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ABSTRACT
Source @

With the continuous shrinking of the semiconductor device di-
mensions, mask topography effects stand out among the major
factors influencing the lithography process. Including these effects
in the lithography optimization procedure has become necessary
for advanced technology nodes. However, conventional rigorous
simulation for mask topography effects is extremely computation-
ally expensive for high accuracy. In this work, we propose TEMPO
as a novel generative learning-based framework for efficient and
accurate 3D aerial image prediction. At its core, TEMPO comprises
a generative adversarial network capable of predicting aerial image
intensity at different resist heights. Compared to the default ap-
proach of building a unique model for each desired height, TEMPO
takes as one of its inputs the desired height to produce the corre-
sponding aerial image. In this way, the global model in TEMPO can
capture the shared behavior among different heights, thus, resulting
in smaller model size. Besides, across-height information sharing
results in better model accuracy and generalization capability. Our
experimental results demonstrate that TEMPO can obtain up to
1170 speedup compared with rigorous simulation while achieving
satisfactory accuracy.
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1 INTRODUCTION

Lithography is a key step in the fabrication of nanoelectronic cir-
cuits. It is a patterning process through which a mask pattern is
transferred into a thin photoresist (resist) layer on a substrate [1]. In
practice, lithography simulations have been effectively used for pro-
cess development, performance prediction and a number of other
tasks including model-based optical proximity correction (OPC).
These simulations are utilized to calculate correct resist shapes
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Figure 1: Imaging process of a lithography system. (a) Thin
mask model and (b) thick mask model result in different
near-fields and aerial images.

that can be used for physical verification such as hotspot detection.
However, as the technology node continues scaling down, the trend
to print features much smaller than the wavelength of light used has
tremendously increased lithographic and manufacturing process
complexity, as well as the lithography modeling complexity.

This continuous device scaling has posed the mask topography
effects among the major challenges in lithography modeling. In
the past, thin mask approximation, or so-called Kirchhoff approx-
imation, was widely used in lithography simulation, as shown in
Figure 1(a). With such an approximation, the three-dimensional
structure of the mask is ignored despite its critical influence on
the amplitudes, phases, and polarizations of the transmitted light,
as demonstrated in Figure 1(b). When the feature sizes start to be
comparable to the wavelength, the thin mask approximation is no
longer adequate with the increasingly pronounced impacts of thick
mask effects on the lithography imaging [2-4]. As a consequence,
the failure to consider mask topography effects in lithography mod-
eling could lead to critical dimension error and focus shift, resulting
in the shrinkage of process window and the decrease of the image
quality and the process robustness.

In the lithography process, many important properties, such as
exposure and development latitude, can be derived from aerial im-
ages after optical simulation [5]. These images contain the intensity
of the exposure radiation in the plane of the wafer; and hence, the
topography effects of the mask can significantly impact their accu-
racy. Moreover, in lithography simulation, an accurate 3D view of
aerial images at different resist heights is crucial to evaluate cross-
section views of the resist pattern in order to find defects on the top
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or bottom position. These defects, if gone undetected, can lead to
catastrophic manufacturing failures. Therefore, accurate prediction
of 3D aerial images with the mask topography effects considered is
important in lithography development and verification.

Conventionally, rigorous simulators capable of capturing mask
topography effects have been developed for aerial image calculation.
Technically, the precise description of the mask diffraction spec-
trum in lithography is accomplished by using rigorous algorithms
to solve Maxwell’s equations for the electromagnetic field [6]. How-
ever, despite their superior accuracy, such rigorous methods are
prohibitively expensive since performing rigorous calculations at
the full-chip level, during OPC for example, is computationally
intensive. Under the governing trade-off between accuracy and effi-
ciency, different compact models were formulated as less accurate
yet more efficient mask models 7, 8]. However, these compact mod-
els fail to maintain the accuracy level at advanced technology nodes
since newly pronounced lithography effects invalidate several key
assumptions in these models as shown in [9, 10].

Recently, advances in machine learning have been leveraged to
devise new mask modeling techniques. In [11], an artificial neural
network (ANN) was proposed to model the rigorous spectrum with
respect to the feature vector containing the amplitude and the phase
information of the scalar spectrum from different mask patterns.
The output of the ANN is used to compute the aerial images using
Abbe’s method. In [10], for an arbitrary thick mask, its near-field is
calculated using the nonparametric kernel regression model and
the pre-calculated training libraries; then the aerial image is calcu-
lated using Abbe’s method as well. The aforementioned machine
learning approaches rely on conventional modeling techniques
that require intensive feature engineering and depend heavily on
post-processing methods which affect the model accuracy.

In the recent past, conditional generative adversarial networks
(CGANS) have attracted attention due to their wide range of ap-
plications in image related tasks [12]. Among the state-of-the-art
machine learning models, CGAN stands out due to its inherent capa-
bility to perform image translation tasks such as image colorization
and background masking, where an image in one domain is mapped
to a corresponding image in another domain. In practice, this model
has been recently adopted to perform different lithography related
tasks [13, 14]. Of particular significance is the application of CGAN
in the end-to-end lithography simulation framework, LithoGAN
[15]. While LithoGAN has demonstrated impressive efficiency, it
only assumes a thin mask model which limits its capability of han-
dling the mask topography effects. Besides, its output format is a
monocolor image, while the desired output in the mask modeling
task is the intensity map which has a higher accuracy requirement.
Moreover, the aerial image estimation requires intensity map pre-
diction at different resist heights. While the default approach is
to train different CGAN models for prediction at different heights,
such an approach is not efficient both in terms of training time and
model size.

In this work, we propose TEMPO as a novel thick mask effect
modeling framework using a single, one-fits-all model capable of
predicting aerial image intensity at different resist heights. Besides
the advantages in terms of the training cost and model size, in-
corporating the different modeling tasks into a single model can
significantly improve the model accuracy. This is mainly due to
the fact that various features and information are shared across
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all heights. Hence, having data from different heights available for
training a single model results in a more robust model that has
better generalization capabilities when compared to a set of models
individually trained on a subset of the available data. To enable such
a one-fits-all model, we propose a CGAN architecture that uses the
desired prediction height as an additional input appended to the
low-level latent representation in the model architecture. With such
representation, the height information is efficiently incorporated
at the CGAN bottleneck layer where it can have the most powerful
impact on output generation.

The major contributions of this paper are highlighted as follows.

e We propose TEMPO as a novel framework for 3D aerial
image generation considering mask topography effects.

o A one-fits-all CGAN model, with a novel target domain en-
coding, is proposed for aerial image prediction at multiple
resist heights. The model is compact and can achieve su-
perior accuracy by leveraging across-domain information
sharing.

e Two schemes are presented in TEMPO to provide flexible
trade-offs between accuracy and efficiency.

o Experimental results demonstrate the two schemes in TEMPO
obtain 1170x and 27X speedup when compared with rigor-
ous simulation while achieving satisfactory performance in
aerial image quality and critical dimension fidelity.

The rest of this paper is organized as follows. Section 2 reviews
the basic concepts and gives the problem formulation. Section 3
provides a detailed explanation of the proposed TEMPO framework.
Section 4 demonstrates the effectiveness of our approaches with
comprehensive results, followed by the conclusion in Section 5.

2 PRELIMINARIES

2.1 Mask Topography Effects

As shown in Figure 1, in an optical lithography system, the light
source illuminates the mask and generates the near-field under-
neath the mask. Then, the light rays propagate through the projec-
tion lens and produce the aerial image on the wafer [10].

In the past, a mask in lithography was mostly considered as an
infinitely thin object with homogeneously transparent and opaque
areas as demonstrated in Figure 1(a). The conventional application
of Kirchhoft’s boundary conditions on the mask surface provides
the so-called thin mask approximation of the near-field.

However, mask topography effects have been observed since the
minimum feature size on the mask dropped below the exposure
wavelength [4]. The light scattered by mask edges and corners
changes the near-field of the light on the mask level. As shown in
Figure 1(b), the scattering affects both the amplitude and the phase
of the incident field, and thus not only changes the aerial image
intensity on the wafer level, but also changes the resist profile after
resist development. The failure to consider mask topography effects
could lead to critical dimension error and focus shift, resulting in
the shrinkage of the process window, and the decrease of the image
quality and the process robustness. Therefore, mask topography
models (thick mask models) have been indispensable since 28 nm
tech node and below.

To precisely model the thick mask effects, rigorous simulators
have been developed based on fundamental electromagnetism prin-
ciples. However, they are rather slow and infeasible to apply on
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full chips within acceptable runtime. Generally, the intensity dis-
tribution in the aerial image calculated by a rigorous thick mask
simulation is lower than the calculation result by a thin mask sim-
ulation because of a waveguide effect due to the topographical
structure of the mask [16]. Nevertheless, there is no simple trans-
formation between the outputs of these two kinds of mask models
since the magnitude of the mask topography effects varies at dif-
ferent locations on the wafer and is also affected by the design of
mask patterns.

There are efforts attempting to construct fast compact models for
approximating mask topography effects [7, 8]. However, as shown
in [9, 10], newly pronounced lithography effects and conditions
keep invalidating some simple assumptions in conventional com-
pact models and render them inapplicable at advanced nodes. The
impacts of key factors on the accuracy and efficiency of the compact
models need further study and verification, and ad hoc compact
model building is incapable of providing models that are adequate
for advanced lithography.

2.2 3D Aerial Image

In order to simplify the analysis of a lithography process, the optical
effects of the lithography tool are usually separated from the resist
effects of the resist process. As one of the direct outputs of optical
analysis, the aerial image is defined as the spatial intensity distri-
bution at the wafer, and is simply the square of the magnitude of
the electric field [17]. The aerial image is the source of information
that is transferred into the resist, and therefore dictates the quality
of the final resist profile. Moreover, from the aerial image, we can
easily predict the performance of a given lithographic process in
terms of depth of focus, exposure latitude, etc [5].

The spatial image intensity distribution inside the resist bulk is
calculated up to the defined resist thickness, and henceforth will
be referred to as 3D aerial image or 3D intensity map, as shown
in Figure 2. 3D aerial image is valuable in evaluating cross-section
views of the resist profile in order to find defects on the top or
bottom position. Typically, an aerial image simulation extracts the
2D intensity at one specific resist height; thus, the calculation of the
entire 3D image is distributed among different threads in rigorous
simulation tools [18].

Note that for a pure aerial image setup where the substrate,
stack and resist are all set as air, the extraction height of the 2D
aerial image does not matter. However, the resist and the stacks are
practically composed of one or several non-air like optical materials,
which results in standing waves due to interference effects of the
incoming and backscattered light in the resist [18]. For the systems
where standing waves can be very pronounced, the evaluation of the
image intensity at a certain extraction height h must be performed
carefully. For example, consider the extraction height A = 10 nm and
h =70 nm in Figure 2. It is obvious that the extraction height h =
70 nm will yield a higher image contrast than h = 10 nm. Therefore,
it is necessary to model 3D aerial images.

2.3 Problem Formulation

For image generation tasks, multiple evaluation metrics are typi-
cally used to judge upon model accuracy. Let I denote the golden
aerial image and [ denote the predicted aerial image, where I,1 €
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Figure 2: Example of the 2D aerial image slices inside a 3D
aerial image.

R™™_ One of the commonly used accuracy metrics is the root-mean-
square error (RMSE), which is given by
1.
RMSE = — =1 . (1)

where [|AllF = (2;,; Ai j)l/ 2 represents the Frobenius norm.

Since the overall light intensity of different aerial image samples
in the dataset could vary significantly, we also adopt the normalized
root-mean-square error (NRMSE) to quantify model performance.
The NRMSE between the predicted image and the golden image is
defined as the RMSE normalized by the averaged Frobenius norm
of the golden image:

RMSE _ [l -1l
Mg /n NllE
We define the problem studied in this work as follows.

NRMSE = )

Problem 1 (3D Aerial Image Learning). Given a training dataset
containing mask pattern samples and the corresponding 2D aerial
images at m resist heights for each mask pattern sample, the objec-
tive is to train a model that can accurately predict the aerial images
of a test mask pattern, where the accuracy is measured in terms of
the RMSE and the NRMSE.

3 TEMPO FRAMEWORK

In a rigorous thick mask simulation flow, the simulator takes as
input a mask pattern and generates the corresponding aerial image
as shown in Figure 3(a). While such an approach is the common
practice today, its inordinate runtime hinders its application in the
early stages of the process development and mask optimizations.
For example, simulating 1000 clips with mask topography effects
could take up to 4 days. With this in mind, we propose TEMPO
as a fast modeling framework that can significantly speed up the
thick mask modeling task and hence, allow the consideration of
the mask topography effects in the early stages of the process
development. In practice, TEMPO provides in one of its schemes a
CGAN model capable of mimicking the rigorous simulation process
as shown in Figure 3(b). Under the same input/output set as in the
rigorous simulation scheme shown in Figure 3(a), the CGAN model
in TEMPO can translate the image from mask pattern to aerial
images with orders of magnitude speedup. Hereafter, this direct
translation using our proposed CGAN architecture is referred to as
Scheme 1, and its details will be covered in Section 3.2.
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It is evident that, compared to the rigorous simulation scheme,
Scheme 1 in TEMPO is capable of achieving immense speedup
at some compromise in accuracy. This accuracy compromise is
due to the fact that the optical modeling inside the lithography
system is a complicated process; aerial image is the outcome of the
interactions among light source, mask pattern and the projection
lens. Hence, given the limited information available in the input
image containing only the mask patterns, the accuracy of Scheme
1 is not expected to be ideal but can still be acceptable for early
exploration stages given its attractive efficiency.

For applications with high accuracy requirements, TEMPO pro-
vides an alternative framework, namely Scheme 2 shown in Fig-
ure 3(c), which represents a compromise between the accurate yet
time-consuming rigorous simulation, and the efficient Scheme 1
with imperfect accuracy. Compared to Scheme 1, Scheme 2 sacrifices
some additional runtime for better accuracy while still maintaining
impressive speedup compared to the rigorous simulation. As a first
step, TEMPO in Scheme 2 runs a fast thin mask model to generate
aerial images assuming no mask topography effect, and the output
aerial image is used along with the mask pattern as the input to the
CGAN model. In this way, the aerial image given by the thin mask
model provides the CGAN model with additional information not
present in the mask pattern image, and hence improves its accuracy.
In the next subsections, we first introduce the conventional CGAN
model for image translation, then we present TEMPO for aerial
image generation.

3.1 Generative Adversarial Networks

Generative adversarial networks (GANs) have demonstrated re-
markable success in various computer vision tasks such as image
generation [12], image translation [19, 20], and super-resolution
imaging [21]. Originally, GANs were developed for the purpose
of learning the distribution of a given dataset with the intent of
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generating new samples from it [22]. A typical GAN model consists
of two modules: a generator and a discriminator. The generator is
trained to produce samples that cannot be distinguished from real
images by the adversarially trained discriminator which is trained
to do as well as possible at detecting the generator fakes [22].

The conventional generator in a GAN is basically an encoder-
decoder network where the input is passed through a series of layers
that progressively downsample it (i.e., encoding), until a bottleneck
layer, at which point the process is reversed (i.e, decoding) [12, 22,
23]. On the other hand, the discriminator is a convolutional neural
network whose objective is to classify fake and real images. Hence,
its structure differs from that of the generator and resembles a
typical two-class classification network [12, 22, 23]. This adversarial
scheme is represented in the objective function given as:

m(i;n mgx Ex[log D(x)] + E;[log (1 — D(G(2)))], 3)
where D(-) represents the probability of a sample being real; i.e., not
generated by G, Ex denotes the expectation over the input data x,
and z is a random noise vector used as a seed for image generation.

A GAN model is typically trained with mini-batch stochastic
gradient descent (SGD) [22]. The training alternates between one
gradient descent step on the discriminator, and then one step on
the generator. After training, the generator part of the GAN is
used to generate new samples using random noise vectors while
the discriminator is discarded as it is only needed for the training
process [22].

Stemming from the core GAN model, different variants of gen-
erative neural networks were developed to address challenges in
various fields of study, especially computer vision. Technically,
many tasks in computer vision and graphics can be thought of
as translation problems where an input image is to be translated
from domain A to another domain B. Isola et al. [19] introduced an
image-to-image translation framework that uses GANs in a condi-
tional setting where the generator transforms images conditioned
on the input image. Instead of randomly generating images from
the learned distribution, it transfers an input image into another
domain, hence, acting as an image translator. To train such a model,
a paired training dataset is needed where each sample is a pair of an
input image (i.e., image in the input domain) and its corresponding
output image (i.e., translated image in the target domain).

Mathematically, the loss function used for training the CGAN
can be given as [12, 19]:

Legan = Ex, yllog D(x, y)]
+ Ex, z[log (1 — D(x, G(x, 2)))]

+ 24 Ex,y,zllly - GCx. 2],

where x is a sample in the input domain, y is its corresponding
sample in the output domain, and A is the weight parameter. Com-
paring equations (3) and (4), one can notice the addition of the loss
term which penalizes the difference between the generated sample
G(x, z) and its corresponding golden reference y.

4

3.2 TEMPO Architecture Design

Image translation using CGAN was proposed as a means for do-
main transfer between two distinct domains. However, different
applications require more comprehensive translation schemes with
one-to-many domain transfers. Aerial image generation requires
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domain transfer from the single mask pattern domain to multi-
ple resist height domains. Another popular application of such a
scheme is facial image translation, where an input facial image
is translated into different target domains representing different
facial expressions or appearances [24]. For aerial image generation
and other similar tasks, the most straightforward option is to train
multiple domain-to-domain models. So, for m target domains, m
such models are needed.

Clearly, the approach of building m individual models has multi-
ple drawbacks. Most evident is the size of the model that scales with
the number of target domains. This also requires a large dataset
from all domains to train different independent models. Besides,
when assuming that different target domains are independent, an
opportunity for information sharing between those slightly differ-
ent tasks is missed. In terms of the data, since we model the light
intensity in a 3D continuous space in the aerial prediction task, the
intensity values change continuously. The aerial images extracted
from discrete resist heights should be highly correlated. In terms
of the model, the input encoding performed by the generator’s en-
coder is very similar across different domains in many applications.
This is true in the aerial image generation as well as the facial trans-
lation scenario. Mainly, the important features for the translation
tasks are common across different target domains, and the target
specification is rather important in the decoder that generates the
images. Hence, if an adequate information-sharing scheme is de-
veloped, the performance can be enhanced by exploiting the high
correlation between images in different domains. Therefore, model
scalability and information sharing render the setup of multiple
individual models ineffective.

To overcome these two drawbacks, new variants of CGAN have
been proposed, such as ComboGAN [25] and StarGAN [24]. In Com-
boGAN, information sharing is addressed through a joint training
scheme for the m different 2-domain transfer models [25]. On the
other hand, StarGAN tries to address the scalability issue by build-
ing a single generator and incorporating the target domain into its
input. However, the target domain representation in StarGAN still
carries high redundancy since it requires m additional channels
in the input image to one-hot encode the chosen k-th target do-
main out of m domains. In other words, the size of the input image
scales linearly with the number of target domains. Better scalability
necessities a more compact input domain encoding scheme.

Towards the goal of a compact model with an information-
sharing scheme, two important features of the one-to-many domain
transfer task in this work should be noted. First, the target infor-
mation is not necessary for the input encoding task. It is fair to
assume that the features that are needed from the input image to
generate the aerial image at different heights are the same. It is the
way these features are later decoded that is impactful on the image
generation. Hence, the target information is not needed as an input
to the encoder in the generator network. The second feature is that
the bottleneck layer in the generator carries the most critical infor-
mation as it represents the latent representation of the input upon
which the output image is generated; thus, the information in this
layer is of significant impact on the result. Therefore, we propose
within TEMPO a new one-fits-all model where a one-hot encoding
vector of length m carrying the target domain information is ap-
pended to the latent space representation in the bottleneck layer,
as shown in Figure 4. This way, the information is appended at a
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Figure 4: Overview of the TEMPO model.

critical location in the network where it can guide the output image
generation while having a compact representation. Compared to
that used in StarGAN where each one extra input channel is needed
for each domain, the encoding scheme in TEMPO requires only a
single channel for all the domains. This can significantly improve
the scalability of TEMPO when faced with a significant increase in
the number of target domains.

In the next subsections, the details of both the generator and
discriminator used in TEMPO are shown. These implementations
are adapted from the deep convolutional generative adversarial
networks framework proposed in [23].

3.2.1 Generator. We adopt the encoder-decoder network which is
commonly used to design a generator [12, 19, 22, 23]. The input is
passed through a series of layers in the encoder that progressively
downsamples it, until a bottleneck layer, at which point the process
is reversed in the decoder. The details of the encoder and decoder
are summarized in Table 1. Specifically, eight convolutional and
deconvolutional layers are used for the encoder and decoder, respec-
tively. In Table 1, the column “Size” and the column “Stride” give
the size and stride of each filter, and the number of layers sharing
the same filter setting is shown in the column “Count”. “Additional”
indicates the additional layers for normalization and activation
function. Here, batch normalization (BN) [26] is selectively applied
on certain convolutional layers both in the encoder and decoder.
The encoder uses leaky ReLU (LReLU) as the activation function,
whereas the decoder uses ReLU. The input of the generator is the
images of 200 x 200 pixels, and can have single channel (mask pat-
tern) in Scheme 1 or two channels (mask pattern and thin-mask
aerial image) in Scheme 2. “Concat” denotes the concatenation of
the one-hot label vector of size m and the latent space vector of size
512. For image translation tasks using CGAN, a significant amount
of information is shared between the input and the output, and we
followed the design of U-Net [27] with skip connections between
encoder layers and decoder layers.

3.2.2 Discriminator. On the other hand, the discriminator is a con-
volutional neural network that performs classification to distinguish
between the real image pairs and fake image pairs. Meanwhile, the
target domain information is fed into the discriminator that is
trained to discriminate image pairs from different target domains.
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Here, the target information is encoded by appending to the input
image a single channel whose pixel values reflect the target domain.
In practice, since the different domains in this application corre-
spond to different resist heights, there exists a true ordering for the
target domains themselves. Therefore, an ordinal encoding scheme
is used to encode the ID of the target domain k (k € {0, 1,...,m—1})
on the additional input channel whose pixel values are the same
and are set as follows:
Pmax ~ Pmin )
m-—1
where pmin and pmax denote the minimum and maximum possible
values in the additional input channel. Commonly used settings
include ppin = 0, Pmax = 255 OF Prin = —1, Pmax = 1.
Table 1 summarizes the details of the discriminator which con-
stitutes of four convolutional layers and one fully connected layer
(FC) whose output is the binary classification results.

k+ Pmin,

Table 1: Network architecture of the proposed TEMPO.

Network Layer | Count | Channel | Size | Stride | Additional
Input — 1(2)2 — — —
Generator Conv 1 64 5 2 LReLUBN
Encoder Conv 1 128 5 2 LReLUBN
Conv 1 256 5 2 LReLU,BN
Conv 5 512 5 2 LReLUBN
Concat 1 512+m — — —
Deconv 4 512 5 2 ReLUBN
Generator Deconv 1 256 5 2 ReLU,BN
Decoder Deconv 1 128 5 2 ReLUBN
Deconv 1 64 5 2 ReLU,BN
Deconv - 1 5 2 ReLU
Input — 3(4) — — -
Conv 1 64 5 2 LReLU
Discriminator Conv 1 128 5 2 LReLU
Conv 1 256 5 2 LReLU
Conv 1 512 5 2 LReLU
FC 1 1 — — Sigmoid

2 () denotes the number of channels in Scheme 2.

4 EXPERIMENTAL RESULTS

In this work, we explore mask topography effects on contacts as
according to the existing studies and reports, the mask topogra-
phy effect should be considered more carefully for contact hole
patterns than line and space patterns [28]. We generate 966 clips
of size 2 X 2 um containing various contact patterns following the
clip generation method described in [29]. Each contact is designed
to be 60 X 60 nm, and the contact pitch is 128 nm. We perform sub-
resolution assist feature (SRAF) insertion and OPC on contact pat-
terns using Mentor Graphics Calibre [30].

We run rigorous optical simulation to generate 3D aerial images
using Synopsys Sentaurus Lithography [18]. A quasar light source
is used for this experiment. The wavelength of the light source is
set to 193 nm, and the numerical aperture (NA) of the imaging sys-
tem is 1.2. The simulation window of 1.5 X 1.5 pm is configured as
nonperiodic and centers each of the clips. Since the resist thickness
is 120 nm and simulation resolutions in X, Y and Z directions are set
to 7.5nm, 7.5nm and 10 nm respectively, we got 2D aerial images
of 200 X 200 pixels at 13 different resist heights for each clip, i.e.,
n = 100 in Equation (1) and Equation (2), and m = 13.
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In this work, the aerial images generated by rigorous simulation
considering mask topography effects are used as the golden data for
TEMPO training. Each sample in the training set is a collection of
the mask pattern image and the corresponding aerial images at 13
different resist heights. Note that the mask pattern clip within the
simulation window is 1.5 X 1.5 um and the grid unit in the original
layout is 1 nm, so we size it down to a grayscale image of 200 X 200
pixels using average filtering. Each pixel in the aerial image is an
intensity value stored in the 32-bit single-precision format.

The proposed TEMPO is implemented in Python with the Ten-
sorflow library and validated on a Linux server with 3.3GHz Intel i9
CPU and Nvidia TITAN Xp GPU. In our experiments, we randomly
sample 75% of the data for training the model and the remaining
25% clips are for testing. We set the batch size to 4 and the num-
ber of maximum training epochs to 70. The weight parameter A
in Equation (4) is set to 1000. We also build 13 individual models
to predict 2D aerial images at each resist height separately which
work as the baseline approach. Each of the individual models takes
as input the dataset of aerial images at only one resist height and
is trained with the same hyperparameter setting as TEMPO. Note
that the 13 individual models have a total of 1.17 X 10° trainable
parameters (weights and biases), whereas TEMPO has 1.03 x 108.
Therefore, TEMPO effectively reduces the model size for the 3D
aerial image prediction task.

We first demonstrate the accuracy of our proposed TEMPO. Ta-
ble 2 gives a detailed comparison between the individual models
and our TEMPO under Scheme 1 and Scheme 2 using the proposed
RMSE and NRMSE metrics in Section 2.3. The number shown in the
table is the average of all the test samples on each resist height. One
can easily see that TEMPO outperforms the individual modeling ap-
proach (denoted as Baseline) under both schemes. Besides, whether
using the 13 individual GAN models or the proposed TEMPO ap-
proach, Scheme 2 always gives better accuracy than Scheme 1. More-
over, TEMPO improves the RMSE from 14.96 x 10~ t0 13.72 x 107*
on average, and NRMSE from 4.63% to 4.23% in Scheme 1, while
improving the RMSE from 7.3 x 107 to0 5.81 x 10™* and NRMSE
from 2.27% to 1.79% in Scheme 2. Clearly, Scheme 2 in TEMPO can
help gain better improvement in accuracy because the aerial image
produced by the fast thin mask simulation, as an additional input in
Scheme 2, provides more information about the lithography system,
and hence TEMPO is able to achieve notable improvement under
such situation. To visually examine the accuracy difference between
the two schemes in TEMPO, the aerial images for two samples of
distinct pattern designs are shown in Table 3.

As one of the most important outputs of optical models, the aerial
image can be used together with resist models to simulate final resist
profiles. Therefore, in addition to the direct comparison of aerial
images, we also evaluate the effectiveness of our proposed methods
based on the quality of generated resist patterns. We calculated the
critical dimension (CD) value of the resist pattern for the center
contact in each sample using the average of the aerial images at
13 resist heights. Using the CD values derived from the golden
aerial images as reference, Table 4 shows the comparison of CD
errors in the X and Y directions among different mask topography
effect modeling methods. The row “thin mask sim” represents the
CD errors when using the aerial images without considering mask
topography effects, and the errors could go up to more than 20 nm.
Our proposed TEMPO in Scheme 2 gives very small CD errors, for
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Table 2: Comparison of evaluation metrics among different modeling methods.

RMSE (x 107%) NRMSE (%)
Height (nm) Scheme 1 Scheme 2 Scheme 1 Scheme 2
Baseline TEMPO | Baseline TEMPO || Baseline TEMPO | Baseline TEMPO

0 11.88 10.87 4.96 4.12 4.55 4.15 1.96 1.62

10 12.53 11.48 5.41 4.21 4.55 4.15 2.03 1.57

20 13.50 12.63 5.24 4.50 4.51 4.19 1.79 1.54

30 15.30 13.26 6.11 4.74 4.97 4.25 2.02 1.56

40 14.26 13.32 5.53 4.79 4.63 4.31 1.82 1.58

50 14.36 13.11 5.96 4.93 4.71 4.29 1.98 1.63

60 14.37 13.22 7.99 5.23 4.63 4.24 2.63 1.70

70 15.18 13.61 7.32 5.71 4.62 4.13 2.27 1.76

80 15.58 14.52 7.71 6.24 4.48 4.17 2.26 1.81

90 16.42 15.25 8.00 6.79 4.57 4.23 2.26 1.90
100 16.79 15.59 8.40 7.42 4.62 4.28 2.34 2.05
110 17.16 15.75 8.96 8.17 4.68 4.29 2.46 2.23
120 17.11 15.74 13.27 8.66 4.63 4.26 3.67 2.34
Average 14.96 13.72 7.30 5.81 4.63 4.23 2.27 1.79
Max 17.16 15.75 13.27 8.66 4.97 4.31 3.67 2.34
Std. dev. 1.69 1.58 2.24 1.52 0.12 0.06 0.49 0.27

Table 3: Aerial image results for two test clips using Scheme 1 and Scheme 2 in TEMPO.

Input Method 0nm 60 nm 120nm
P Aerial image Diff w.r.t. golden Aerial image Diff w.r.t. golden Aerial image Diff w.r.t. golden
0.12 o l flo.12
Golden 0.07 PR (10.07
0.02 i o " fo.02
0.12 0.008 o 0 Ro.12 0.008 0.008
TEMPO 0.006 0.006 0.006
(Scheme 1) 0.07 0.004 LI |10.07 0.004 0.004
0.002 0.002 H 10.002
0.02 i o " fo.02
0.12 0.008 o 0 Ro.12 0.008 0.008
TEMPO 0.006 0.006 0.006
(Scheme 2) 0.07 0.004 o o (i 0.004 0.004
: 0.002 0.002 0.002
0.02 i o " fHo.02
0.12 0.12
Golden 0.07 0.07
0.02 0.02
0.12 0.008 0.12 0.008 0.008
TEMPO 5 0.006 _ 0.006 0.006
(Scheme 1) 007 0.004 0.7 0.004 0.004
2 2 2
002 0.002 002 0.002 0.002
0.12 0.008 0.12 0.008 0.008
TEMPO ~ 0.006 ~ 0.006 0.006
(Scheme 2) 007 0.004 0.7 0.004 0.004
2 2 2
002 0.002 00 0.002 0.002

example, 0.38 nm in the X direction and 0.45nm in the Y direction,
which qualifies it for practical lithography usage. Besides, TEMPO
gives smaller CD errors when compared with the baseline with 13
individual GAN models, which further demonstrates the advantages
of our one-fits-all approach.

Last, we demonstrate the runtime comparison in Table 5, where
the total runtime of generating the 3D aerial images for all the test
samples, i.e., 242 samples, are shown. We can clearly see that the two
schemes in TEMPO satisfy different needs for speed and accuracy
at lithography development phases. Scheme 2 in TEMPO achieves
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~ 26.5% runtime reduction when compared to rigorous thick mask
simulation while achieving satisfactory accuracy. Considering the
acceptable CD degradation in Scheme 1 compared to Scheme 2
while being 50 faster, Scheme 1 in TEMPO is suitable for the early
exploration stages where speed is favored over high accuracy.

5 CONCLUSION

In this work, we have presented TEMPO, a novel and scalable frame-
work which is capable of generating 3D aerial images efficiently
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Table 4: Comparison of CD errors in the X and Y directions
among different methods.

Method CD error X (nm) | CD error Y (nm)
Average Max | Average Max

Thin mask sim. 2.77 20.67 3.93 33.49
Scheme 1 Baseline 0.75 4.64 0.73 3.19
TEMPO 0.72 3.38 0.67 2.82

Scheme 2 Baseline 0.48 2.05 0.50 3.89
TEMPO 0.38 1.88 0.45 3.11

Baseline (Scheme 1)
BN TEMPO (Scheme 1)

||I||l
0 1

Baseline (Scheme 2)
W TEMPO (Scheme 2)

100

Count

2 3 4
CD error in the X direction (nm)
()
100 {
2 50 | |(
o .
0 | -
0 1 2 3 4
CD error in the Y direction (nm)
(b)

Figure 5: Distribution of CD errors using different methods:
(a) error in the X direction and (b) error in the Y direction.

Table 5: Runtime comparison between rigorous simulation
and the proposed TEMPO framework.

Rigorous TEMPO TEMPO (Scheme 2)
mask sim. | (Scheme 1) | Thin mask sim. | GAN | Total
Runtime 205h 1.1m 45.3 m 11m | 464m
Ratio 26.51 0.02 — — 1.00

and accurately for modeling mask topography effects. Essentially,
TEMPO comprises a one-fits-all CGAN model for multi-domain
image-to-image translation, with the accuracy and compactness
further boosted by across-domain information sharing. Besides,
the two flexible schemes of operations in TEMPO provide different
trade-offs between accuracy and efficiency, which promotes the
wider application of TEMPO in different stages of process devel-
opment. The experimental results demonstrate that TEMPO can
achieve superior performance in both speed and accuracy for ad-
vanced lithography usage.
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