
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017 1113

Redundant Local-Loop Insertion
for Unidirectional Routing

Xiaoqing Xu, Student Member, IEEE, Yibo Lin, Meng Li, Student Member, IEEE, Jiaojiao Ou,
Brian Cline, Member, IEEE, and David Z. Pan, Fellow, IEEE

Abstract—As the semiconductor manufacturing technology
continues to scale down to sub-10 nm, unidirectional layout
style has become the mainstream for lower metal layers with
tight pitches. Conventional redundant via (RV) insertion for yield
improvement has become obsolete because unidirectional rout-
ing patterns forbid off-track routing, i.e., wire bending, for the
metal coverage of RVs. To enhance the yield, redundant local-
loop insertion (RLLI) is a new way of inserting RVs due to
its compatibility with the unidirectional layout style. This paper
proposes the first global optimization engine for RLLI consider-
ing advanced manufacturing constraints. Our key contributions
include bounded timing impact analysis and evaluation for the
local-loop structure, net-based local-loop candidate generation
and pruning, an integer linear programming (ILP) formula-
tion and scalable iterative relaxation/linear programming solving
(IRLS) with incremental search scheme. Experimental results
demonstrate that with bounded timing impact (within 1%), the
ILP formulation obtains highest insertion rate while the IRLS
with incremental search scheme achieves scalable solutions with
competitive solution qualities.

Index Terms—Linear programming (LP), redundant local
loop (RLL), timing analysis, via density.

I. INTRODUCTION

DUE TO continued scaling of semiconductor technology,
the manufacturing process is becoming more and more

sensitive to process variations and random failures. In partic-
ular, via and wiring failures are major causes for the yield
loss of the integrated circuit (IC) during the back-end-of-line
(BEOL) process [1]. To reduce potential via and wiring fail-
ures at the post-routing stage, redundant via (RV) [2], [3] and
redundant wire [4], [5] insertions have been proposed for man-
ufacturing yield improvement. In advanced technology nodes,
metal connection stack consists of multiple metal layers with
various metal width and spacing [6]. For upper metal layers,
the wiring width and spacing are relaxed to provide low resis-
tance and timing “short-cuts” for long nets. For lower metal

Manuscript received July 22, 2016; revised October 9, 2016 and December
4, 2016; accepted December 28, 2016. Date of publication January 11, 2017;
date of current version June 16, 2017. This work was supported in part by
Semiconductor Research Corporation, in part by National Science Foundation,
in part by SPIE BACUS Scholarship, and in part by the University Graduate
Continuing Fellowship from the University of Texas at Austin. This paper
was recommended by Associate Editor M. Ozdal.

X. Xu, Y. Lin, M. Li, J. Ou, and D. Z. Pan are with the Department of
Electrical and Computer Engineering, University of Texas at Austin, Austin,
TX 78731 USA (e-mail: xiaoqingxu.austin@utexas.edu).

B. Cline is with ARM Inc., Austin, TX 78735 USA.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCAD.2017.2651811

layers, the geometric scaling leads to high metal density, which
is enabled by complex design-for-manufacturing constraints,
such as multiple patterning lithography and unidirectional lay-
out style. RV insertion (RVI) has been widely used in industry
to improve the manufacturing yield of metal interconnections,
where nonminimum width wire and wire bending are allowed.
In 10 nm and beyond, RVI is still feasible for upper metal lay-
ers with relaxed metal pitches. However, for lower metal layers
with tight pitches, unidirectional routing has become the main-
stream routine, which complies with the underlying multiple
patterning constraints [7], [8]. Unidirectional routing style
makes conventional RVI (double via) obsolete because uni-
directional routing patterns forbid off-track wiring, i.e., wire
bending, for the metal coverage of RVs. As shown in Fig. 1(a),
two RVs have been inserted for associated single vias (SVs).
Metal-2 (M2) and metal-3 (M3) tracks are horizontal and ver-
tical, respectively. The RV on the M2 track introduces M3 wire
bending and vice versa, which are strictly forbidden under the
restrictive unidirectional routing style. Therefore, as demon-
strated in Fig. 1(b), redundant local-loop insertion (RLLI),
as a supplementary scheme for lower metal layers, can
simultaneously insert RVs and redundant wires for yield
improvement of unidirectional routing [1]. A redundant local
loop (RLL) introduces via and wiring redundancy, i.e., redun-
dant M2/M3 patterns, to guarantee all redundant metal patterns
are on-track, which adheres to the unidirectional routing
style.

Bickford et al. [1] and Anderson et al. [9] first introduced
the local loop concept back in 2006. An ad-hoc local-loop
insertion routine was proposed at the post-routing stage. A
recent work [10] studied the yield and timing impact of
local loops of different sizes. It confirmed the yield enhance-
ment and demonstrated very small or negligible timing impact
using local loops with the empirical timing simulations.
However, comprehensive delay model analysis and timing
simulations for various RLL configurations were not pro-
vided [10]. Furthermore, the continued technology scaling
has imposed advanced manufacturing constraints on via lay-
ers. Among them, self-aligned via (SAV) [11], [12] and via
density constraints [13] are particularly important for manufac-
turing via patterns in advanced technology nodes. In addition,
our predictive timing simulations show that significant timing
degradations could be introduced with specific kinds of RLLs.
This means that those kinds of RLLs should be strictly for-
bidden to guarantee bounded and negligible timing impact for
RLLI. It should be noted that for full-chip local-loop insertion,

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017

Fig. 1. (a) RVI with wire bending. (b) RLLI for unidirectional routing
patterns.

these advanced manufacturing constraints on via patterns and
bounded timing impact from RLLI have to be considered, but
the prior work [1], [9], [10] focused on proving and validat-
ing the local-loop concept, and did not address the advanced
manufacturing constraints and timing impact aforementioned.

Moreover, all prior approaches for RLLI are greedy in
nature [1], [9], [10] and no systematic algorithms were
proposed for local-loop insertion in a full-chip manner. In
contrast, traditional RVI has been extensively studied with var-
ious advanced optimization schemes, including the maximum
independent set problem formulation, solved with fast heuris-
tics [2], [14], [15], and 0-1 integer linear programming (ILP)
formulation, solved with speed-up techniques [14], [16]–[18].
The conflict constraints for traditional RVI problem are purely
local, which means only redundant-via (RV) candidates for
neighboring SVs will introduce conflicts during RVI. This is
the major reason for the high solution qualities obtained from
fast heuristics and speed-up techniques for RVI.

However, for RLLI, one RLL candidate (RLLC) may con-
sist of multiple via and metal grids, which induces long-range
conflict constraints among RLLCs. Meanwhile, RVs within
one RLLC may cross multiple density windows. This means
RVs within RLLCs need to be balanced under via density
constraints across multiple density windows. Therefore, global
optimization schemes are strongly needed to achieve better
performance than the simple greedy scheme [1], [9], [10].
Moreover, the RLLI is not merely about maximizing inser-
tion rate, because reducing the insertion cost is critical to
considering distinct routing resource usages, timing and yield
impact for different RLLCs. It is important to combine the
optimization of insertion rate and cost while accommodat-
ing conflict and density constraints, which makes ILP a
competitive candidate for the global optimization scheme.

To the best of our knowledge, as technology moves toward
unidirectional routing and vias continue to scale to extremely
small geometries, which are difficult to yield and have high
parasitic resistance, we expect increasing adoption of local
loops in 10 nm and beyond. In this paper, we propose the
first global optimization engine for full-chip local-loop inser-
tion, in consideration of advanced manufacturing constraints
and bounded timing impact guided by SPICE simulations.
Under bounded search space, we enumerate the RLLCs for
each SV. Bounded timing impact is demonstrated with compre-
hensive Elmore delay model analysis and timing simulations.

With routing grid model, we further analyze the conflict
constraints among RLLCs and formulate the RLLI issue as
a binary ILP problem, which simultaneously improves the
insertion rate and reduces the overall cost of inserted RLLs.
Although the number of RLLCs generated is controllable by
limiting the search space, it is still much larger than that of
the traditional RVI problem, which means the ILP formu-
lation is not scalable to large designs with large numbers
of SVs. However, theoretical analysis reveals that, due to
the special constraint structures of ILP formulation, the lin-
ear programming (LP) relaxation leads to a solution that is
intrinsically close to the ILP-integral solution with appropriate
rounding schemes [19], [20]. Thus, we further propose the iter-
ative relaxation and linear programming solving (IRLS) with
incremental search scheme to achieve scalable solutions with
affordable performance degradations. Our main contributions
are summarized as follows.

1) We demonstrate bounding the timing impact due to
RLLI using Elmore delay model analysis and SPICE
simulations under the 10-nm predictive technology
setup.

2) We propose the first global optimization engine for the
RLLI at the post-routing stage considering advanced
manufacturing constraints and bounded timing impact
from RLLI.

3) With the net-based RLLC generation and pruning, we
formulate the RLLI issue as a binary ILP problem, which
simultaneously improves the insertion rate and reduces
the overall cost of inserted RLLs.

4) Taking advantage of the special constraint structures
of ILP formulation, we propose the IRLS with incre-
mental search scheme to obtain scalable solutions with
negligible solution quality degradations.

The rest of this paper is organized as follows. Section II
briefly introduces relevant background information and defines
the RLLI problem. Section III analyzes the timing impact and
discusses the net-based RLLC generation and pruning for the
RLLI problem, which is solved with the binary ILP formula-
tion and the scalable IRLS with incremental search scheme.
Section IV compares the experimental results under differ-
ent RLLI schemes and demonstrates the effectiveness of our
proposed approaches. Section V concludes this paper.

II. PRELIMINARIES

A. Redundant Local Loop

For unidirectional routing patterns, RLLs are inserted to
reduce the failure rate of within-loop SVs and one RLL could
cover multiple SVs as shown in Fig. 2, where RLLs are
inserted involving the M3, M2, and via-2 layers. RLL1 con-
sists of three redundant M3 grids, three redundant M2 grids,
and one RV grid while RLL2 includes five redundant M3
grids, three redundant M2 grids, and two RV grids. RLL1
has 3, instead of 5, redundant M3 grids due to existing M3
routing patterns, which are constrained by upper-level metal
connections within a routing solution. In practice, we need
to differentiate the cost of RLLs with different configurations

XU et al.: RLLI FOR UNIDIRECTIONAL ROUTING 1115

Fig. 2. RLL1, RLL2, and RLL3 with configurations as 3 × 3 × 1, 5 × 3 × 2,
and rm3 × rm2 × 3, respectively.

and the reasons are twofold. First, the RLLs with less num-
ber of RVs are preferred since a larger number of vias leads
to larger timing impact of a local-loop structure [10], which
will be demonstrated with comprehensive SPICE simulations
in Section IV-A. Second, RLLs with different configurations
may lead to distinctive yield impacts, which highly depends
on the technological setup and analysis [1], [10]. Therefore,
we define the configuration and cost of an RLL as follows.

Definition 1 (Redundant Local Loop): An RLL with the
configuration as rmx+1 × rmx × rvx is defined as a loop struc-
ture with rmx+1 redundant grids on the x + 1 metal layer, rmx

redundant grids on the x metal layer and rvx redundant grids on
the x via layer. Its cost is defined as α ·rmx+1 +β ·rmx +γ ·rvx,
where α, β, and γ are user-defined parameters.

Since the RLLI problem targets at inserting local-loop struc-
tures for SVs, we can enumerate valid RLLCs for an SV
within a limited local search space [10]. In this paper, we limit
the local search space by bounding the number of redundant
metal grids (i.e., rmx+1 or rmx) by a predetermined parame-
ter. Moreover, various RLLCs for an SV can be differentiated
using the cost definition above, where α, β, and γ are set to
make the cost inversely proportional to the yield and timing
improvement for an RLLC.

B. Advanced Manufacturing Constraints

1) Via-Pattern Constraints: In 10-nm node and beyond, the
center-to-center spacing of lower via layers is in the sublitho-
graphic domain [7]. SAV patterning [11], [12] is a promising
candidate for the sublithographic printing of via patterns. As
shown in Fig. 3(a), the neighboring vias in the horizontal
direction are merged into via cuts to enable SAV pattern-
ing for vias within the same via cut. The SAV patterning
takes advantage of the line spacers from manufacturing pro-
cedure and selectively etch via trenches defined by the via
cuts, which enables sublithographic printing of via patterns
within the same via cut. The patterning of via cuts is tech-
nology dependent and correlated to the M2/M3 patterning on
the lower/upper metal layer. The details on the manufacturing
procedures are introduced in [11] and [12]. This paper consid-
ers basic SAV constraints in [12]. For an SV in a routed net,
the neighboring via grids along the upper metal layer direc-
tion, such as vertical M3, are not available for RVs and the
neighboring via grids along the lower metal direction, such as

Fig. 3. (a) Via cuts for SAVs. (b) SAV design constraint.

Fig. 4. Via density windows.

horizontal M2, are only available for same-net RVs. An exam-
ple is shown in Fig. 3(b). Our RLLI schemes only depend on
the routing grid model and can be easily adapted to incorporate
more complicated SAV constraints.

Via density constraints are introduced primarily due to the
chemical-mechanical-polishing and other manufacturing steps,
which have varying outcomes depending on local layout den-
sities [13]. If the number of RVs inserted within a density
window is not well controlled, the violation of via density
constraint could be detrimental to the yield of the design [14].
The windows for via density control are illustrated in Fig. 4.
Specifically, a via layer is partitioned into a set of square
regions. Each of the squares has a width of λ and the total
number of vias, including SVs and RVs, within each window
cannot exceed the preset upper bound. A possible scenario of
the inserted RLLs is shown in detail for neighboring windows,
i.e., Wn+2 and Wn+3, in Fig. 4. With local search space of the
RLLCs for an SV, an RLL may cross multiple density win-
dows, such as Wn+2 and Wn+3. This means that the optimal
RLLI scheme should simultaneously consider all density win-
dows to globally balance the via densities and maximize the
number of RLLs inserted.

2) Metal-Pattern Constraints: Unidirectional metal patterns
are manufacturing friendly in the sublithographic domain,
which enables track-based coloring schemes for multiple pat-
terning lithography. This paper addresses basic metal-pattern
constraints including minimum metal tip-to-tip rule (one metal
grid) for line-end control and minimum metal-length rule
(two metal grids) to avoid short metal defects. In advanced
technology nodes, complex metal pattern rules are technol-
ogy dependent. For example, self-aligned multiple patterning
introduces complex line-end rules, which can be explicitly

1116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017

considered by avoiding prohibited line-end positions dur-
ing the RLLC generation [21], [22]. This paper primarily
focuses on the global optimization of the RLLI and provides a
design-rule-checker interface, which enables the incorporation
of technology-specific metal and via pattern constraints (see
Section III-B).

C. Problem Definition

Given a design with unidirectional routing for each net on
a routing grid model, this paper focuses on the RLLI with
bounded timing impact for routed SVs at the post-routing
stage. Apart from the advanced manufacturing constraints
aforementioned, we need to explicitly consider the follow-
ing constraints to obtain legal RLLIs. First, at most one RLL
should be inserted for one SV. Second, two RLLs inserted
cannot occupy the same grid unless they belong to the same
net. Third, the RLLI scheme should minimize the total cost
of RLLs inserted since the cost is defined to be inversely pro-
portional to the timing and yield improvement of a specific
RLLC. Thus, we define the RLLI problem as follows.

Problem 1 (Redundant Local-Loop Insertion): Given the
unidirectional routing design and a set of density windows,
the RLLI problem is to insert RLLs to cover as many routed
SVs as possible while reducing the total cost of the inserted
RLLs and accommodating advanced manufacturing constraints
and bounded timing impact.

III. REDUNDANT LOCAL-LOOP INSERTION

A. Timing Impact Analysis

As shown in Fig. 2, an RLLC consists of redundant metal
wires and vias, which generates a loop structure in routing
solution. This makes timing analysis more complicated than
that of the original routing tree. With the simplified RC net-
work, our Elmore delay model provides a closed-form solution
of the delay impact with signal delay computation in nontree
RC networks [23], which extends the empirical timing anal-
ysis in [10]. Fig. 5(a) shows the simplified RC network for
an RLLC, where notations are given in Table I. The primary
path (from routing tree) and secondary path (from RLLC) from
driver to load are denoted by black and red lines, respectively.
This RC network can model any RLL defined in Definition 1
if the related resistance and capacitance are provided. The
Elmore delay computation in nontree topology [23] is based
on the split RC network shown in Fig. 5(b). The key idea is
that node N can be split into three independent nodes, i.e., N1,
N2, and N3, and the delay of the three nodes are the same.
Further delay analysis and computation yield the following
closed-form solution of the delay impact from driver to load
due to RLLI1:

�delay = Cs · Rd + Cs · Rp · Rs − Cp · R2
p − 2 · Cl · R2

p

2 · (
Rp + Rs

) .

The close-form solution of �delay reveals that the delay
impact from RLLI could be quite different depending on spe-
cific resistance and capacitance parameters. In general, timing

1The detailed principles of computation for �delay are given in [23].

TABLE I
NOTATIONS FOR RC NETWORKS

Fig. 5. Elmore delay model for one RLLC. (a) Simplified RC network.
(b) Split RC network.

degradations could be arbitrarily small even negative (timing
improvements) if the resistance (Rs) and capacitance (Cs) on
the secondary path are much smaller compared to those (Rp

and Cp) on the primary path. If secondary-path resistance and
capacitance are relatively large, associated RLLCs should not
be inserted due to prohibitively large timing degradations.

The closed-form solution (Elmore delay) is computed using
simplified RC network for primary and secondary paths, where
via and metal resistance/capacitance on the primary/secondary
path are combined for one pi model as shown in Fig. 5(a).
For accurate timing evaluations, Elmore delay is conserva-
tive compared to SPICE simulations. Moreover, the via/metal
resistance and capacitance shall be modeled separately for
better accuracy, which generates a much more complex RC
network. Therefore, comprehensive SPICE simulations shall
be performed with complex RC networks aforementioned to
determine actual timing impacts. As will be discussed in
Section IV-A, the RLLI could introduce a wide range of timing
impact, i.e., delay increase or decrease, depending on specific
RLL configurations. To enable practical adoption of RLLI, we
bound the resulting timing impact due to RLLI by forbidding
RLLCs with timing degradations greater than a preset tim-
ing impact amount. Therefore, the timing impact analysis and
simulation yield a look-up table (LUT) of forbidden RLLC
configurations under the preset timing impact bound, which
will be used for RLLC generation and pruning.2

B. RLLC Generation and Pruning

We first discuss the RLLC generation for each SV. As
mentioned in Section II, rmx+1 and rmx are bounded by a
preset parameter for limiting the search space of RLLCs for
an SV. The region for valid RLLCs of an SV is subjected
to a distance constraint, i.e., the horizontal and vertical dis-
tance from the SV to the farthest corner of the RLLC is
bounded by a preset parameter. Thus, all valid RLLCs for

2Our RLLI scheme is independent of the timing engine as long as an LUT
of forbidden RLLC configurations is given.

XU et al.: RLLI FOR UNIDIRECTIONAL ROUTING 1117

Fig. 6. RLLC generation for one SV.

an SV are bounded by a rectangular region. Fig. 6 illustrates
an example of RLLC generation for an SV in a net with rm3
and rm2 bounded by 5. For sv1, the region for valid RLLCs
is shown with the rectangle with dashed lines. During the
RLLC generation for sv1, we scan the rectangular region and
skip forbidden RV grids and metal grids occupied by a dif-
ferent net for valid RLLCs of sv1. For example, due to the
SAV constraints, forbidden RV grids are shown in Fig. 6 and
RLLCs occupying those via grids are invalid. One valid RLLC
for sv1 is further shown in Fig. 6, which covers two SVs,
i.e., sv1 and sv2. It shall be noted that, during the sequen-
tial RLLC generation, this RLLC will be generated twice
for sv1 and sv2. In general, the sequential RLLC generation
leads to duplicates, i.e., equivalent RLLCs, for SVs belong-
ing to the same net. We define the equivalence of two RLLCs
as follows.

Definition 2 (Equivalence of RLLCs): An RLLC is
defined to be equivalent to another RLLC when they
share the same metal and via grids associated with the
same net.

We propose net-based RLLC generation and pruning tech-
nique to remove duplicates and achieve a compact set of
RLLCs for each SV. The details of the RLLC generation and
pruning scheme are shown in Algorithm 1. The RLLCs are
generated in a net-by-net manner, which is explained from
lines 3 to 18 of Algorithm 1. For each net, we define RLLCnet
in line 4 to store a compact set of RLLCs belonging to that net.
Then, the SVs within the net are traversed from lines 5 to 9.
We enumerate the RLLCs for SV v as the set {rllc} in line 6. In
line 7, we further remove illegal RLLC configurations based
on the timing analysis in Section III-A and the design rule
checker (DRC). Notable design rules included here are the
minimum metal tip-to-tip rule (one metal grid), minimum
metal-length rule (two metal grids) and SAV design rules in
Section II-B. In advanced technology nodes, complex metal
and via pattern rules are technology dependent, which can be
easily incorporated into our optimization engine by inventing
technology-specific DRC. The enumerated set {rllc} will be
further combined into RLLCnet in line 8. In particular, since
RLLCnet is a set data structure, it will automatically remove

Algorithm 1 RLLC Generation and Duplicate Removal
Input: Routed patterns for nets ({nets}), a lookup table (LUT)

of forbidden RLLCs from bounding timing analysis and
a design rule checker (DRC);

Output: A set of RLLC vectors indexed by single vias
({RLLCvi}) and a compact vector of RLLCs (RLLC);

1: Define RLLC as a compact vector of RLLCs for all SVs;
2: Define {RLLCvi} as the set of RLLC vectors indexed by

single vias;
3: for each net in {nets} do;
4: Define RLLCnet as the set of RLLCs for net;
5: for each single via vi in net do;
6: Enumerate RLLCs for vi as set {rllc};
7: Remove illegal RLLCs in {rllc} with bounded

timing (LUT) and design rule checker (DRC);
8: RLLCnet = RLLCnet ∪ {rllc};
9: end for

10: for each llc in RLLCnet do;
11: Index llc with the size of RLLC;
12: Push llc to RLLC;
13: end for
14: for each single via vi in net do;
15: Define RLLCvi as the RLLC vector for vi;
16: Select RLLCvi from RLLCnet;
17: end for
18: end for
19: for RLLCvi indexed by SV vi do;
20: Prune redundant candidates in RLLCvi ;
21: end for
22: Return {RLLCvi} and RLLC;

duplicates according to the definition of the RLLC equiva-
lence in Definition 2. In lines 10–13, we index the RLLCs
generated for current net based on the size of compact RLLC
vector RLLC, which are further merged into RLLC. We need
a compact vector of RLLCs because only one binary variable
is generated for an RLLC covering multiple SVs in mathemat-
ical formulations. From lines 14 to 17, we obtain a vector to
index the RLLCs for each SV in the net. The RLLC vec-
tor for each SV (RLLCvi) will only be selected from the
compact set of RLLCs, i.e., RLLCnet, computed for the net.
This guarantees no duplicate among the RLLCs generated for
each SV.

We analyze the complexity of Algorithm 1. Related nota-
tions are defined in Table II. The net-based RLLC generation
and pruning form a loop over the total number of nets (N)
in a design, which means the complexity is linear to N.
Within each loop, all RLLCs enumerated are stored in a set
(RLLCnet). The maximum size of RLLCnet is bounded by
O(M · R), i.e., maximum number of SVs per net times the
maximum number of RLLCs per SV. Thus, the set (RLLCnet)
construction time (from lines 4 to 9 in Algorithm 1) is
O(M · R · log(M · R)). In lines 10–13 and 14–17, merging
RLLCnet to RLLC and RLLC selection for each SV both
take O(M · R) time. The enumeration loop in lines 3–18 takes
O(N · M · R · log(M · R)) time. In line 20, we sort the RLLCs

1118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017

TABLE II
NOTATIONS FOR RLLI

for each SV based on cost and a linear-time scan can prune
out redundant candidates, which altogether takes O(R·log(R)).
The total number of SVs is bounded by O(N · M). The prun-
ing technique in lines 19–21 takes O(N · M · R · log(R))

time. Therefore, the time complexity of Algorithm 1 is
O(N · M · R · log(M · R)). We further assume each net has
approximately the same number of SVs and each SV has
approximately the same number of RLLCs, i.e., M � |SV|/N
and R � L/|SV|. Then, the time complexity of Algorithm 1
reduces to O(N · |SV|/N · L/|SV|) · log(|SV|/N · L/|SV|),
i.e., O(L · log(L/N)).

The last step in Algorithm 1 from lines 19 to 21 is to further
prune RLLCs without loss of optimality. For RLLCvi associ-
ated with an SV vi, if there exists an isolated RLLC with a
cost of ci, we can potentially prune some RLLCs in RLLCvi .
Those RLLCs shall have a larger cost than ci and occupy
the same via density windows as the isolated RLLC with a
cost of ci. An isolated RLLC means no other RLLCs conflict
with it on the routing grid except for those RLLCs belong-
ing to the same SV. Suppose any pruned RLLC is eventually
selected in an optimal RLLI solution, we can always replace
it with the isolated one for a lower cost and meanwhile the
window density distributions remain the same. This contra-
dicts with the optimality of the given RLLI solution. Thus, the
pruning technique guarantees optimality. As discussed in the
following section, each RLLC has an associated binary vari-
able. Then, the RLLC pruning techniques in Algorithm 1 help
to reduce the number of variables and constraints for our ILP
formulation.3

C. ILP Formulation

With the RLLCs generated for each SV, Problem 1 becomes
a general assignment problem to cover as many SVs as pos-
sible while reducing the total cost of inserted RLLs. Related
notations are shown in Table II. We assume each RLLC has
binary variable xi that denotes whether the ith RLLC llci is
selected to cover associated SVs. In particular, only one binary

3This pruning technique could be restrictive under long-range conflict con-
straints and via density constraints, which may limit the effectiveness for
practical test cases.

variable is generated for an RLLC covering more than one SV.
Then, Problem 1

max CB ·
∑

xi

ni · xi −
∑

xi

ci · xi (1)

s.t.
∑

xi∈Xj

xi ≤ 1 ∀Xj ∈ X (2)

∑

xi∈A

xi ≤ 1 ∀A ∈ G ∪ SA (3)

∑

llci∈Wk

vik · xi ≤ DBk ∀Wk ∈ W (4)

xi ∈ {0, 1} ∀xi ∈ Xj ∈ X (5)

can be formulated as a binary ILP problem. The objective
of our ILP formulation consists of the weighted summation
of the associated RLLC binary variable xi, which should be
maximized to improve the insertion rate and reduce the cost of
inserted RLLCs. The objective (1) consists of two terms. The
term (CB ·∑xi

ni ·xi) is the first objective, which improves the
insertion rate. The parameter ni is added before xi to consider
that one RLLC may cover multiple SVs. The selection of that
particular RLLC can cover ni SVs. The term (−∑

xi
ci · xi) is

the second objective, which reduces the overall cost of inserted
RLLs. The two terms are balanced using the parameter CB,
where CB > maxi ci. Therefore, our formulation can simulta-
neously improve the insertion rate and reduce the overall cost
of inserted RLLs.

To ensure legal assignment results for the RLLI problem,
we consider three sets of constraints listed as follows.

1) At most one RLLC is assigned to each SV. Thus, the
summation of all xi ∈ Xj is bounded by one to guarantee
that at most one binary variable will be 1 as listed in
constraint (2).

2) Conflict constraints are primarily related to two rea-
sons. First, one single grid can only be occupied by
one RLLC. Second, conflicting via grids cannot be
occupied simultaneously under SAV constraints. Related
constraints are represented by constraint (3).4

3) Via density constraints are applied to each density win-
dow. Since one RLLC may have multiple vias and cross
multiple density windows, the value of coefficient vik

denotes the number of RVs from llci in window Wk. The
total number of vias in a window should not exceed an
upper bound DBk and the related constraints are listed
in constraint (4).

Our RLLI works on the given routing grid model. The metal
and via grids store references to the RLLCs occupying those
grids during the RLLC generation and pruning. Then, a sim-
ple grid traversal can set up all the constraints aforementioned.
The objective of the ILP formulation combines two objectives
for simultaneous insertion rate and RLL cost optimization.
Moreover, the ILP formulation can globally balance the via
densities for constraints (4), which generates much better
solution qualities than a simple greedy scheme.

4Similar conflicting constraints can be added once technology-dependent
design rules are given for metal and via patterns.

XU et al.: RLLI FOR UNIDIRECTIONAL ROUTING 1119

D. Special Constraint Structures

Although optimal solutions can be obtained with the ILP
formulation for Problem 1, the exponential time complexity
of the ILP formulation makes it unscalable to large problem
sizes. It shall be noted that a typical ILP solving approach
for Problem 1 involves two steps [19], [20]. The first step is
to relax the binary constraints in constraint (5) into the linear
constraints (0 ≤ xi ≤ 1) and solve the LP-relaxed problem
instance. The second step is to retrieve the binary solution
via branch and bound scheme with the bounding information
provided by LP-relaxed solution, which can be prohibitively
time-consuming for a complex ILP problem.

Fortunately, the special constraint structures in Problem 1
lead to an LP-relaxation solution that is intrinsically close to
a binary solution. Specifically, the selection constraints in (2)
and conflicting constraints in (3) are strong valid inequali-
ties [19] and can reduce the feasible region (polytope) of
the LP-relaxed problem instance, which makes the LP-relaxed
solution close to a binary solution. Strong invalid inequality
means that each constraint in (2) and (3) is tight. Supposing
k RLLCs conflict with each other, only one variable within
{xi,∀i ∈ [1, k]} can be assigned as 1, which can be formulated
as two kinds of linear constraints, including loose inequality
and strong invalid inequality in the following equations:

xi + xj ≤ 1 ∀i, j ∈ [1, k] (6)
k∑

i=1

xi ≤ 1. (7)

The selection constraints in (2) and conflict constraints in (3)
are generated for each SV and each routing grid, which makes
them strong in nature. For the geometric solution space of an
LP-relaxed instance, the strong valid inequalities, such as (7),
play as cutting planes to bound the LP solution to close to
integral [19]. The via density constraints in (4) turn out to be
the same as capacity constraints for the ILP formulation of a
constrained multiple knapsack problem [20]. It has been shown
that LP-based relaxation effectively delivers integral solutions
to the ILP formulation of the constrained multiple knapsack
problem [20]. Therefore, due to special constraint structures
in Problem 1, LP relaxation provides valuable opportunities to
obtain close-to-integral solution.

Nonintegral solutions generally exist from LP-relaxed
instance even with strong valid inequalities (2), (3) and
capacity constraints (4) for a constrained multiple knapsack
problem. Thus, randomized rounding schemes are adopted
in [19] and [20], where final solutions can be bounded to
optimal solutions with a certain probability. However, random-
ized rounding scheme generates uncertainty in the solution,
which is not preferred for the RLLI problem. Instead, we
propose a deterministic greedy scheme after solving LP-
relaxed instances, which empirically delivers close-to-optimal
solutions.

E. IRLS With Incremental Search

To take advantage of the special constraint structures afore-
mentioned, we propose an IRLS with incremental search

Algorithm 2 IRLS With Incremental Search
Input: An instance of the RLLI problem (RLLI) and the

single via set (SV);
Output: The assignment (F) of RLL for each SV;

1: Define F as the assignment of RLL for each single via;
2: while True do;
3: Find the optimal solution Xopt with LP(RLLI);
4: Define A0 = ∅ as the integral assignment with 0’s;
5: Define A1 = ∅ as the integral assignment with 1’s;
6: for each xi = 1 in Xopt do;
7: Add xi = 1 to A1;
8: end for
9: if A1 = ∅ then

10: Break;
11: end if
12: for each conflict constraint C in (2) and (3) do;
13: Define XC as the variable set in C;
14: if XC ∩ A1
= ∅ then;
15: Add XC − A1 to A0 with assignment 0;
16: Remove C and XC from RLLI;
17: end if
18: end for
19: for each window density constraint C in (4) do;
20: Update DBk with assignment A1 ∪ A0;
21: end for
22: Update the objective (1) with assignment A1 ∪ A0;
23: F = F ∪ A1 ∪ A0;
24: end while
25: for each single via vi in SV do;
26: if no RLLC assignment to vi in F then;
27: Obtain the set of RLLCs (RLLCvi) for vi;
28: Sort RLLCvi in the increasing order of cost;
29: Traverse RLLCvi for the first legal candidate com-

pactable with F and add it to F;
30: end if
31: end for
32: Return F;

scheme to iteratively solve the LP-relaxed problem instance
followed by an incremental search step for a scalable solution.
Within each iteration, we determine the integral assignment,
ignore noninteger results from the optimal LP solution and
update the problem instance itself. The iteration stops when
no integral assignment can be achieved with the LP relax-
ation for the problem instance. For those SVs without RLLCs
assigned from the iterative LP solving procedure, an incre-
mental search step is adopted, i.e., greedy rounding for IRLS,
to improve the result quality.

The details of the IRLS scheme for Problem 1 are shown
in Algorithm 2. The main loop for IRLS is from lines 2 to 24.
Within each iteration, the LP relaxation of the RLLI problem is
solved and optimal solutions are stored in Xopt at line 3. From
lines 6 to 8, we obtain the integral assignment A1 from Xopt,
where only variables with solutions as 1 are collected into A1.
From lines 12 to 18, we iterate through the conflict con-
straints for constraints (2) and (3). We define the variable set in

1120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017

constraint C as Xc in line 13. In line 15, if one of the variables
in Xc has been assigned as 1 in A1, we can deduce that all other
binary variables should be assigned 0 (add to A0) since each
conflict constraint requires that only one binary variable can
be assigned to 1. In line 16, we update the problem instance
RLLI by removing related conflict constraints and variables
because associated binary variables have become constants
with assigned 0/1 values. From lines 19 to 21, the density
upper bound DBk is updated for each density window con-
sidering the integral assignment A1 ∪ A0. Each RLLC with a
binary variable as 1 in integral assignment A1 consumes the
density budgets in related density windows. This means the
density upper bound of the related density windows shall be
updated for the next iteration of integral assignment. In line 22,
the objective is further updated with the integral assignment
A1 ∪ A0 since variables in A1 ∪ A0 become constants for the
next iteration. With the update on the problem instance RLLI,
the next iteration of LP relaxation performs another round of
integral assignment on top of the previous assignment results.
We stop the iteration when no integral assignment can be
obtained from the Xopt as shown in lines 9–11. An incremental
search step is explained in lines 25–31. During the incre-
mental search, for each SV without RLL inserted (line 26),
we traverse associated RLLCs in the increasing order of cost
(line 28) until a legal RLLC can be inserted or no legal RLLC
is obtained (line 29). This is equivalent to a greedy rounding
step if no integral solution is achieved for a specific variable
after IRLS procedure.

In particular, the problem scale, including the number of
variables and constraints, of the later iteration will be much
smaller than that of the former iteration and the LP problem
instance will be updated based on fixed values (0/1). Then the
solution space, i.e., polytope, of the LP instance for the later
iteration will be different (smaller dimension) from the former
iteration. One vertex of the polytope is one feasible solution
of the LP instance. A typical LP solver adopts the simplex
algorithm to seek an optimal solution by moving from one
vertex to another vertex of the polytope. The optimal solution
of the former iteration is a vertex of the polytope for the cor-
responding LP instance. It is within the solution space but not
necessarily a vertex of the polytope for the later LP instance.
By moving among vertices of the polytope for the updated LP
instance, the IRLS scheme keeps updating the solution of the
RLLI. In theory, it is possible that the first iteration of IRLS
produces nonintegral values for all variables. The solution for
each iteration of IRLS also depends on specific ILP solver and
underlying solving schemes. But in practice, the corner case
aforementioned rarely happens in real experiments because
LP relaxation provides a close-to-integral solution. Moreover,
an incremental search step is performed after the IRLS solv-
ing. This means our IRLS with incremental search scheme
can deliver insertion results at least as good as the greedy
scheme.

For the IRLS with incremental search scheme, each iteration
of LP solving simultaneously considers all conflict constraints
and via density constraints. With an incremental search step,
it gives much better solution qualities than the simple greedy
scheme. Meanwhile, the LP relaxation leads to polynomial

time complexity within each iteration, which makes the run-
time of the IRLS with incremental search scheme much more
scalable than the optimal ILP approach.

IV. EXPERIMENTAL RESULTS

We have implemented the RLLI algorithms in C++ and
all experiments are performed on a Linux machine with a
2.9 GHz Intel Core and 192 GB memory. Gurobi [24] is
adopted as our ILP/LP solver. For RLL cost, the parameters
are set as α = β = 1.0 and γ = 5.0. The cost upper bound
for weight computation is set as CB = 100.0. For limiting
the search space of RLLCs for an SV, the upper bound of
rmx+1 and rmx is set as 20. For windows of via density con-
trol, the width is set as λ = 20 routing grids and the via
density upper bound within a window is set as 40 for results
in Tables IV and V. The benchmark statistics are listed in
Table III, where modules from OpenSparc T1 are synthesized
with Design Compiler [25] and placed using Cadence SOC
Encounter [26] with the standard cell utilization rate set as
0.7. The unidirectional routing results are generated using a
state-of-the-art unidirectional router [27] and mapped onto a
routing grid model. The routing density of the original unidi-
rectional routing results is relatively low. Extra blockages are
created on the M2 and M3 layer to represent dense routing
cases in advanced technology nodes. Specifically, we take the
sparse cases, i.e., the original unidirectional routing results,
and add metal blockages every one out of three tracks (every-
where the routing grid is not occupied), which attempts to
increase the routing utilization by 33% over the sparse cases.
Our experiments end up with sparse and dense routing cases
in Tables IV and V, respectively. Our framework is based on a
grid structure and supports partitioning of large benchmarks to
make the runtime and memory more practical, e.g., test case
“sparc” is partitioned into nine parts evenly in physical dimen-
sion. We further run our algorithm on each part separately
for affordable memory and runtime. Our RLLI optimization
framework takes the unidirectional routing patterns on the
routing grid model as the input for the post-routing RLLI.

A. RLLC With Bounded Timing Impact

Our timing simulations build on the 10-nm predictive tech-
nology setup, where wire resistance and capacitance are set by
the ITRS roadmap [28] and via resistance is provided by our
industrial collaborator. The driver is set as the INV_X1 from
the NanGate 15-nm library [29] scaled to 10-nm dimensions
with PTM models [30]. We assume the M2 and M3 layers
share the same resistance/capacitance and the input routing
solution has no detour. Under bounded local search space, we
only consider RLL configurations shown in Fig. 7(a), where
each RLLC is in the rectangular shape and covers at most
two SVs. A rectangular RLLC covers exactly four vias. If an
RLLC covers more than two SVs, that means the input rout-
ing solution has detour because the router should have selected
the path containing RVs (less than 2) for short wirelength and
a smaller number of SVs. For SPICE simulations of fan-out-
4 delay impact in Fig. 7(b), we adopt the pi model for each
wire segment and via leading to more accurate RC network for

XU et al.: RLLI FOR UNIDIRECTIONAL ROUTING 1121

TABLE III
BENCHMARK STATISTICS

TABLE IV
RESULT COMPARISONS ON SPARSE ROUTING WITH DIFFERENT RLLI SCHEMES

Fig. 7. (a) Complete set of RLLC configurations assuming no detour in a
routing solution. (b) Timing impact evaluation.

delay simulations than that in Fig. 5. The primary path consists
of M2 and M3 wire segment both in 4-um length [10].

As shown in Fig. 7(b), a wide range of delay impact, from
−1.5% to +9%, is introduced for different configurations of
RLLCs and the delay bound is set as 1%. The general obser-
vation from timing analysis is that more RVs in an RLLC will
introduce larger secondary-path resistance and capacitance,
which further leads to larger timing impact. Specifically, for
one RLL configuration such as case 5, the timing degradations
increase as the number of redundant metal grids increases as
shown in Fig. 7(b). Moreover, for the same number of rm2 and
rm3, the secondary-path resistance and capacitance increase
monotonically from cases 1 to 5, which makes timing degra-
dations monotonically increase as well. For cases 4 and 5,
the timing degradations can be prohibitively large (9%). The
delay impact bound is set as 1% in our experiments during
RLLC generation, which means we strictly forbid the RLLCs
with more than 1% delay impact. Although our timing simu-
lations are preliminary, more accurate timing analysis can be
easily introduced to the RLLI framework as long as an LUT
of forbidden RLLC configurations is provided.

B. Comparisons on Different RLLI Schemes

In Tables IV and V, we compare four RLLI schemes, includ-
ing the greedy scheme, the ILP scheme, the IRLS without
(w/o) and with (w/) incremental search scheme, in terms of

solution qualities for the RLLI problem. The greedy scheme
is adapted from [9] and [10] with explicit considerations of
SAV and via density constraints. The greedy scheme is the
same as the incremental search in Algorithm 2 without the
initial assignment results from IRLS. In Tables IV and V, the
insertion rate, denoted as “I.R.,” is defined as the number of
SVs with an RLL inserted over the total number of SVs in
the design. The “RLL#” is the total number of RLLs inserted.
To quantify the RV usage for each RLL inserted, we aver-
age the number RVs from the inserted RLLs over the total
number of inserted RLLs, i.e., RV number per RLL, denoted
as “R.p.R.” “T” denotes the runtime. In general, better RLLI
schemes should lead to larger RLL# and higher I.R. for yield
improvement, less R.p.R for less resistance and smaller tim-
ing impact as shown in Fig. 7. Although the greedy scheme
runs very fast due to linear time complexity, it has several
drawbacks in terms of solution qualities for both sparse and
dense routing cases. First, the I.R. is not consistent and highly
depends on the test cases. For “ecc,” the I.R. is more than
98% (sparse) and 82% (dense) while for “alu,” the I.R. is
less than 81% (sparse) and 61% (dense). Second, the R.p.R is
higher than the IRLS w/ incremental search scheme by 13.1%
(sparse) and 9.0% (dense) on average. This means the IRLS w/
incremental search can effectively select those RLLCs cover-
ing multiple SVs, which in general induces less timing impacts
as shown in Fig. 7. Third, for the benchmark “top”: the greedy
scheme has around 10% less I.R. and ≥ 10% higher R.p.R
compared to the IRLS w/ incremental search scheme for both
sparse and dense routing cases.

The incremental search step is critical to result quality of
Algorithm 2. In Tables IV and V, more than 16% I.R can be
obtained with the incremental search on top of IRLS results
with negligible runtime impact. This is because nonintegral
solutions may still exist from LP-relaxed instances, which
means RLLCs are not assigned to some SVs after IRLS proce-
dure. As RLLC generation and most of the assignment task has
been performed after IRLS procedure, the incremental search
takes linear time complexity, which is negligible compared to
the runtime of RLLC generation and IRLS.

1122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017

TABLE V
RESULT COMPARISONS ON DENSE ROUTING WITH DIFFERENT RLLI SCHEMES

Fig. 8. Parameter analysis with benchmark alu. (a) Degradations of insertion
rates as the window density upper bound decreases with γ set as 5. (b) Change
of insertion rate when varying γ with window density upper bound set as 40.

The ILP scheme maximizes a weighted sum to simulta-
neously improve the insertion rate and reduce the overall
insertion cost. The best solution qualities are reported for the
first three and four test cases for sparse and dense routing,
respectively. However, the exponential time complexity of the
ILP scheme leads to unaffordable runtime for large test cases.
In particular, for the sparse routing case, ILP cannot generate
a solution for alu under 105 s although alu has similar problem
scale as “ctl.” The I.R. for alu is 14.83% and 7.55% less than
that of ctl for greedy and IRLS w/ incremental search scheme,
respectively. This means that the constraints for alu are very
hard to resolve than those for ctl, which forbids ILP scheme
reaching an optimal solution within 105 s. Actually, IRLS
w/ incremental search scheme achieves competitive solution
qualities as the I.R. is less than the ILP scheme by only 1%
for the first three test cases. We achieve significant speed-up
from the IRLS w/ incremental search scheme as the runtime is
much more scalable and affordable across various test cases
compared to the ILP approach. In addition, compared with
the greedy scheme, the IRLS w/ incremental search scheme
improves the I.R. by 17.8% and 16.3% with 18.2% and 15.3%
increase in RLL# on average for sparse and dense routing,
respectively. In practice, the problem scale of later iterations
of the IRLS procedure reduces dramatically, which makes it
more scalable than the ILP scheme among test cases with dif-
ferent sizes shown in Tables IV and V. Therefore, we argue
that the IRLS w/ incremental search is the best scheme among
the four schemes aforementioned since it has much better solu-
tion qualities than the greedy scheme and significant speed-up
compared to the ILP approach.

As mentioned in Section II, via density constraints are criti-
cal for the RLLI problem because one RLL may cross multiple

density windows. This not only introduces complicated con-
flicting constraints but also brings the opportunity to globally
balance the via densities with efficient RLLI schemes. The
strength of the IRLS w/ incremental search scheme is further
demonstrated by the tradeoff between the insertion rate and the
window density upper bound in Fig. 8(a) for both sparse and
dense routing cases. The insertion rates are approximately the
same for the greedy and IRLS w/ incremental search scheme
when the upper bound is at 100 due to loose via density con-
straints. However, when the upper bound gradually decreases,
the insertion rate rapidly decreases for the greedy scheme
while the decrease for the IRLS scheme is much slower. Since
the IRLS w/ incremental search scheme globally considers
the via density constraints in each iteration, we observe better
insertion rates when the upper bound is pushed to its lower
limit.

For RLL cost, we assume metal patterns with the same
length on M2 and M3 share the same resistance and capac-
itance. Thus, α and β are normalized to 1.0. In 10-nm
technology setup, the SV resistance will be larger than a piece
of metal with minimum length (two metal pitches in our exper-
iments). Thus, we set via cost coefficient (γ) larger than α and
β. Fig. 8(b) further demonstrates the impact on insertion rate
from different via cost coefficient. In general, a larger via cost
coefficient leads to lower cost for RLLCs with less number
of RVs, i.e., RLLCs covering more than one SV. As shown
in Fig. 4, these RLLCs usually cross more than one density
window, which globally balances via densities and generates
higher insertion rate. When γ increases, the insertion rate from
the IRLS w/ incremental search scheme increases more slowly
than that for the greedy scheme. The IRLS w/ incremental
search scheme is still more favorable than the greedy scheme
due to consistently larger insertion rates. Moreover, for the
IRLS w/ incremental scheme, the insertion rate saturates as γ

increases beyond 5 as shown in Fig. 8(b). We empirically set
γ as 5, which approximately denotes the starting point of sat-
uration for the IRLS w/ incremental scheme in our experiment
setup.

V. CONCLUSION

In this paper, we propose the first global optimization engine
on RLLI considering advanced manufacturing constraints on
via patterns and bounded timing impact from RLLI. Our
RLLI framework is independent of timing simulation setup
as long as an LUT of forbidden RLLC configurations is
given by the timing engine under bounded timing impact.

XU et al.: RLLI FOR UNIDIRECTIONAL ROUTING 1123

With the net-based RLLC generation and pruning, we fur-
ther propose the binary ILP formulation and the IRLS with
incremental search scheme to obtain scalable solutions with
negligible performance degradations. Our experimental results
demonstrate that the IRLS with incremental search scheme
achieves more consistent solution qualities compared to the
greedy scheme and more scalable runtime compared to the
ILP approach.

A. Global Timing Impact

We focus on the bounded timing impact on RLLI, which
only controls the local timing degradations and expects neg-
ligible global impacts after RLLI. Global timing impacts can
be captured by more comprehensive bounded timing LUT. An
example is that the RLLIs close to the driver side could be
more preferable than those close to the load side due to smaller
timing impact. In general, accurate and global timing impact
should be evaluated with parasitic extractions and timing simu-
lations, which can be incorporated into our RLLI engine under
industrial infrastructures.

B. Guidelines to Handle Complex DRC

In advanced technology nodes, complex design rules
beyond those mentioned in Section II-B may be intro-
duced for lower metal layers due to complicated design-for-
manufacturing strategies, such as off-track metal tip-to-tip
rules [22], [31], [32]. Complex design rules come from under-
lying patterning schemes and are foundry dependent. Our
global optimization engine can be adapted to handle complex
DRC in the following two ways.

1) Formulate complex design rules into linear constraints
and merge them into the IRLS scheme. Similar studies
have been done for complex metal tip constraints [22],
[31], [32].

2) After the IRLS with incremental search scheme, we can
determine the assignment of RLLC to each SV. If com-
plex DRC handling is needed, we can further explicitly
consider DRC when inserting each RLLC into the rout-
ing grid based on the assignment results, where only
DRC-legal RLLCs will be physically inserted.

APPENDIX

To elaborate the potential usages of RLLI in advanced tech-
nology nodes, we compare traditional double-via insertion
(DVI) and RLLI in terms of timing impact, random failure
rate [10], routing resource usage and problem complexity. We
assume off-track metal coverage for DVI, the width and length
of which are set as one and two metal grids, respectively.

A. Timing Impact

We have performed the timing impact analysis and sim-
ulation for RLLI in Section III-A and Section IV-A. We
evaluate the fan-out-4 delay with DVI using the same tech-
nology setup in Section IV-A. Fig. 9 compares the timing
impact between DVI and various cases of RLLCs. DVI for
one SV improves the fan-out-4 delay by 0.3% under our

Fig. 9. RLLI versus DVI in terms of timing.

Fig. 10. (a) DVI in different cases and each case corresponds to a case of
RLLC in Fig. 7(a). (b) Failure rate ratio, i.e., RLLI over DVI across various
via failure rate.

technology setup. In general, RLLI generates more redundant
resistance and capacitance to form a local-loop structure com-
paring to DVI. Thus, RLLI introduces more timing impact
than DVI except case 1. This becomes the major motivation
to control the timing degradations (within 1% in this paper)
during RLLI.

B. Random Failure Rate

We compare the random failure rate between DVI and RLLI
to elaborate practical usages of RLLI. To simplify the analy-
sis, we consider via failure rate while assuming metal patterns
are free of opens or shorts [10]. Fig. 10(a) illustrates different
cases of DVI and each case corresponds to a case of RLLC
in Fig. 7(a). We assume the random failure probability of an
SV is p and via failures are independent of each other. With
probability calculation, we obtain the failure probability of
each double-via and RLLI case as shown in Table VI [10]. If
we vary p in the unit of “failure per billion (fpb)” [10], we
can compute the failure rate ratio between RLLI and DVI
for different cases as shown in Fig. 10(b). In general, the
failure rate of an RLL structure is one or two times larger
than that of a double-via structure. Although RLL is not as
robust as double via, RLL still provides better robustness than
SV. Typically p is a very small value, which makes the val-
ues of (1 − (1 − p)2)2 (for case 1/3) and p · (1 − (1 − p)3)

(for case 2/4/5) much smaller than p itself. For instance,
suppose p = 1fpb, then (1 − (1 − p)2)2 � 4 · 10−9 fpb
and p · (1 − (1 − p)3) � 3 · 10−9 fpb. Thus, RLLI is a
promising candidate for yield enhancement of unidirectional
routing.

1124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 7, JULY 2017

TABLE VI
COMPARISONS BETWEEN DVI AND RLLI

C. Routing Resource

We further compare routing resource usages between DVI
and RLLI. For a specific case of DVI or RLLI, we quantify the
routing resource as the total number of redundant metal (rm2
and rm3) and via grids. As shown in Table VI, the routing
resource usage of RLLI varies from case to case, and RLLC
covering more than one SV consumes less amount of routing
resource. For instance, case 5 uses much more routing resource
than case 1 for RLLI. In general, RLLI consumes more routing
resource than DVI due to the local-loop structure. RLLI and
RVI are typically performed at the post-routing stage, rout-
ing resources (i.e., empty grids on metal and via layers) are
given as input for RLLI/RVI engine to maximize the insertion
rate. For metal layers where unidirectional routing is strictly
enforced, RLLI is still a feasible candidate to improve man-
ufacturing yield. Given limited routing resources for RLLI,
it is important to perform global optimization and maximize
insertion rate with bounding timing impact.

D. Problem Complexity

The RLLI problem is different from the conventional
RVI problem although the ILP formulation looks similar. In
Table III, we calculate the average number of RLLCs for
each SV, denoted as R.p.R, to be 39 and 10 on average
for sparse and dense routing cases, respectively, which are
larger than the number of RV candidates available for each SV
in the conventional RVI problem. Through our experiments,
we find that the complexities of the RLLI problem make
the fast techniques from the conventional RVI problem obso-
lete. Specifically, the preselection technique, i.e., selecting the
conflict-free RLLC with minimum cost for an SV, breaks the
optimality of the solution under tight via density constraints
as an RLLC may cross multiple density windows as shown
in Fig. 4. Independent component computation does not work
well due to complicated conflicting constraints across several
horizontal/vertical tracks. In our experiments, the largest inde-
pendent component of each constructed conflict graph consists
of around 99% and 85% of nodes within the entire graph for
sparse and dense routing cases, respectively. Independent com-
ponent computation is not effective for the RLLI problem and
cannot be directly applied under via density constraints. Thus,
it is not incorporated into our optimization engine.

ACKNOWLEDGMENT

The authors would like to thank Dr. L. Liebmann from
GLOBALFOUNDRIES for his helpful discussions on SAV
constraints.

REFERENCES

[1] J. Bickford et al., “Yield improvement by local wiring redundancy,” in
Proc. IEEE Int. Symp. Qual. Electron. Design (ISQED), San Jose, CA,
USA, 2006, pp. 473–478.

[2] K.-Y. Lee and T.-C. Wang, “Post-routing redundant via insertion for
yield/reliability improvement,” in Proc. IEEE/ACM Asia South Pac.
Design Autom. Conf. (ASPDAC), Yokohama, Japan, 2006, pp. 303–308.

[3] F. Luo, Y. Jia, and W. W.-M. Dai, “Yield-preferred via insertion based
on novel geotopological technology,” in Proc. IEEE/ACM Asia South
Pac. Design Autom. Conf. (ASPDAC), 2006, pp. 730–735.

[4] A. B. Kahng, B. Liu, and I. I. Mandoiu, “Non-tree routing for reliability
and yield improvement,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2002, pp. 260–266.

[5] F.-Y. Chang, R.-S. Tsay, and W.-K. Mak, “How to consider shorts and
guarantee yield rate improvement for redundant wire insertion,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2009, pp. 33–38.

[6] M.-K. Hsu et al., “Design and manufacturing process co-optimization
in nano-technology,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2014, pp. 574–581.

[7] L. Liebmann, A. Chu, and P. Gutwin, “The daunting complexity of
scaling to 7nm without EUV: Pushing DTCO to the extreme,” in Proc.
SPIE, San Jose, CA, USA, 2015, Art. no. 942702.

[8] J. Ryckaert et al., “DTCO at N7 and beyond: Patterning and electrical
compromises and opportunities,” in Proc. SPIE, San Jose, CA, USA,
2015, Art. no. 94270C.

[9] B. A. Anderson et al., “Redundant micro-loop structure for use in an
integrated circuit physical design process and method of forming the
same,” U.S. Patent 8 234 594, Jul. 31, 2012.

[10] W. Huang et al., “Local loops for robust inter-layer routing at sub-20
nm nodes,” in Proc. SPIE, 2012, Art. no. 83270D.

[11] J. C. Arnold, S. D. Burns, S. K. Kanakasabapathy, and Y. Yin, “Self
aligning via patterning,” U.S. Patent 8 298 943, Oct. 30, 2012.

[12] M. L. Rieger and V. Moroz, “Self-aligned via interconnect using relaxed
patterning exposure,” U.S. Patent 8 813 012, Aug. 19, 2014.

[13] A. B. Kahng, “Research directions for coevolution of rules and routers,”
in Proc. ACM Int. Symp. Phys. Design (ISPD), Monterey, CA, USA,
2003, pp. 122–125.

[14] K.-Y. Lee, T.-C. Wang, and K.-Y. Chao, “Post-routing redundant via
insertion and line end extension with via density consideration,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2006, pp. 633–640.

[15] C.-K. Lei, P.-Y. Chiang, and Y.-M. Lee, “Post-routing redundant via
insertion with wire spreading capability,” in Proc. IEEE/ACM Asia
South Pac. Design Autom. Conf. (ASPDAC), Yokohama, Japan, 2009,
pp. 468–473.

[16] K.-Y. Lee, C.-K. Koh, T.-C. Wang, and K.-Y. Chao, “Optimal post-
routing redundant via insertion,” in Proc. ACM Int. Symp. Phys.
Design (ISPD), Portland, OR, USA, 2008, pp. 111–117.

[17] K.-Y. Lee, S.-T. Lin, and T.-C. Wang, “Redundant via insertion with wire
bending,” in Proc. ACM Int. Symp. Phys. Design (ISPD), San Diego, CA,
USA, 2009, pp. 123–130.

[18] S.-T. Lin, K.-Y. Lee, T.-C. Wang, C.-K. Koh, and K.-Y. Chao,
“Simultaneous redundant via insertion and line end extension for yield
optimization,” in Proc. IEEE/ACM Asia South Pac. Design Autom.
Conf. (ASPDAC), Yokohama, Japan, 2011, pp. 633–638.

[19] R. Kay and R. A. Rutenbar, “Wire packing: A strong formula-
tion of crosstalk-aware chip-level track/layer assignment with an effi-
cient integer programming solution,” in Proc. ACM Int. Symp. Phys.
Design (ISPD), San Diego, CA, USA, 2000, pp. 61–68.

[20] G. Dahl and N. Foldnes, “LP based heuristics for the multiple knapsack
problem with assignment restrictions,” Ann. Oper. Res., vol. 146, no. 1,
pp. 91–104, 2006.

[21] G. Luk-Pat et al., “Avoiding wafer-print artifacts in spacer is dielec-
tric (SID) patterning,” in Proc. SPIE, San Jose, CA, USA, 2013,
Art. no. 868312.

[22] X. Xu, B. Cline, G. Yeric, B. Yu, and D. Z. Pan, “Self-aligned double
patterning aware pin access and standard cell layout co-optimization,”
in Proc. ACM Int. Symp. Phys. Design (ISPD), Petaluma, CA, USA,
2014, pp. 101–108.

[23] T.-M. Lin and C. A. Mead, “Signal delay in general RC networks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 3, no. 4,
pp. 331–349, Oct. 1984.

[24] Gurobi. (2014). GUROBI. [Online]. Available:
http://www.gurobi.com/html/academic.html

XU et al.: RLLI FOR UNIDIRECTIONAL ROUTING 1125

[25] Synopsys. (2012). Synopsys Design Compiler. [Online]. Available:
http://www.synopsys.com

[26] Cadence. (2012). Cadence SOC Encounter. [Online]. Available:
http://www.cadence.com/

[27] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu, and D. Z. Pan, “PARR: Pin access
planning and regular routing for self-aligned double patterning,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), San Francisco, CA, USA, 2015,
pp. 1–6.

[28] ITRS. Accessed on Nov. 20, 2014. [Online]. Available:
http://www.itrs.net

[29] NanGate. (2014). NanGate FreePDK15 Open Cell Library. [Online].
Available: http://www.nangate.com/?page_id=2328

[30] Predictive Technology Model Ver. 2.1. Accessed on Feb. 10, 2016.
[Online]. Available: http://ptm.asu.edu

[31] Y. Du, H. Zhang, M. D. F. Wong, and K.-Y. Chao, “Hybrid lithogra-
phy optimization with e-beam and immersion processes for 16nm 1D
gridded design,” in Proc. IEEE/ACM Asia South Pac. Design Autom.
Conf. (ASPDAC), Sydney, NSW, Australia, 2012, pp. 707–712.

[32] Y. Ding, C. Chu, and W.-K. Mak, “Throughput optimization for SADP
and e-beam based manufacturing of 1D layout,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, 2014, pp. 1–6.

Xiaoqing Xu (S’15) received the B.S. degree in
microelectronics from Peking University, Beijing,
China, in 2012. He is currently pursuing the Ph.D.
degree in electrical and computer engineering with
the University of Texas at Austin, Austin, TX, USA,
under the supervision of Prof. D. Z. Pan.

His current research interests include robust stan-
dard cell design, design for manufacturability, and
physical design.

Mr. Xu was a recipient of the Gold Medal
for ACM Design Automation Student Research

Competition at ICCAD 2016, the SRC Best in Session Award in SRC
TECHCON 2015, the SPIE BACUS Fellowship in 2016, the MCD Fellowship
and University Graduate Continuing Fellowship from the University of Texas
at Austin, in 2012 and 2016, respectively.

Yibo Lin received the B.S. degree in microelectron-
ics from Shanghai Jiaotong University, Shanghai,
China, in 2013. He is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Texas at
Austin, Austin, TX, USA.

He was an Intern with IMEC, Leuven, Belgium,
Cadence, San Jose, CA, USA, and Oracle,
Redwood City, CA, USA. His current research
interests include physical design and design for
manufacturability.

Mr. Lin was a recipient of the Franco Cerrina Memorial Best Student Paper
Award at the SPIE Advanced Lithography Conference 2016, and the National
Scholarship at Shanghai Jiaotong University in 2012.

Meng Li (S’16) received the B.S. degree in micro-
electronics from Peking University, Beijing, China,
in 2013. He is currently pursuing the Ph.D. degree
in electrical and computer engineering with the
University of Texas at Austin (UT Austin), Austin,
TX, USA, under the supervision of Prof. D. Z. Pan.

His current research interests include hardware-
oriented security, reliability and power grid simula-
tion acceleration.

Mr. Li was a recipient of the Graduate Fellowship
from UT Austin, in 2013.

Jiaojiao Ou received the M.S. degree in microelec-
tronics from Peking University, Beijing, China, in
2013. She is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA.

Her current research interests include physical
design and design for manufacturability with emerg-
ing nanolithography.

Brian Cline (M’10) received the B.S. degree from
the University of Texas at Austin, Austin, TX, USA,
in 2004, and the M.S. and Ph.D. degrees from
the University of Michigan, Ann Arbor, MI, USA,
in 2006 and 2010, respectively, all in electrical
engineering.

He was a Graduate Fellow with Semiconductor
Research Corporation, Durham, NC, USA, from
2006 to 2010. He is currently a Principal Research
Engineer with ARM Research Group, Austin. His
current research interests include design technology

co-optimization, low-power circuit design, variation-aware computer-aided
design tool development, and very large-scale integration design optimization
for high-performance and low-power designs.

David Z. Pan (S’97–M’00–SM’06–F’14) received
the B.S. degree from Peking University, Beijing,
China, and the M.S. and Ph.D. degrees from
University of California at Los Angeles (UCLA),
Los Angeles, CA, USA.

He was a Research Staff Member with IBM
T. J. Watson Research Center, Yorktown Heights,
NY, USA, from 2000 to 2003. He is currently the
Engineering Foundation Endowed Professor with the
Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX, USA. He

has published over 250 papers in refereed journals and conferences and holds
eight U.S. patents. His current research interests include cross-layer nanometer
IC design for manufacturability, reliability, security, new frontiers of physical
design, and computer-aided design for emerging technologies.

Dr. Pan was a recipient of number of awards, including the SRC 2013
Technical Excellence Award, the Design Automation Conference (DAC)
Top 10 Author in Fifth Decade, the DAC Prolific Author Award, the
Asia and South Pacific DAC (ASPDAC) Frequently Cited Author Award,
13 Best Paper Awards, several International CAD Contest Awards, the
Communications of the ACM Research Highlights in 2014, the ACM/SIGDA
Outstanding New Faculty Award in 2005, the National Science Foundation
CAREER Award in 2007, the SRC Inventor Recognition Award three times,
the IBM Faculty Award four times, the UCLA Engineering Distinguished
Young Alumnus Award in 2009, and the University of Texas at Austin
RAISE Faculty Excellence Award in 2014. He has served as a Senior
Associate Editor for ACM Transactions on Design Automation of Electronic
Systems, an Associate Editor for the IEEE DESIGN AND TEST, the IEEE
TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS, the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—I: REGULAR PAPERS, the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, Science China Information
Sciences, and the Journal of Computer Science and Technology. He has
served as the Program/General Chair of ISPD 2007/2008, the TPC Chair for
ASPDAC 2016, the Vice Program Chair for the 2017 International Conference
on Computer Aided Design, the Tutorial Chair for DAC 2014, among others.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

