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Abstract—FPGA macro placement exerts a significant influence on
routability and timing closure in FPGA physical design. Macros could
subject to cascaded macro constraints and necessitate placement in
contiguous sites. Meanwhile, instances could also subject to fence region
constraints, permitting placement within designated areas. Such kind of
heterogeneity exacerbates the solution space discontinuity and leads to
divergence and local optima entrapment.

In this work, we propose a robust multi-electrostatics-based FPGA
macro placer OpenPARF 3.0 that can handle the aforementioned
constraints efficiently. We adopt a novel multi-electrostatics region model
to handle the fence region discontinuity and propose a divergence-
aware density weight scheduling scheme that can address the robustness
issues effectively. Experimental results demonstrate that our proposed
framework can address robustness issues effectively and outperform
state-of-the-art placers in both quality and efficiency.

Index Terms—FPGA, Placement, Macro Placement, Cascaded Macro,
Fence Region

1. INTRODUCTION

FPGA macro placement significantly influences the ultimate per-
formance of FPGA designs. Macros on FPGAs, such as DSP and
BRAM, offer efficient functionalities such as digital signal processing
and on-chip storage, surpassing the mere utilization of LUTs and
FFs. Hence, macros are widely employed in high-performance FPGA
designs such as IP blocks, and play a crucial role in the overall
performance and routability.

FPGA macro placement has two major challenges that arise from
macro heterogeneity and fence regions. The heterogeneity stems from
larger size variations, sparser feasible sites, higher routing resources
demands, and the tailored cascaded shapes to achieve enhanced
performance. Furthermore, clock routing architectures or user-defined
fence region constraints disrupt the solution space continuity for
FPGA placement, thereby weakening the effectiveness of analytical
placement algorithms that are primarily based on continuous opti-
mization.

In recent years, the emergence of large-scale academic FPGA
placement benchmarks [1]-[3] has led to the development of numer-
ous placement algorithms [4]-[19]. These algorithms, successfully
applied to the aforementioned large-scale benchmarks, predominantly
employ analytical placement techniques. Among them, state-of-the-
art performance is achieved by nonlinear placement algorithms,
including the esteemed ePlace-series [12]-[14] and NTUPlace-
series [16] algorithms. However, it is worth noting that these bench-
marks oversimplify the consideration of macros, disregarding the
intricate nature of cascaded macros in real-world scenarios. Further-
more, the region constraints specified prior to placement are conspic-
uously absent in these benchmarks. Unlike fence regions generated
as intermediates during the placement process, as exemplified in [5],
[8], the region constraints specified before placement pose greater
challenges, as they are prone to routing congestion and divergence,
thus elevating the difficulty level.

In this work, we tackle the FPGA macro placement considering
considering both fence region constraints and cascaded macro con-
straints based on a multi-electrostatics-based placement framework.
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Fig. 1: (a) A simplified columnar FPGA architecture depiction for
Xilinx Ultrascale+ xcvu3p series. (b) An example of cascaded DSP
macros and cascaded BRAM macros from a Vivado GUI screenshot
(color inverted). (c) An example of cascaded macro group, including
cascaded DSP macros and the closely connected FFs.

We propose a novel footprint compression technique under multi-
electrostatics region models and are capable of addressing the ro-
bustness issues effectively. Our major contributions are summarized
as follows.

o We present a novel model called the multi-electrostatics region
model, accompanied by a footprint compression technique, to
effectively handle the discontinuity in the fence region.

« We propose a divergence-aware density weight scheduling
scheme, which effectively addresses robustness issues.

o To address the imbalance in the size of the cascaded macros, we
introduce a cascaded macro shredding technique.

o Experiments on the MLCAD 2023 FPGA macro placement
benchmark demonstrate an improvement of 27.8%, 6.9%, 13.3%,
and 49.1% compared to the winners of the Vivado and MLCAD
2023 contest, respectively. Our placer also supports GPU acceler-
ation and can achieve 1.81-3.18x speedup over the baselines.
The rest of the paper is organized as follows. Section II introduces

the preliminary knowledge of the FPGA architecture and multi-
electrostatics-based FPGA placement. Section III describes the core
placement algorithms. Section IV shows the experimental results,
followed by the conclusion in Section V.

II. PRELIMINARIES

In this section, we will introduce the targeted FPGA architecture,
especially focusing on the fence region constraint and the cascaded
macro constraint. We will also introduce the concept of multi-
electrostatics-based FPGA placement.

A. FPGA Architecture
In this work, we target the Xilinx Ultrascale+ xcvu3p series as a
representative architecture, as illustrated in Figure 1(a) . A simplified

IFigure 1(a) only contains part of the whole 6 x 5 clock regions, but is
sufficient for illustration.



version of this architecture is also used in the MLCAD 2023 FPGA
Macro placement contest with a subset of instance types, i.e., {LUT,
FE, DSP, BRAM, 10} [20].

Due to the significantly larger sizes of DSPs and BRAMs compared
to LUTs and FFs, DSPs and BRAMs are considered as macros. On
the other hand, LUTs and FFs are considered as standard cells. FPGA
macros significantly impact the overall routability of the design [20].
Furthermore, FPGA placement necessitates adherence to fence region
constraints and cascaded shape constraints, which will be elaborated
upon in the subsequent subsections.

1) Fence Region (FR) Constraint: Fence region constraints may
stem from clock regions or can be user-defined. The fence region con-
straint can be abstracted as follows, and as illustrated in Figure 1(a).

Definition 1 (Fence Region Constraint). Given a set of instances
and a feasible region on the FPGA layout (usually a rectangle), in
the final placement result, the instances within the set must be placed
inside the feasible region.

Note that multiple fence region constraints can exist in a single
FPGA placement task, and instances not assigned to any fence region
constraint can be placed on any feasible site on the FPGA layout.

2) Cascaded Macro (CM) Constraint: For the sake of enhanceing
performance and reducing routing resource overload, it is necessary
for FPGA placement to meticulously arrange a number of macro
instances in close proximity, thereby forming a cascaded macro as
illustrated in Figure 1(b). A cascaded macro constraint can be defined
as follows.

Definition 2 (Cascaded Macro Constraint). Given a set of macro
instances (typically of the same type, such as DSPs or BRAMs), in
the final placement result, the instances within the set must be placed
in continuous columnated sites in a prescribed sequence.

3) Cascaded Macro Group: Cascaded macros mainly include DSP
macros and BRAM macros. In truth, due to the characteristics of DSP
and the features of synthesis and mapping tools, the input and output
signals of DSP instances in cascaded DSP macros are often connected
to FFs as illustrated in Figure 1(c). This is a prevalent occurrence
in the context of FPGA placement. It’s noteworthy that, given the
multitude of input and output signals from DSPs, the quantity of these
FFs can reach hundreds or even thousands. These FFs are also closely
connected to the DSP macros in a certain pattern. Thus, from a broad
perspective, we can categorize the standard cells closely connected
to cascaded macros * and the cascaded macros itself as a cascaded
macro group. It is advantageous for standard cells to be proximate
to the location of the macros in a cascaded macro group, such as the
adjacent columns where the macros are situated, albeit this is not an
inflexible requirement.

B. Multi-Electrostatics-based FPGA Placement

Originally conceived for ASIC placement [21], the electrostatic-
based placement model conceptualizes each instance as an electric
particle within an electrostatics system. This methodology draws
on the fundamental physics principle that a balanced distribution
of charge in an electrostatics system results in diminished potential
energy. Consequently, minimizing the potential energy can alleviate
density overflow and facilitate the equitable dispersion of instances
within in layout.

This paradigm is subsequently broadened to encompass multiple
electrostatic fields, thereby accommodating the diversity of resource
types 7={LUT, FF, DSP, BRAM, IO} in FPGA placement [11].

The multi-electrostatics-based FPGA placement model can be
written as

min W(m,y) s.t. s(x,y; A°) =0, VseS, @)
z,y

2We can infer it from the instance name on MLCAD 2023 FPGA macro
placement benchmark [20].
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Fig. 2: Overview of the proposed framework.

where W() is the wirelength objective [22]-[24], «, y are instance
locations, S = {SP,7,5Fr,SBsp,SEran,STo} denotes the
electrostatics system set, ®s(-) is the electric potential energy for
electrostatics system s € S, and .A° denotes the placement instance
areas (including movable instances, fixed instances, and fillers) for
electrostatics system s. By mitigating the influence elicited by se-
lecting a zero potential point [17], we can formally target the density
®,(-) as zero. In practical terms, we halt the optimization process
once the energy reaches a sufficiently low threshold or when the
density overflow is adequately reduced °.

1) Augmented Lagrangian Formulation: A modified augmented
Lagrangian formulation is used to ease the constraints into the
objective and to formulate a better unconstrained problem [11], [25],

1:1511;1 L(z,y) =W(z,y)+ (\ P+ g’P(I} o ®?) )

where P is a vectorized density weight preconditioner based on
the initial density P* = 1/ & and p is the quadratic penalty
coefficient that can balance the magnitudes between the first-order
and second-order terms [11] *. By using the gradient descent method,
we can solve the above optimization problem.

2) Problem Formulation: In this work, we focus on the FPGA

placement problem considering fence region constraints and cascaded
macro constraints. We define the FPGA placement problem as
follows [20].
Problem 1 (FPGA Placement). Given a netlist consisting of
instances in {LUT, FF, DSP, BRAM, 10} and the FPGA rarget archi-
tecture, produce a feasible FPGA placement solution with optimized
routability, satisfying the fence region constraints F and cascaded
macro constraints C.

III. ALGORITHMS
A. Overview of the Proposed Algorithm

Figure 2 illustrates the overall framework. Our proposed framework
takes a circuit netlist and architecture constraints as input and
generates legal macro placement results.

The global placement commences with the density weight ini-
tialization (Section III-C) and macro shredding initialization (Sec-
tion III-D). Subsequently, we employ the multi-electrostatic place-
ment model, and obtain the objective function value along with
its gradient. We then subject the gradient to preconditioning treat-
ment [15] and utilize the Nesterov algorithm to optimize the positions
of placement instances. After each Nesterov iteration, we apply the
macro shredding technique to handle cascaded macro constraints
(Section III-D) and propose a novel divergence-aware density weight
scheduling method (Section III-C). Next, we sequentially evaluate the
need for IO legalization (Section III-E) and area adjustment [11].

3For brevity, we simplify ® (x,y; A®) to &g for all s € S, and the
potential energy vector whose elements are @, (Vs € S) is denoted by @ in
later discussions.

“For brevity, we denote D as (X, ® + %’P‘P © ®2) in later discussions.
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Fig. 3: An example illustration for the multiple electrostatics region model. The colors of the instances represent their respective resource
types, while the shapes indicate whether they subject to region constraints and the corresponding numbers of region constraints. In this
example, there are eight electrostatics region models, individually crafted for the various resource types inherent in each fence region

constraint.
TABLE I: Main Annotations.
T The set of resource types. 7={LUT, FF, DSP, BRAM, I0O}.
F | The set of fence region constraints (Section II-Al).
N The set of movable instances and fixed instances in the netlist (Section III-B).
(@] The set of artificially created fillers (Section III-B).
ST | The set of electrostatics systems for multi-electrostatics region model (Section ITI-B).

Finally, we determine if the current overflow satisfies the conditions
for macro legalization (Section III-F). If so, we proceed with the two-
stage macro FR-aware and CM-aware legalization to obtain the macro
placement results. Otherwise, we continue the iterative optimization
process.

The multi-electrostatics placement model comprises three major
optimization models: the WAWL wirelength model [23], the multi-
electrostatics density model for electrostatics system set Sp akin
to [11], and the multi-electrostatics region model for electrostatics
system set Sg (see Section I1I-B). We adopt the formulation described
in Section II-B and the electrostatics system is extended with the
multi-electrostatics region model, denoted as S = {S”,S%}. A
detailed explanation of the multi-electrostatics region model will be
provided in Section III-B. The update strategy for density weight
also plays a crucial role in the quality of the optimization results
and whether they will diverge. Further details regarding the density
weight update strategy will be discussed in Section III-C.

In the following sections, we will elaborate on the details of
each component of the proposed framework. We also summarize the
commonly used annotations in Table I to facilitate efficient retrieval.

B. Multi-Electrostatics Region Model

Figure 3 illustrates our proposed multi-electrostatics region model.
For each resource type ¢t € T within each fence region f € F, we
construct a novel electrostatics system Stl?f (which indicates totally
|T| x |F| electrostatics systems, i.e., |S®| = |T||F]|). For each
electrostatics system Sff, we derive its potential energy <I>ff as the
density objective as follows.

« All placement instances are firstly categorized as movable in-
stances, fixed instances, and fillers, with movable instances and

fixed instances representing instances in the netlist (denoted as
N). Fillers are artificially created for the purpose of target density
control for each electrostatics system, which will be discussed
later (denoted as ). The placement instances are then assigned
to electrostatics systems based on their resource type and the
constraints imposed by the fence region they subject to.

« The assigned instances for electrostatics system Sff include (1)
the movable instances and fixed instances that own resource type
t within the fence region f, and (2) the fillers that are assigned to
S,f‘f. The movable and fixed instances of this electrostatics system
is denoted as /\/tRf The fillers are assembled as per the method
delineated in [26], with a target density empirically set to 1.

o The background density map for electrostatics system Sﬁf
indicates the potential site locations for instances N y. We first
extract the capacity maps for sites that process resource type ¢
within the fence region f , and then derive the background density
maps for S’ff. For sites with capacity, the background density is
set to zero, indicating the permissibility of placing instances on
those sites. Vice versa for sites without capacity.

Combining the assigned instances and background density maps, we
can calculate the potential energy of the electrostatics system as
the density objective [11]. Movable instances and fillers are driven
towards their target sites by the repulsive force exerted by the
background density map. Fillers crafted from individual target density
lead to compact placement in each fence region. When the overflow
of this system is sufficiently small, it can be considered equivalent to
all instances within ./\/'ff being in the feasible sites within the fence
region.

1) Footprint Compression Technique under Multi-electrostatics
Region Models: During the implementation of the electrostatics
system, memory allocation is required to store the sizes of placement
instances under different electrostatics systems. This is the most
memory-consuming part. In [11], an array A of size ([N| + |O]) x
|SH| x 2 is created, where A; ; 0,1} represents the length and width
of placement instance ¢ in electrostatics system j, as illustrated in
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Fig. 4: The memory footprint comparison between [11] and our
proposed method. For the sake of conciseness, we omit the last
dimension of arrays A, K M and KT in this illustration.

Figure 4. However, this implementation results in a space complexity
of O((JNV] + |O)|S%|), which is unacceptable.

To address this challenge, we propose a footprint compression tech-
nique under multi-electrostatics region models, which can compress
the space complexity to O(JN|+|O|+|S%|). Our technique is based
on three key observations:

« Each movable and fixed instance subject to a maximum of one
fence region constraint, and thus can be assigned to at most one
electrostatics system.

« Each filler is exclusively associated with one electrostatics system.
« Filler sizes within the same electrostatics system are consistent.
So the basic idea is, within the array A, there exist a considerable
number of redundant zeros as well as duplicated (filler) sizes.
Therefore, we can establish index arrays for instances in A and
O, respectively, indicating the electrostatics system to which each
instance belongs. Furthermore, we can also compress the filler sizes

within the same electrostatics system.

As shown in Figure 4, for movable and fixed instances, we
construct an index array I ¢ ZW! and a key array KM ¢ RNI*2,
IM represents the electrostatics system to which instance i is assigned
and K} represents the size of the instance. For fillers, we construct
an index array 1T € Z° and K¥ € RIS®1x2, Here, I represents
the electrostatics system to which instance ¢ is assigned, and KJF
represents the size of the filler within electrostatics system j.

With the aforementioned technique, we can compress the storage
of the array that originally had the highest memory consumption to
a space complexity of O(|N| + |O] + |S*|). In practice, we can
reduce the GPU memory usage of the framework from 21.4GB to
3.9GB even on the design with the maximum number of regions
(i.e., Design_142 with 22 fence regions [20]), suggesting that the
constants beyond complexity are indeed tolerable.

C. Divergence-aware Density Weight Scheduling

Simultaneously optimizing multiple heterogeneous electrostatic
field systems can easily lead to divergence issues. Therefore, we
propose a modified divergence-aware subgradient-based method [26]
to update the density weight. For brevity, we follow the annotation
in [26], and denote two additional auxiliary variables as follows:

wi™ = 3" oW /x|y, VseS (3a)
i€Ns
dY = |vDW|,, vses (3b)

where N, represents all the nodes within the electrostatics system
denoted by s, and w) and d*) respectively represent the L1-
norm magnitudes of the wirelength gradient and density gradient

within each electrostatics system. The key difference of our weight
scheduling from [26] lies in the divergence-aware weight 6C) when
updating AV as follows:

0"+ — max (1, d(t“)/w““’) /A®
AU = min(u © oY /90t Y) (4b)

where ~y is emperically set to 2. The intuition behind 00 is that we
observe when the optimization comes to the final stage, the large
density gradients (\d(‘>| > \w(') ), whose underlying reason is the
excessively rapid growth of A, is likely to cause the optimization to
diverge. Thus, we introduce 8" to balance the density and wirelength
gradients. During the initial stages of optimization, the wirelength
gradient reigns supreme, thus it is imperative to regulate the growth
rate of A to not exceed 7 times. However, as we progress to the
later stages, when the density gradient becomes dominant, 0% can
effectively govern the growth rate of As not to surpass m
times. The larger the density gradient, the more pronounced the
decelerating effect of growth becomes. By employing this particular
strategy, we can effectively control divergence, and we will further
demonstrate its effectiveness in Section IV-C.

(4a)

D. Cascaded Macro Shredding Technique

We overcome the cascaded macro-constraints through the macro
shredding technique [27]. The basic idea is to substitute large
cascaded structures with multiple individual macros during the op-
timization process. During the initialization phase, we first identify
the cascaded macro groups and enlarge the weight of nets within the
cascaded macro groups by a factor of 2. Then, we shred the cascaded
macros into individual macros and update the placement. At the end
of each iteration, we gather the shredded macros and arrange them
in a columnar shape based on the horizontal coordinates of their
center of gravity. What sets it apart is that the resulting instance
sizes achieved through macro shredding can be directly processed by
any existing placement engine, but can also achieve similar results
when compared to the results when treating the cascaded shape as a
single one.

E. Look-ahead 10 Legalization

During the initial stages, movable IOs undergo optimization within
a dedicated electrostatics system. Due to the relatively smaller number
of IO instances and IO sites, the occurrence of IO overflow quickly
diminishes and remains stable. We observe that if the optimization
of IO positions continues unabated during this phase, the optimizer
may persistently pursue IO position optimization, thereby impeding
the optimization of other electrostatics systems. To address this issue,
when the following two conditions are met:

e The number of iterations exceeds 20.
e The numerical values of the IO overflow in the 20 most recent
iterations satisfy: (max — min)/mean < 0.1.

we employ a bipartite graph matching-based legalization algorithm
to proactively legalize the I1Os.

F. Two-stage FR-aware and CM-aware Macro Legalization

When the overflow of LUT and FF is less than 0.15, and the
overflow of BRAM and DSP is less than 0.25, it can be considered
that the macro is located near the target sites. Due to the varying
sizes and shapes of macros, as well as their significant impact
on routability, we sequentially apply the Tetris-based Legalization
algorithm and the bipartite matching-based legalization algorithm to
legalize cascaded macros and individual macros, while satisfying the
fence region constraints.



TABLE II: MLCAD 2023 Public Benchmark Suite Statistics [20].

\ Designs I Statistics |
Number 140
#Instances 558K-711K
#DSP+#BRAM 2.4K-2.7K
LUT (%) 70%-84%
FF (%) 38%-47%
BRAM (%) 80%-90%
DSP (%) 80%-90%
Rent® 0.65-0.72
#Regions 0-22
#Instances within Regions 0-285K
Instances within Regions (%) 0%-44.29%
Cascaded DSP Macros Size {2,5,7, 10, 60} x
Cascaded BRAM Macros Size | {2, 5, 7, 10, 30} x

IV. EXPERIMENTAL RESULTS

We implement our proposed algorithms in C++/Python and em-
brace Pytorch for agile GPU acceleration. We perform the ex-
periments on a Linux machine running with Intel(R) Xeon(R) Sil-
ver 4210R CPU (2.40 GHz, 10 cores), 320 GB RAM, and one
NVIDIA GeForce RTX 2080 GPU. The public benchmark suite
released by AMD Xilinx for the MLCAD 2023 FPGA macro
placement contest [20] are used to validate the effectiveness of the
proposed approaches. Section IV-A illuminates the benchmark and
the evaluation flow. In Section IV-B, we undertake a comprehensive
comparison between our proposed approach and other state-of-the-art
FPGA macro placers. In Section IV-C, we meticulously evaluate the
robustness of our proposed methodology.

A. Experimental Setup

1) Benchmark Suite: The target FPGA for the benchmark is a
16nm single-die Ultrascale+ xcvu3p ffvc1517-1-i device. The statis-
tics of the benchmark suite (140 cases) are summarized in Table II.
The high Rent values, the elevated resource utilization levels, the large
cascaded macros with a maximum length reaching half the height of
the layout, and the significant proportion of instances constrained by
fence regions make the placement problem highly challenging.

2) Evaluation Metrics: We employ the same formulas and nota-
tions, i.e., score and routability, as [20] to define the evaluation
metrics. We also report the raw macro placement runtime in minutes
as RTpnp for reference © . Additionally, we observe that the
intermediate metric routing_scoreyfina in [20] mostly yields a
value of 1 in the results, lacking discrimination. Therefore, we include
the total ripup-reroute iterations ' as an additional metric #ripup
to assess the complexity of detailed routing. It is worth noting that
the evaluation metrics, namely score and RT,,;;, are related to the
runtime and are machine-dependent. On the other hand, routability
and #ripup are machine-independent.

3) Evaluation Flow: We employ the evaluation flow identical to
the MLCAD 2023 contest [20]. We use Vivado 2021.1 for standard
cell placement and routing in this flow. We compare our proposed
framework with the top three FPGA macro placers in the contest
announcement [20], i.e., UTDA, SEU, and MPKU. The executables
are obtained from their authors and executed on our machine. UTDA,
SEU, and MPKU run on CPU with 16 threads, while our framework
is executed on GPU. It is noteworthy that the execution time of all
the placers is within 10 minutes, and it does not incur any penalty in
the metrics formula provided in [20]. Our placer supports running
on CPU as well. Its runtime is comparable to the other placers and
does not exceed 10 minutes. Due to the page limit, we omit to report
our placement runtime on CPU, since it does not trigger any penalty.

SRent serves as a metric that reflects the complexity of interconnect nodes
in terms of their routing demand in the Xilinx Vivado report. It is generally
considered that Rent exceeding 0.65 is deemed as high.

SPlease distinguish between the macro runtime score timempr. Their
relationship can be expressed as time,,,; = 1+max(0, RTy,,; — 10) [20].

"This metric is delineated as the total count of lines that encompass the
string "Number of Nodes with overlaps” within Phase 4 of the Vivado log
file.
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Fig. 5: The overflows and HPWL during the placement iteration
on the Design_156 using 1) the density weight updating method
in [26] (depicted in the upper graph), and 2) our proposed method
(depicted in the lower graph), respectively. The short dashed lines
represent look-ahead IO legalization (Section III-E), and the long
dashed lines represent area adjustment (Section III-A).

Meanwhile, we also include the default macro placement of Vivado
2021.1 as a reference, denoted as Vivado 2021.1. Since we
cannot determine the individual time taken by Vivado for macro
placement, we consider the variable timepg.r in [20] as the entire
default Vivado runtime and assume no macro placement penalty, i.e.,
timepmp = 1. This is reasonable as the aforementioned FPGA macro
placers do not incur any macro placement runtime penalty.

B. Comparison with State-of-the-Art Placers

Table III shows the overall comparison results with Vivado
2021.1, UTDA, SEU, and MPKU. The proposed placer demonstrates
a significant overall score improvement of 27.8%, 6.9%, 13.3%,
and 49.1% when compared to Vivado 2021.1, UTDA, SEU, and
MPKU, respectively. Table III also shows the detailed comparison
results of routability and #ripup, respectively. Our proposed
placer also achieves a routability improvement of 22.8%, 8.7%,
12.1%, and 39.1% respectively. In terms of #ripup, our proposed
placer also achieves a significant advantage, reducing #ripup by
10.8%, 2.7%, 4.0%, and 16.8% respectively, compared to Vivado
2021.1, UTDA, SEU, and MPKU. These results demonstrate that our
proposed placer can achieve superior routability, thereby reducing the
runtime of detailed routing and the number of ripup-reroute iterations.
In all three metrics, our proposed placer consistently achieves a
significant advantage, which fully demonstrates the superiority of our
proposed placer.

1) Runtime Evaluation: Table III shows the macro placement run-
time RT,p; of each placer. The experimental results demonstrate that
our GPU-accelerated multi-electrostatics-based placement achieves
3.180x%, 1.808, and 2.599 x speedup over UTDA, SEU, and MPKU,
respectively. These results demonstrate that our proposed placer can
achieve a significant speedup over the state-of-the-art FPGA macro
placers, thereby demonstrating the superiority of our proposed placer
in runtime.

C. Robustness Evaluation

Figure 5 exemplifies the underlying causes of divergence and
demonstrates the advantages of our proposed divergence-aware den-
sity weight scheduling. In the upper illustration, it is observed that
during divergence, the overflow does not decrease; instead, it slightly
increases. This indicates that the Nesterov algorithm fails to optimize
the energy potential ®. The primary reason for this lies in the
excessive growth of A at this stage, causing instances to wander



TABLE III: Comparison with State-of-the-Art Placers on MLCAD 2023 FPGA Macro Placement Benchmark Suite (140 Cases).

] Vivado 2021.1 UTDA (1sth) SEU (Isth) MPKU (2nd) Ours
Metrics Geo. Mean  Ratio | Geo. Mean Ratio | Geo. Mean  Ratio | Geo. Mean Ratio | Geo. Mean  Ratio
score 4.592 1.278 3.838 1.069 4.069 1.133 5.356 1.491 3.592 1.000

routability 2.802 1.228 2.482 1.087 2.558 1.121 3.174 1.391 2.282 1.000
#ripup 7.492 1.108 6.940 1.027 7.027 1.040 7.896 1.168 6.759 1.000
RTmpt - - 5.203 3.180 2.958 1.808 4.252 2.599 1.636 1.000

T UTDA and SEU are jointly ranked first in the official announcement.

near feasible sites (in the vicinity of the potential wells formed by
background density maps). Consequently, the search for the optimal
position is neglected, and even the range of optimal solutions is
surpassed.

On the other hand, in the lower illustration, we observe that our
proposed method effectively resolves the issue of divergence. Our
approach allows for the rational adjustment of the growth rate of A
while simultaneously preserving the reduction of overflow. In fact,
we have successfully applied our proposed method to all designs
in [20] without any rollback mechanism or entropy injection
strategies [26] , ensuring the absence of divergence and achieving
sufficiently low overflow. This substantiates the effectiveness of our
proposed divergence-aware density weight scheduling.

V. CONCLUSION

In this paper, we propose a robust multi-electrostatics-based FPGA
macro placer OpenPARF 3.0 that can handle both fence region
constraints and cascaded macro constraints efficiently. Based on the
SOTA multi-electrostatics-based FPGA placement model, we propose
a novel multi-electrostatics region model to handle the discontinuity
of the solution space as well as a macro shredding technique to
mitigate the imbalance in the size of the cascaded macros. We also
propose a dynamic density weight scheduling scheme to address
robustness issues of divergence. Experimental results on the ML-
CAD 2023 FPGA macro placement benchmark demonstrate that our
proposed framework can achieve 27.8%, 6.9%, 13.3%, and 49.1%
improvement compared to the recent cutting-edge FPGA macro
placers Vivado 2021.1, UTDA, SEU, and MPKU respectively, with
1.81-3.18 x speedup leveraging GPU acceleration.
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