead at the TDM signal group-
ing and pin assignment stage. Our contribution is summarized as
follows:

e We propose a system-level TDM signal grouping and pin
assignment framework for multi-FPGA system design flow,
considering logic-element-level placement impacts.

e We propose a novel placement-aware TDM signal grouping
algorithm to effectively reduce the die crossing for cross-
FPGA signals and a min-cost-flow model for TDM pin as-
signment based on the lookahead placement results.

e Compared to the industrial emulation tool [6], our frame-
work acquires 28% less congestion and fixes an up to 2.87ns
WNS with a 100% logic-element-level flow success rate, while
the industrial tool fails on 3 of 6 cases due to the negative
slack.

The rest of this paper is organized as follows. Section 2 describes
the architecture of multi-FPGA systems and the problem formu-
lation of the TDM signal grouping and pin assignment routing
problem. Section 3 demonstrates the algorithm flow of our algo-
rithm. Section 4 validates our routing algorithm with experimental
results. Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce the background of modern em-
ulation systems and the modern multi-FPGA system design flow.
We then introduce the background of FPGA global placement and
congestion estimation. Next, we demonstrate the design rules and
the formulation of the TDM signal grouping and pin assignment
problem.

2.1 Emulation System based on 2.5D
Multi-FPGA Systems

2.1.1 Modern emualtion system with 2.5D multi-FPGA system Em-
ulation is vital in chip design for pre-silicon verification, using

TDM Signal Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with Lookahead Placement

FPGA °26, February 22-24, 2026, Seaside, CA, USA

Traditional Flow

Logical- Die-Level Routin: Direct, Congestion-oblivious TDM Signal Logical-Element-
Synthesized Die-Level Design > and TDM Ratiog »| Crouping and Level Netlist on
Netlist Partition > . ~| Package Pin each FPGA
Assignment Assignment
The Proposed Flow
FPGA_-I_eveI Die-l_e_vel Partition o000 noooo Placement for nogon ooooo
Partition Paruq:" todie 1oy - Package Pin SLR Port Die-level Netlist = FPGA 1
— Partition E\ noon T no nTn o j—1
to FPGA 1 [
> | — —
Die 0 Die2 |rpGga1 || o :‘ =
oo T — —cn: bl g
I signal ! bt 1 Signal
noon oonncs 1 Group 0 | | Group 1
Die1 ’:' Die 3 N yoal— =L
D'I/I‘ll] 111 - (A 117
q ie-leve!] Toooo Toooo —
[In/OutPort {7 Logic Cluster Routing | Die0 [~] Die2 e ’:‘ FPGA O
unnuu_uuuuu NEW. 1ti-FPGA CAD fl. nuuun_nuuuu
0 multi-| low
Logical- Die-Level Routin TDM Signal Logical-Element-
Synthesized D e boslan $ and TDM Ratiog P Lookahead Placement . gl ey et Levellletlistion
Netlist Partition - . - Package Pin each FPGA
LES IR Assignment

Figure 2: Modern multi-FPGA system CAD flow at die-level, with our work having a lookahead placement before TDM signal

grouping and pin assignment.

hardware models to achieve near-real-time execution speeds. As
design complexity grows, multi-FPGA systems with modern large-
scale FPGAs have become the standard emulation platform.

Modern large-scale FPGAs employ multi-die architectures for
increased capacity. While earlier designs like AMD VU19P [17]
use a linear (1x4) die arrangement, recent FPGAs such as AMD
VP1902 [1] adopt a 2x2 layout, improving inter-die routability
through additional SLL connections between neighboring dies, as
shown in Figure 1(a).

In multi-FPGA systems, inter-FPGA connections are established
via I/O channels between package pins on different FPGAs. These
channels support two signal types: TDM signals and common sig-
nals. TDM channels transmit multiple signals per system clock
cycle with higher latency, whereas common-signal channels carry
only one signal per cycle with lower latency.

2.1.2 System-level design flow of multi-FPGA systems To precisely
estimate the performance of designs and effectively optimize the
system frequency, modern system-level multi-FPGA CAD flows
typically employ a die-level flow rather than the conventional FPGA-
level flow. As shown in Figure 2, unlike the traditional FPGA-level
flow, which partitions the netlist to different FPGAs, the input
design is first fine-grained partitioned onto each die of different
FPGAs in the die-level flow. For those die-crossing nets, system-
level routing and TDM ratio assignment are then performed to
assign the die-level routing topology and TDM ratios. After that,
each cross-FPGA signal needs to be grouped by its TDM ratio
and direction and assigned to an I/O channel between the two
dies it connects in the typical die-level flow. In this work, we do
an additional step to lookahead a global placement result before
the TDM signal grouping process to estimate the logic-element-
level placement and routing congestion and guide the TDM signal
grouping and package pin assignment process, which is novel to
typical system-level design flows.

2.2 Multi-Electrostatics Nonlinear FPGA
Placement with Fence Region Constraints

Placement is crucial in the FPGA CAD flow, assigning logic ele-
ments to physical sites and significantly impacting final circuit
performance. The process involves three stages: global placement
(GP), legalization (LG), and detailed placement (DP). GP generates
near-legal positions for logic elements, minimizing wirelength and
reducing overlap, while LG and DP assign elements to legal sites
and refine the solution. As the foundation of physical design, GP’s
quality ultimately determines routability and timing closure.

State-of-the-art nonlinear placers [12, 18-20] address density
overflow in GP by modeling it as an electrostatic equilibrium prob-
lem. Logic elements are treated as charged particles, with the solver
seeking a low-energy state that disperses cells and alleviates con-
gestion. While effective for ASICs, this approach is less suitable for
FPGAs due to their heterogeneous primitives (e.g., LUTs, FFs, DSPs,
BRAMs), which require type-specific density models. To adapt it,
elfPlace [21] extends the electrostatic formulation with multiple
field solvers—one per resource type—capturing heterogeneity at
the cost of increased computational complexity.

Additionally, modern FPGA placers must handle fence-region
constraints, which partition the fabric into designer-specified re-
gions to support hierarchical design and timing closure in large-
scale designs. To enforce these constraints, OpenPARF 3.0 [12]
enhances its electrostatic optimization with fence-aware auxiliary
fields for each element type within every region. This force-based
model guides primitives to their designated areas while preventing
boundary violations, maintaining placement objectives without
disrupting convergence.

2.3 Routing Congestion Estimation with RUDY

Routing congestion occurs when local routing demand exceeds
available physical resources defined by the underlying architec-
tural fabric, compromising design routability despite achieving

FPGA 26, February 22-24, 2026, Seaside, CA, USA

other timing and area targets. Early congestion estimation enables
CAD flows to identify congestion-prone regions, guide logic ele-
ments toward routability-friendly spreading, and eliminate infeasi-
ble placement solutions before invoking computationally expensive
routing. We employ the Rectangular Uniform wire DensitY (RUDY)
model [22] to estimate routing utilization by uniformly distributing
each multi-pin net’s demand across its bounding box.

Consider a net n with its axis-aligned bounding box B, posi-
tioned at lower-left corner (xl, yll) with width w,, and height h,,.
The bounding box area is A, = wphy. To estimate the consump-
tion of routing resources, we compute the effective wire area as
Qp = Lpp, where L, represents the estimated routing length (typ-
ically half-perimeter wire length, HPWL) and p = p/¢ captures
the average wire pitch p distributed between the available routing
layers .

RUDY models routing demand by assuming uniform wire distri-
bution within each net’s bounding box, yielding a constant density:
dn = Qn, _ Lnp

T An T wnhn
expressed through an indicator function:

. This uniform distribution is mathematically

1, if(x,y) € By

0, otherwise

Rn(x,y) = {

where (x,y) € B, means x!! < x < xll + wy and g} <y < o8l + by,

The global routing demand map aggregates contributions from
all nets: Dgem (%, y) = XnenN dnRn(x,y). For congestion analysis,
we integrate this demand over each bin Qg to obtain the expected
load pg = /Qg Dgem (%, y) dA. By comparing p, against the direc-
tional routing capacity of each bin, we can identify potential conges-
tion hotspots before routing. The RUDY method is widely adopted
because it is router-independent and avoids enumerating Steiner
trees, providing a fast yet predictive congestion metric that inte-
grates seamlessly into our multi-FPGA placement flow.

2.4 Design Rules

The TDM signal grouping and pin assignment process shall follow
the following design rules:

TDM signal grouping rule. The cross-FPGA signals within a
TDM signal group shall have the same TDM ratio and the same
TDM direction. Also, the number of signals within a TDM signal
group shall not exceed the TDM ratio of the group.

I/0 channel direction rule. When assigning signals to an I/O
bank, TDM signals shall be assigned first, while common signals
shall be assigned after the TDM signals. Moreover, if there are two
clusters of TDM signal groups with different directions assigned to
the same I/0 bank, groups with the same direction shall be assigned
to nearby channels. Figure 3 shows an example of the difference
between legal and illegal TDM pin assignment results.

2.5 Problem Formulation

We formally define the die-level TDM signal grouping and pin
assignment problem as follows:

PrOBLEM. Given the die-level system routing and TDM ratio as-
signment results for a design on a multi-FPGA system, assign each
TDM signal a TDM signal group, and assign each TDM signal group

Jiarui Wang et al.

Channel 0 1 2 3 4 5 6 7 8 9

oo [T 1 T [T 1 | |

Channel 0 1 2 3 4 5 6 7 8 9

vosa [I L1 | | [| |

Legal Pin Assignment

4 5 6 7 8 9

B T TET T T

1/0 Bank I:'
lllegal Pin Assignment

m O B O

TDM Signal
Direction 1

TDM Signal Common Signal Common Signal
Direction 2 Direction 1 Direction 2

Figure 3: An example showing the TDM channel direction
rule. The first 2 assignments are legal as they assign the TDM
signal groups direction by direction, the last one is illegal as
there is a TDM signal group by direction 2 between two TDM
signals by direction 1.

and each common cross-FPGA signal an I/O channel and two pack-
age pins within two FPGAs, following the design rules above, and
optimize the performance after the logic-element-level process (delay,
congestion, etc.).

3 Algorithm

In this section, we first introduce the overall flow of our TDM signal
grouping and pin assignment algorithm. Then we demonstrate how
we do the global placement for die-level netlists. Next, we explain
our TDM signal grouping and pin assignment algorithms.

3.1 Overall Flow

As shown in Figure 4, our framework mainly consists of three parts:
1) logic-element-level global placement, 2) TDM signal grouping,
and 3) package pin assignment.

The target of our logic-element-level global placement is to looka-
head global placement results at the early system-level design stage.
The result can not only be used to guide the following TDM signal
grouping and pin assignment process, but can also be used to esti-
mate the congestion level of the partitioned design. In this work,
we use RUDY [22] to estimate the design congestion, and if the
congestion level is larger than a certain threshold, we terminate
the current CAD flow and re-partition the design.

As mentioned in the previous section, our TDM signal grouping
and pin assignment process is to group all the cross-FPGA TDM
signals and then assign all the cross-FPGA signals to package pins.
In this work, we use the global placement results as guidance to
enhance the process.

3.2 Speed-Boosted Lookahead Placement

Our logic-element-level global placement takes die-partitioned
netlists as input and outputs placement lookahead results for each
FPGA. This lookahead offers two key advantages in the multi-FPGA
CAD flow: first, it identifies cross-FPGA signals with similar logic
positions (e.g., fanins of a logic element tend to cluster together);

TDM Signal Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with Lookahead Placement

Die-Level Partition &
Routing Results

FPGA Placement
Architecture

1/0 Buffer Insertion

FPGA-Level Netlist Construction

Logic-Element-Level Global Placement

Netlist Re-Partition Congestion Larger Than Threshold?

Greedy-Based Initial Grouping

Cross-FPGA Signal Encoding

Position-Based Grouping Refinement

1/0 Bank Assignment

MCF-Based Package Pin Assignment

Figure 4: The overall flow of our TDM signal grouping and
package pin assignment process.

second, it detects potential congestion early, enabling designers to
terminate highly congested designs before further investment.

As shown in Figure 4, our global placement consists of three
steps. Since the partitioned netlists contain only core logic without
I/0 buffers, we first invoke Vivado’s link_design command to map
each sub-netlist to target FPGA devices and insert I/O buffers. Next,
we load all netlists along with system-level routing and TDM ratio
assignments to generate complete netlists for each FPGA in the
system. Finally, we perform global placement using our accelerated
placer, which incorporates optimizations to the original OpenPARF
framework to handle the large-scale designs typical of emulation
tasks.

3.2.1 FPGA-level netlist construction FPGA placers take the netlist
of the FPGA-level and the FPGA placement architecture as their
inputs. As our input netlist is at the die-level, we need to construct
an FPGA-level netlist before we call our placer. The FPGA-level
netlist is merged from each die-level netlist with the following
modification from the system-level routing results.

Fence region for each die. To restrict that each logic element
is placed on the die it is partitioned into, we regard each die as a
fence region and use fence region constraints to restrict the die
each logic element shall be placed on.

Cross-FPGA signals. We call Vivado to add input/output buffers
at each input/output port of each die-level netlist. For those cross-
FPGA signals, as shown in Figure 5(a), we move their corresponding
I/O buffers to the die that the signal inputs to/outputs from the
FPGA based on the result of system-level routing.

FPGA °26, February 22-24, 2026, Seaside, CA, USA

Cross-die signals. The previous Vivado process also adds I/O
buffers to the ports corresponding to die-crossing signals. To pre-
cisely estimate the die-crossing congestion, as shown in Figure 5(b),
we remove those I/O buffers and add die-crossing nets to those
signals.

Bypass signals. An FPGA in a multi-FPGA system can also be
used to bypass signals between two FPGAs. Die-level netlists do not
have information about such signals. Thus, as shown in Figure 5(c),
we add an input buffer to the die that the signal enters, and add
output buffers to the dies that the signal exits for bypass signals
following the system-level routing results.

3.2.2 Global placement acceleration Existing academic open-source
placers are designed for single-die FPGAs, which have far fewer
resources than modern multi-die platforms. For instance, the 4-die
AMD VP1902 [1] FPGA is roughly 20 times larger than the single-die
AMD XCVU3P [23] FPGA used in MLCAD 2023 benchmarks [24].
This expanded capacity also leads to much larger netlists, imposing
significant computational demands on placement algorithms. To
efficiently generate placement results for downstream tasks such as
TDM signal grouping and pin assignment, we propose the following
enhancements to the baseline OpenPARF 3.0 placer [12].

Accelerated placer engine. To address runtime challenges
in large-scale netlists, we implement a hardware-adaptive accel-
eration mechanism in the core placement engine. Our approach
implements optimized density and wirelength kernels that leverage
hardware-level vectorization for enhanced computational efficiency.
Combined with adaptive lambda scheduling and shared density-
map caching, this hardware-level optimization enables faster elec-
trostatic descent convergence while preserving placement quality
across large-scale multi-die density maps. We elaborate on these
techniques in the following subsections.

The adaptive lambda scheduling strategy introduces two key
enhancements. First, we adjust the initial lambda factor between
wirelength and density objectives, deliberately biasing the opti-
mization toward density constraints during early placement stages.
Second, we accelerate the lambda update rate to expedite the transi-
tion between optimization phases. This configuration targets rapid
lookahead scenarios by prioritizing density convergence while
maintaining guidance quality for subsequent TDM signal grouping
and package pin assignment workflows.

The shared density-map caching mechanism further enhances
computational efficiency by identifying and eliminating redundant
calculations within the baseline density map computation pipeline.
Our caching approach pre-computes and reuses density maps for
frequently accessed spatial regions, achieving measurable speedup
in multi-die placement scenarios where regions are repeatedly eval-
uated.

Optimized data marshalling. The heterogeneous C++/Python
framework we base on [12] for large-scale FPGA design flows ex-
hibits a critical data marshalling bottleneck. The bottleneck requires
a careful rethinking of memory management strategies. To address
this challenge, we propose a selective zero-copy data bridge that
directly exposes C++ data structures as shared memory tensors,
eliminating redundant serialization overhead. This approach em-
ploys a Structure of Arrays (SoA) memory layout that maximizes
spatial locality and enhances cache utilization patterns, which is

FPGA 26, February 22-24, 2026, Seaside, CA, USA

Jiarui Wang et al.

After I/0 Buffer Insertion After Netlist Construction After I/0 Buffer Insertion

After Netlist Construction After I/0 Buffer Insertion After Netlist Construction

Die 1 Die 2 l Die 1 Die 2 Die 1 Die 2 l Die 1 Die 2 Die 1 Die 2 | Die 1 Die 2
T I T » I I
I [-1 | [———+—\ I
| ™~ | |
Die 0 Die 3 l Die 0 Die 3 Die 0 Die 3 l Die 0 Die 3 Die 0 Die 3 | Die 0 Die 3
| |

/— "\ Logic Element

=== Die-Level Routing

(2)

] 1o Buffer

/— "\ Logic Element

—> Netlist Topology

=== Die-Level Routing

(b)

] 1o Buffer [1o Buffer

—> Netlist Topology === Die-Level Routing

(©)

— Netlist Topology

Figure 5: Examples showing how we process the special signals during FPGA-level netlist construction. (a) Cross-FPGA signals.

(b) Cross-die signals. (c) Bypass signals.

especially useful for accessing sparse connectivity matrices com-
mon in FPGA netlists. This optimized memory organization reduces
database initialization time by two orders of magnitude for designs
exceeding 100K logic elements. This zero-copy method is particu-
larly effective for placement tasks that frequently access the same
data structures.

Placement layout approximation. To handle the large-scale
multi-die FPGA layout, we made assumptions about the placement
layout. We first modify the I/O capacity and area to deal with
large-scale I/O buffers. With the TDM technique, the number of
input/output ports of each sub-design on each FPGA is much more
than the number of I/O buffers on each FPGA. As the TDM IP is
inserted after the package pin assignment process, we need to ap-
proximate the I/O architecture before global placement. To quickly
generate a global placement result, we increase the capacity of each
I/O tile and decrease the area demand of each I/O buffer. We also
modify the capacity of CLE tiles. In modern AMD VP1902 FPGA
devices [1], there are a SLICEL and a SLICEM within a CLE tile. The
LUTs in SLICEM can be used to implement LUTRAM while the LUTs
in SLICEL do not have such an ability. Although OpenPARF [25]
has the ability to deal with the differences between SLICEL and
SLICEM by constructing different electrostatic fields, it takes much
more time to get the placement results. As the number of LUTRAM
within a netlist is much less than the number of common LUTs, we
ignore the difference between SLICEL and a SLICEM, and assign
each LUTRAM an area demand as the number of LUTS5 it uses to
quickly generate the global placement results. Such approximations
allow us to obtain the global placement results with high accuracy
quickly.

3.3 Placement-Aware TDM Signal Grouping
Algorithm

The target of our TDM signal grouping process is to assign each
TDM signal a signal group following the TDM signal grouping rule.
The TDM signals within a TDM signal group will be transmitted
by the same package pin channel.

As shown in Figure 6(a) and Figure 6(b), if a TDM signal group
crosses more dies in the FPGA-to-FPGA pair, it will lead to a large
SLL usage and may cause congestion during the logic-element-
level place and route process. Thus, we need to optimize the total
group die crossing during the TDM signal grouping process. To
deal with this problem, we propose a novel encoding for the cross-
FPGA signals and use an encoding-based algorithm to resolve the

TDM signal grouping problem. Also, to reduce the congestion and
delay, we consider the global placement lookahead results to further
optimize the process.

3.3.1 Cross-FPGA signal encoding and problem formulation To fur-
ther optimize the TDM signal grouping results, we propose a binary
encoding for each cross-FPGA TDM signal. The encoding of each
signal can help us quickly identify signals crossing the same SLLs,
which can be used to avoid the circumstances in Figure 6(b). As
shown in Figure 6(c), we encode each cross-FPGA signal as an 8-bit
binary number representing the SLLs crossed by the signal. The
lower 4 bits of the encoding represent the SLLs the signal crosses
on the source FPGA (FPGA 0 in Figure 6(c)), and the upper 4 bits
represent the SLLs on the sink FPGA (FPGA 1 in Figure 6(c)). If a
bit of the encoding is 1, it means that the signal crosses the SLL
that the bit represents.

With the encoding of a TDM signal, we can calculate its die
crossing by the bits set to 1 in the encoding. For example, signal 1
in Figure 6(c) has 2 die crossings (die 0 to die 3 in FPGA 0, and die
0 to die 1 in FPGA 2), and there are 2 bits of 1 in its encoding.

In the TDM signal grouping process, if we group two TDM
signals together, the encoding of the TDM signal group will be
the result of OR of the two signals. For example, in Figure 6(c),
if we group signal 1 and signal 2 together, the encoding of the
signal group will be 00100001. With the encoding of a TDM
signal group, we can calculate its die crossing by the bits of 1
in the encoding. For example, the group of signal 1 and signal 2
in Figure 6(c) crosses 2 SLLs, and there are 2 bits of 1 in its encoding.

We hope each group crosses the least number of dies as possi-
ble. As the number of signals within a TDM signal group cannot
exceed the TDM ratio, and the number of FPGA-to-FPGA channels
is limited, we conclude the problem formulation as follows:

Given a set S of TDM signals with the same direction and the

same TDM ratio r, group the signals into |’”f—”‘| groups:

1;191‘1}'1 Z ONES(\/ encode(s) - xs,g),

*9 geG ses
1)
s.t. sz,g <r Vg € G,
SeS

where G is the set of the signal groups, xs 4 is the binary variable
representing whether signal s is grouped into group g. ONES rep-
resents the bits of 1 in a binary number, and encode represents our
signal encoding function.

TDM Signal Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with Lookahead Placement

FPGA °26, February 22-24, 2026, Seaside, CA, USA

Die 1 Die 2 Die 1 Die 2
A
Die 1 Die 2 Die 1 Die 2 Die 1 Die 2 Die 1 Die 2
AA AA =
Die 0 Die 3 Die 0 Die 3
> > FPGA 0 FPGA 1
Die 0 Die 3 Die 0 Die 3 Die 0 Die 3 Die 0 Die 3 Index
FPGA 0 FPGA 1 FPGA 0 FPGA 1 — Signal 1 [O]W] V| W]W)O]0]

= Signal Group 1 = Signal Group 2 =% Signal Group 1

(@)

=P Signal Group 2

—p Signal 2 [LFEHEOH R EEG RS |

(©

Figure 6: An example showing how TDM signal routing results can impact the SLL congestion. (a) A good TDM signal grouping
with small and balanced die crossing for each TDM signal group. (b) A TDM signal grouping result with a large die crossings. (c)
An example showing the signal encoding of two cross-FPGA TDM signals.

3.3.2 Encoding-based grouping algorithm 1t is difficult to directly
find an optimal solution to the problem (1), thus, we propose a

greedy-based algorithm to quickly find an approximate solution.

Note that the number of die crossing of a TDM signal group is
dominated by the TDM signal with the maximum die crossing. For
example, in Figure 6(c), if we have signal 1 in a signal group, the
signal group will cross at least 2 SLLs. However, if we group signal
1 and signal 2 in Figure 6(c) together, the number of the die crossing
will not increase, as the encoding of signal 1 can cover the encoding
of signal 2. Based on such properties, we list our encoding-based
algorithm in Algorithm 1.

Algorithm 1: TDM Signal Grouping for Signals with the
Same Direction and TDM Ratio

Input: Set S of TDM signals, TDM ratio r

Output: TDM signal groups G
1 Calculate the signal encoding.

2 Sort S based on the number of die crossings in decreasing

order.
3 while Exists a not grouped signal s do
4 Initialize a new group g.
5 t <« encode(s).
6 while |g| < r and have remaining signals do
7 select signal s” with the nearest encoding to .
8 t « t V encode(s’).
9 add s’ to g.

Based on the TDM signal grouping rule, the TDM signals within

a TDM signal group shall have the same direction and TDM ratio.

Thus, we extract a set S of TDM signals between 2 dies on different
FPGAs with the same TDM ratio r and direction, and calculate
their signal encoding first (line 1). As those signals with a large
number of die crossing dominate the number of die crossing in the
final results, we sort all the signals based on the bits of 1 in their
encodings in decreasing order (line 2). If two signals have the same
bits of 1 in their signal encodings, signals with higher bits of 1 will
have a smaller index.

Our TDM signal grouping algorithm builds the signal groups
iteratively. As the signals crossing more dies dominate the final
results, for an empty group, we set the target die crossing as the die
crossing of the first remaining sorted signal. We then iteratively add

the signals with the nearest encoding to the signal group until the
size of the signal group reaches the TDM ratio r, or all the signals
have been grouped.

We then demonstrate how we find the nearest signal in line
7. For a target signal encoding, we first select those signals with
the same encoding and add them to the signal group. After all
the signals with the same encoding have been grouped, we then
check signals with the encodings that can be totally covered by
the target encoding. To decrease the number of die crossing in the
final results, we add the signals with more die crossing and fewer
signals with the same encoding to the group first. For example, if
the current target encoding is 00111001, and there are 3 signals
with encoding 00011001, 5 signals with encoding 00111000,
and 3 signals with encoding 00011000. We will first add those
signals with encoding 00011001 to the group, then those signals
with encoding 00011100, and finally those 00011000 signals.
After all the signals whose encoding can be covered by the target
encoding are inserted into the signal group, if the size of the group
does not reach the TDM ratio, we then increase the bits of 1 in the
target encoding. We check all the remaining signals to choose those
signals with the least different bits of 1 in their encodings and add
them to the signal group to fulfill the signal group.

We then refine the initial signal grouping results based on the
positions of each logic element in the global placement lookahead
results. Our refinement process shall not increase the die crossing
of each TDM signal group, and shall make those nearby signals
cluster into the same group.

To refine the initial grouping results, we sort all the TDM signals
with the same encoding by the increasing order of the y-axis of
the source logic element of each TDM signal. Our TDM signal
grouping refinement process swaps the signals within each group
of the initial grouping results, and makes groups with similar y-axis
in the same group. Such an assignment can make the final package
pin assignment results have less SLL congestion.

3.4 Min-Cost-Flow-based Package Pin
Assignment

The target of our package pin assignment process is to assign each
cross-FPGA common signal or TDM signal group a channel consist-
ing of 2 package pins on different FPGAs. To handle the I/O channel
direction rule, we split the package pin assignment process into 2
stages. We first assign each signal to a pair of I/O banks where the

FPGA 26, February 22-24, 2026, Seaside, CA, USA

Source Bank Signal Sink
] D TDM Signal Group
Direction 1
D TDM Signal Group
L Direction 2

— D Common Signal
Direction 1

D Common Signal
Direction 2

Figure 7: The min-cost-flow model of our bank assignment

process
Source Channel Signal Sink Source Channel Signal Sink

=
=

Direction 1 With High Priority

/s

T

Direction 2 With High Priority

D TDM Signal Group D TDM Signal Group
Direction 1 Direction 2

D Common Signal D Common Signal
Direction 1 Direction 2

Figure 8: The min-cost-flow model of our pin assignment
process.

package pins are located. Next, we assign each signal a cross-FPGA
channel bank by bank. We use the min-cost flow model for the two
steps to obtain the package pin assignment results.

3.4.1 1I/O bank assignment As shown in Figure 7, our I/O bank
assignment process is based on a min-cost flow model. Besides the
source vertex and sink vertex, there are two kinds of vertices in our
model. The first kind of vertices represent the banks (bank vertices),
while the second kind of vertices represent the TDM signal groups
or common signals (signal vertices). There are three kinds of edges
in the model. The edges from the source vertex to the bank vertices
have a capacity of the number of available channels within each
bank pair and have zero cost. The edges from the bank vertices to
the signal vertices have a capacity of 1, and the cost of those edges
is calculated by the methods described in Section 3.4.3. The edges
from the signal vertices to the sink vertex have a capacity of 1 and
have no edge cost. After solving the min-cost-flow model, each
signal vertex will have exactly one input edge with flow demand,
and the signal or signal group will be assigned to the bank from
which the edge comes.

3.4.2 Package pin assignment Our package pin assignment process
is shown in Figure 8. To handle the I/O channel direction rule, we
construct two minimum-cost-flow models for a bank-to-bank pair
during this process. In each model, we select a direction of TDM
signal groups and give them a higher priority. After solving the
two min-cost flow problems, we check the cost of the two solutions
and choose the solution with the smaller cost as the package pin
assignment results.

The min-cost-flow model for package pin assignment is similar
to the model of I/O bank assignment. There are also two kinds of
vertices besides the source vertex and sink vertex. Channel vertices
are used to represent each channel between two package pins within
the bank pair, and signal vertices are used to represent common
signals or TDM signal groups assigned to the bank pair. The edges

Jiarui Wang et al.

from the source vertex to the channel vertices and the edges from
the signal vertices to the sink vertex have a capacity of 1 and no
edge cost. To satisfy the I/O channel direction rule, there are only
edges from each channel vertex to available signal vertices. For
example, suppose we have direction 1 with high priority. In that
case, we have the first few channel vertices connected to signal
vertices representing TDM signal groups by direction 1, and the
next few channel vertices connected to signal vertices representing
TDM signal groups by direction 2. The other channel vertices are
connected to the vertices representing the common signals. Those
edges have a capacity of 1, and their edge costs are also calculated
by the algorithms in Section 3.4.3.

Note that the min-cost-flow model described in this section is
actually a maximum-weighted bipartite-graph matching problem.
Thus, we use the K-M algorithm [26] to get the solution and assign
each signal or signal group to the package pin channel they are
matched to in the solution.

3.4.3 Edge Cost Calculation We list how we calculate the cost
of the edges to the signal vertices in our min-cost-flow models
in Algorithm 2. Note that in Algorithm 2, we regard a common
signal as a signal group with a single signal. The edge cost function
is based on the global placement lookahead results and the locations
of the I/O banks and the package pins on the FPGA layout.

Algorithm 2: Edge Cost Calculation

Input: Signal group g, I/O bank pair or package pin pair p
Output: Edge cost ¢4 p
1 Cout < 0,cin < 0.

2 foreach Signals € g do

3 Cout += dist (Stanouts Pout)-

4 Ntanin < 0, dfanin < 0.

5 foreach fanin logic-element sgypi, of s do
6 dfanin += dist(Stanin, Pin)-

7 Nfanin +=1.

8 Cin += %

9 Cgp < WoutCout + WinCin.

As a cross-FPGA signal connects two FPGAs, we need to con-
sider the placement results synergistically. Thus, the edge cost is a
weighted sum of the output cost ¢oy; and the input cost ¢, (line
9). In this work, we set woy; as 1 and w;, as the reciprocal of the
number of fanin logic elements. A cross-FPGA signal can have one
fanout logic-element and several fanin logic-elements. The output
cost oyt is the sum of the Manhattan distance between each fanout
logic-element sg,,0ut and the output bank or package pin poy; (line
3). To deal with the imbalanced distribution of the number of fanin
logic-elements of each signal, the input cost is the sum of the aver-
age of the Manhattan distance between each fanin logic-element
and the input bank or package pin (lines 4-8).

4 Experimental Results

In this section, we first introduce our experimental setups. Then, we
validate the effectiveness of our TDM signal grouping and package
pin assignment algorithms. We also present experiments on our

TDM Signal Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with Lookahead Placement

Table 1: The number of FPGAs (#FPGAs), the number of dies
(#Dies), the number of cross-FPGA signals (#Conns), and the
number of logic-elements (#Bels) of our benchmarks.

l Design l #FPGAs #Dies #Conns #Bels ‘
INDO1 4 16 59.73K 5.53M
INDO2 4 16 47.92K 17.55M
INDO3 4 16 31.61K 23.41M
INDO04 4 16 53.49K 23.46M
INDO05 16 64 66.99K 30.21M
INDO06 8 32 53.9K 54.06M

placer to demonstrate the efficacy and necessity of global placement
lookahead at the early system-level design stage.

4.1 Experimental Setups

We implement our TDM signal grouping and package pin assign-
ment algorithms in C++, while our placer is implemented based on
OpenPARF 3.0 [12] in C++, CUDA, and Python. Our experiments
were conducted on a 2.10 GHz Intel Xeon Gold 6230 CPU plat-
form with 512 GB of memory and an NVIDIA A40 GPU. We do the
I/O buffer insertion process using Vivado 2025.1 [9] and generate
the FPGA placement architecture file using the FPGA Interchange
Format [13] and RapidWright [14].

We collect 6 industrial designs as our benchmarks from an indus-
trial vendor [27], and their statistics are listed in Table 1. The FPGA
devices used in all 6 cases are the AMD Versal Premium 1902 [1]
device. The number of FPGA devices can be up to 16, with each
FPGA device having 4 dies. The number of logic-elements can be
at most 5 X 107. As the partition for each device is not balanced,
there can be at most around 107 logic-element-level cells within
an FPGA-level netlist. The scale of each FPGA-level netlist is way
much larger than common academic benchmarks like ISPD 16&17
benchmarks [28, 29] and MLCAD 23 benchmarks [24], where the
scales of netlists in those benchmarks are at most 10°.

4.2 Validations on TDM Signal Grouping and
Package Pin Assignment

We collect the reports of Vivado, and list the results of the SLL rout-
ing congestion, post-routing delay, and whether the logic-element-
level flow of Vivado reaches the 24-hour time limit in Table 2. We
also collect the industrial emulation tool from the same industrial
vendor. We use the die-level routing and TDM ratio assignment
results of the industrial tool as the input of our framework, and
generate the package pin assignment results. We also use the in-
dustrial tool to generate the package pin assignment results using
the same die-level partition results. We collect both sets of results
and use Vivado 2025.1 to finish the intra-FPGA logic-element-level
design flow by running the default logic-element-level flow of the
industrial tool. Our logic-element-level flow is run on the cloud
computing clusters provided by the industrial vendor, and we run
the flow of each FPGA in parallel. Normally, the runtime of the
logic-element-level flow will be around 8 to 16 hours, as the scale
of the design is very large, and there are some additional steps,
like inserting the TDM IP in the industrial flow. There is a 24-hour
runtime limitation for the logic-element-level flow, as the default

FPGA °26, February 22-24, 2026, Seaside, CA, USA

Vivado setting of the industrial tool will try to fix the negative slack
by significantly more rip-up and reroute iterations.

Our average maximum placement congestion level comes from
the post-placement congestion estimation by Vivado. Vivado esti-
mates the SLL congestion at the beginning of the routing phase, and
reports the SLL congestion regions with a utilization threshold of
1.000 for each SLR cut. We collect the average overflow utilization
of each SLR cut of each FPGA, and list them in Table 2. As there
are multiple clocks within a multi-FPGA design, to estimate the
post-routing delay of each design, we collect the WNS and the total
negative slack (TNS) reported by Vivado. The WNS is the smallest
WNS of all the FPGA-level designs reported by Vivado, and the
TNS is the summary of all the TNS of different FPGA-level designs.
If the WNS is 0, it means that there are no slack violations in the
routing results. Additionally, due to the significant fluctuations in
the offload of cloud computing clusters, the runtime of the logic-
element-level flow of both the results of the industrial tool and our
framework can vary by hours. Thus, we cannot collect an exact
runtime of our logic-element-level flow. Usually, the runtime of
the logic-element-level flow can be 8 to 16 hours using both the
system-level results of the industrial tool and our frameworks.

As shown in Table 2, we achieve a 28% reduction in SLL routing
congestion and up to 2.87ns WNS reduction compared to the in-
dustrial tool. Furthermore, with the default setting of the industrial
tool, the results generated by the industrial tool have negative slack
on 3 of 6 benchmarks, and our results do not have any negative
slack, which shows the effectiveness of our TDM signal grouping
and pin assignment process. Note that although the SLL congestion
of the results of the industrial tool in design INDO5 is smaller than
our results, the industrial tool fails to generate a legal result with
no negative slack on that design.

Note that [11] also does the TDM signal grouping and package
pin assignment process. We do not compare with their work for
two reasons. The first is that their work is based on the FPGA-
level multi-FPGA system CAD flow, which is totally different from
the modern die-level design flow. Also, the FPGA device used in
their works has a 1 X 4 die shape, which is different from the 2 x 2
die shape of the AMD VP1902 device. The different die shapes of
FPGA devices will make it impossible to use the methods in [11] to
calculate the die crossing of TDM signal grouping. Thus, we do not
compare our algorithms with theirs in this paper.

We also collect the runtime of the different steps in our frame-
work, and the total runtime of our framework, and list them in Ta-
ble 3. As shown in Table 3, our framework takes at most 69 minutes
to get the results. Most of our runtime is used for data initializa-
tion and global placement lookahead, which take 40% and 58% of
the total runtime. As the logic-element-level flow for each FPGA
is around 8 to 16 hours, it is reasonable to use the runtime to do
global placement for finding out the possible congestion at the
early design stage. Note that we do the global placement for each
FPGA serially. As the task of global placement for each FPGA is
independent of the others, the global placement process can be
further accelerated. Furthermore, as the TDM signal grouping and
package pin assignment process in the industrial tool does not have
the global placement step, and it is difficult to extract the exact
runtime of the process in industrial tools, we do not compare our
runtime with the industrial tool in this paper.

FPGA 26, February 22-24, 2026, Seaside, CA, USA

Jiarui Wang et al.

Table 2: The SLL routing congestion (SLL Cong.), the post routing worst negative slack (WNS, ns), total negative slack (TNS,
ns), and whether the runtime of the logic-element-level flow exceeds the 24-hour time limitation (TLE) on the industrial

benchmarks between the industrial tool and our framework.

Industrial Tool Ours
Design SLL Cong. Delay TLE SLL Cong. Delay TLE
Overflow Ratio WNS TNS Overflow Ratio WNS TNS
INDO1 1.50% 1.36 0.000 0.000 N 1.10% 1.00 0.000 0.000 N
INDo02 1.88% 2.04 0.000 0.000 N 0.92% 1.00 0.000 0.000 N
INDO03 0.65% 1.02 2.870 15.878 Y 0.64% 1.00 0.000 0.000 N
INDO04 1.32% 1.31 0.000 0.000 N 1.01% 1.00 0.000 0.000 N
INDO05 1.80% 0.87 1.244 3.677 Y 2.08% 1.00 0.000 0.000 N
INDO06 1.35% 1.07 0.845 11913 Y 1.26% 1.00 0.000 0.000 N
| Norm. | - 1.28 - - 3/6 | - 1.00 - - 0/6 |

Table 3: The runtime (s) of the data initialization (INIT), the
global placement (GP), and the TDM signal grouping and
package pin assignment (SG & PA) process of our framework,
and the total runtime (s) of our framework.

| Design [INIT GP SG & PA | Total |
INDO1 | 166 387 6 561
INDO2 | 534 692 24 1250
INDO3 | 674 923 32 1629
INDO4 | 683 915 32 1630
INDO5 | 966 1484 43 2493
INDO6 | 1885 2168 87 4140

[Norm. [040 0.58 0.02 [1.00 |

4.3 Validations on Lookahead Placement

The target of the experiments about global placement lookahead
is to prove the effectiveness and efficiency of our global placer. To
prove the effectiveness of our global placer, we collect the post-
placement wirelength reported by Vivado and the Half-Perimeter
WireLength (HPWL) of our global placement results on our bench-
marks, and show their correlations in Figure 9. As shown in Figure 9,
the wirelength reported by Vivado and our placer are highly corre-
lated, which shows the effectiveness of our global placer. Note that
the wirelength unit and model used in Vivado and our placer are
different, resulting in a gap of two orders of magnitude between
the wirelength reported by Vivado and our placer.

le9

1IR2 = 0.9412

IS

Vivado WL

-
L

o
!

T
35
le7

T T T T
1.5 2.0 2.5 3.0

Our HPWL
Figure 9: The correlation between the HPWL reported by
our placer and the post-placement wirelength reported by
Vivado.

T T T
0.0 0.5 1.0

To show the efficiency of our modification to the original Open-
PAREF 3.0 [12], we list the global placement runtime of the original

Table 4: The number of failed cases and the average (AVG)
and maximum (MAX) global placement runtime (s) for each
FPGA-level design of the original OpenPAREF 3.0 [12] and our
speed-boosted global placer on our benchmarks.

) Original OpenPARF 3.0 [12] Ours
Design | FAILED AVG ~ MAX | FAILED AVG MAX
INDO1 | 0/4 389 649 0/4 77 104
INDO2 | 2/4 430 525 0/4 115 175
INDO3 | 1/4 643 766 0/4 157 211
INDO4 | 0/4 667 805 0/a 152 228
INDO5 | 1/16 39 744 0/16 86 156
INDO6 | 6/8 671 764 0/8 174 229
[Norm. [10/40 4.29 408 | 0/40 1.00 1.00 |

OpenPARF 3.0 and our placer in Table 4. Due to the extremely large
scale of the FPGA layout and netlist, the original OpenPARF 3.0 fails
to generate the global placement results for 10 FPGA-level netlists
within 4 designs, and the modified version successfully generates
all the global placement results. We list the average runtime and the
maximum runtime of each design, and as there are system schedul-
ing runtimes, the product of the average runtime of our placer and
the number of FPGAs within each design is smaller than the placer
runtime reported in Table 3. As Table 4 shows, our speed-boosted
global placer has a more than 4X speedup compared to the original
OpenPAREF 3.0 and shows a high efficiency.

5 Conclusion

In this paper, we propose Chimew, a TDM signal grouping and
package pin assignment framework for modern large-scale multi-
FPGA systems. We conduct speed-boosted global placement looka-
head at the early system-level design stage and utilize the global
placement results to optimize the TDM signal grouping and package
pin assignment processes. We propose a novel TDM signal group-
ing formulation and a min-cost-flow-based package pin assignment
algorithm. Compared to the industrial tool, our framework can
achieve a 28% less congestion and fix at most 2.87ns WNS with
a 100% successful rate logic-element-level placement and routing
flow.

Acknowledgements

This work is supported in part by the Natural Science Foundation of
Beijing, China (Grant No. Z230002), and the 111 Project (B18001).

TDM Signal Grouping and Package Pin Assignment for 2.5D Multi-FPGA Systems with Lookahead Placement

References

(1]
(2]
(3]

(4]

(5]
(6]

(71

(8]

[10]
[11]

[12]

[13]

[14]

[15]

AMD, “Versal Premium VP1902 Adaptive SoC,” 2025. https://www.amd.com/en/
products/adaptive-socs-and-fpgas/versal/premium- series/vp1902.html.

R. Raikar and D. Stroobandt, “Multi-die heterogeneous FPGAs: How balanced
should netlist partitioning be?” SLIP *22, 2023.

C. Ravishankar, D. Gaitonde, and T. Bauer, “Placement strategies for 2.5D FPGA
fabric architectures,” in 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pp. 16-164, 2018.

J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal, “Logic emulation
with virtual wires,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 6, pp. 609-626, 1997.
Synopsys, “Emulation Systems | System Verification,” 2024.
synopsys.com/verification/emulation.

X. Zhang, “How do logic simulation, emulation, and FPGA prototyping
work?” 2023. https://www.s2cinc.com/resources/lit/en/wp/s2c-how-do-logic-
simulation-emulation-and-fpga- prototyping-work.pdf.

J. Wang, Y. Liu, and Y. Lin, “Synergistic die-level router for multi-FPGA system
with time-division multiplexing optimization,” in 2025 62nd ACM/IEEE Design
Automation Conference (DAC), pp. 1-7, 2025.

C. Huang, P. Chu, S. Bi, R. Sun, and H. You, “System routing and TDM assign-
ment optimization in multi-2.5D FPGA-based prototyping systems,” in 2024 2nd
International Symposium of Electronics Design Automation (ISEDA), pp. 324-331,
2024.

AMD, “AMD Vivado Design Suite,” 2025. https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vivado.html.

Altrea, “Quartus® Prime Design Software | Altera® FPGA,” 2025. https://www.
altera.com/products/development-tools/quartus.

Y.-C. Liao and W.-K. Mak, “Pin assignment optimization for multi-2.5D FPGA-
based systems with time-multiplexed I/Os,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 40, no. 3, pp. 494-506, 2021.

J. Mai, J. Wang, Y. Chen, Z. Guo, X. Jiang, Y. Liang, and Y. Lin, “OpenPARF
3.0: Robust multi-electrostatics based FPGA macro placement considering cas-
caded macros groups and fence regions,” in 2024 2nd International Symposium of
Electronics Design Automation (ISEDA), pp. 374-379, 2024.
Chips-Alliance, “FPGA-Interchange-Schema,” 2025.
chipsalliance/fpga-interchange-schema.

C. Lavin and A. Kaviani, “RapidWright: Enabling custom crafted implementa-
tions for FPGAs,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 133-140, April 2018.
Z.Di, R. Tao, J. Mai, L. Chen, and Y. Lin, “LEAPS: Topological-layout-adaptable
multi-die FPGA placement for super long line minimization,” IEEE Transactions

https://www.

https://github.com/

[16]

(17]

(18]

[29]

FPGA °26, February 22-24, 2026, Seaside, CA, USA

on Circuits and Systems I: Regular Papers, vol. 71, no. 3, pp. 1259-1272, 2024.

R. S. Rajarathnam, M. B. Alawieh, Z. Jiang, M. Iyer, and D. Z. Pan, “DREAMPlaceF-
PGA: An open-source analytical placer for large scale heterogeneous FPGAs
using deep-learning toolkit,” in 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 300-306, 2022.

AMD, “Virtex UltraScale+ VU19P FPGAs,” 2025. https://www.amd.com/en/
products/adaptive-socs-and-fpgas/fpga/virtex- ultrascale- plus-vu19p.html.

J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K. Cheng,
“ePlace: Electrostatics based placement using Nesterov’s method,” in Proceedings
of the 51st Annual Design Automation Conference (DAC), (New York, NY, USA),
pp- 1-6, ACM, 2014

C.-K. Cheng, A. B. Kahng, 1. Kang, and L. Wang, “RePlAce: Advancing solution
quality and routability validation in global placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 38, no. 9,
pp. 1717-1730, 2019

Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled GPU acceleration for modern VLSI place-
ment,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 40, no. 4, pp. 748-761, 2021.

W.Li, Y. Lin, and D. Z. Pan, “elfplace: Electrostatics-based placement for large-
scale heterogeneous FPGAs,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1-8, 2019.

P. Spindler and F. M. Johannes, “Fast and accurate routing demand estimation
for efficient routability-driven placement,” in 2007 Design, Automation Test in
Europe Conference Exhibition, pp. 1-6, 2007.

AMD, “Virtex UltraScale+ FPGAs,” 2025. https://www.amd.com/en/products/
adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html.

I. Bustany, G. Gasparyan, A. Gupta, A. B. Kahng, M. Kalase, W. Li, and B. Pramanik,
“The 2023 MLCAD FPGA macro placement benchmark design suite and contest
results,” in 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD),
pp. 1-6, 2023

J. Mai, J. Wang, Z. Di, and Y. Lin, “Multielectrostatic FPGA placement considering
SLICEL-SLICEM heterogeneity, clock feasibility, and timing optimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 43,
no. 2, pp. 641-653, 2024.

H. W. Kuhn, The Hungarian Method for the Assignment Problem, pp. 29-47. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010.

S2C, “S2C prototyping: FPGA ASIC SoC IP verification, validation, emulation,”
2024. https://www.s2cinc.com.

8] “ISPD16 contest.” http://www.ispd.cc/contests/16.

“ISPD17 contest.” http://www.ispd.cc/contests/17.

https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal/premium-series/vp1902.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal/premium-series/vp1902.html
https://www.synopsys.com/verification/emulation
https://www.synopsys.com/verification/emulation
https://www.s2cinc.com/resources/lit/en/wp/s2c-how-do-logic-simulation-emulation-and-fpga-prototyping-work.pdf
https://www.s2cinc.com/resources/lit/en/wp/s2c-how-do-logic-simulation-emulation-and-fpga-prototyping-work.pdf
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.altera.com/products/development-tools/quartus
https://www.altera.com/products/development-tools/quartus
https://github.com/chipsalliance/fpga-interchange-schema
https://github.com/chipsalliance/fpga-interchange-schema
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.s2cinc.com
http://www.ispd.cc/contests/16
http://www.ispd.cc/contests/17

