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ABSTRACT
Lithography simulation is one of the key steps in physical verification,
enabled by the substantial optical and resist models. A resist model
bridges the aerial image simulation to printed patterns. While the
effectiveness of learning-based solutions for resist modeling has been
demonstrated, they are considerably data-demanding. Meanwhile, a
set of manufactured data for a specific lithography configuration is
only valid for the training of one single model, indicating low data
efficiency. Due to the complexity of the manufacturing process, ob-
taining enough data for acceptable accuracy becomes very expensive
in terms of both time and cost, especially during the evolution of tech-
nology generations when the design space is intensively explored. In
this work, we propose a new resist modeling framework for contact
layers that utilizes existing data from old technology nodes to reduce
the amount of data required from a target lithography configuration.
Our framework based on residual neural networks and transfer learn-
ing techniques is effective within a competitive range of accuracy,
i.e., 2-10X reduction on the amount of training data with comparable
accuracy to the state-of-the-art learning approach.
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1 INTRODUCTION
Due to the continuous semiconductor scaling from 10nm technol-
ogy node (N10) to 7nm node (N7) [10, 11], the prediction of printed
pattern sizes is becoming increasingly difficult and complicated due
to the complexity of manufacturing process and variations. How-
ever, complex designs demand accurate simulations to guarantee
functionality and yield. Resist modeling, as a key component in
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lithography simulation, is critical to bridge the aerial image simula-
tion to manufactured wafer data. Rigorous simulations that perform
physics-level modeling suffer from large computational overhead,
which are not suitable when used extensively. Thus compact resist
models are widely used in practice.

Figure 1(a) shows the process of lithography simulations where
the optical model computes the aerial image from the input mask pat-
terns and the resist model determines the output patterns from this.
As the aerial image contains the light intensity map, the resist model
needs to determine the slicing thresholds for the output patterns as
shown in Figure 1(b). With the thresholds, the critical dimensions
(CDs) of printed patterns can be computed, which need to match
CDs measured from manufactured patterns. In practice, various fac-
tors may impact a resist model such as the physical properties of
photoresist, design rules of patterns, process variations.

Accurate lithography simulation like rigorous physics-based sim-
ulation is notorious for its long computational time, while simulation
with compact models suffers from accuracy issues [21, 25]. On the
other hand, machine learning techniques are able to construct accu-
rate models and then make efficient predictions. These approaches
first take training data to calibrate a model and then use this model
to make predictions on testing data for validation. The effectiveness
of learning-based solutions has been studied in various lithogra-
phy related areas including aerial image simulation [15], hotspot
detection [13, 16, 22, 26, 28, 29], optical proximity correction (OPC)
[5, 8, 14, 17], sub-resolution assist features (SRAF) [24, 27], resist
modeling [21, 25], etc. In resist modeling, a convolutional neural
network (CNN) that predicts slicing thresholds in aerial images is
proposed [25]. The neural network consists of three convolution
layers and two fully connected layers. Since the slicing threshold is a
continuous value, learning a resist model is a regression task rather
than a classification task. Around 70% improvement in accuracy is
reported compared with calibrated compact models fromMentor Cal-
ibre [18]. Shim et al. [21] propose an artificial neural network (ANN)
with five hidden layers to predict the height of resist after exposure.
Significant speedup is reported with high accuracy compared with a
rigorous simulation.

Although the learning-based approaches are able to achieve high
accuracy, they are generally data-demanding in model training. In
other words, big data is assumed to guarantee accuracy and gener-
ality. Furthermore, one data sample can only be used to train the
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Figure 1: (a) Process of lithography simulation with optical and re-
sist models. (b) Thresholds for aerial image determine simulated CD,
which should match manufactured CD.

corresponding model under the same lithography configuration, in-
dicating a low data efficiency. Here data efficiency evaluates the
accuracy a model can achieve given a specific amount of data, or
the amount of data samples are required to achieve target accuracy.
Nevertheless, obtaining a large amount of data is often expensive and
time-consuming, especially when the technology node switches from
one to another and the design space is under active exploration, e.g.,
from N10 to N7. The lithography configurations including optical
sources, resist materials, etc., are frequently changed for experiments.
Therefore, a fast preparation of models with high accuracy is urgently
desired.

Different from previous approaches, in this work, we assume the
availability of large amounts of data from the previous technology
generation with old lithography configurations and small amounts of
data from a target lithography configuration. We focus on increasing
the data efficiency by reusing those from other lithography configu-
rations and transfer the knowledge between different configurations.
The objective is to achieve accurate resist models with significantly
fewer data to a target configuration. The major contributions are
summarized as follows.
• We propose a high performance resist modeling technique
based on the residual neural network (ResNet).
• We propose a transfer learning scheme for ResNet that can
reduce the amount of data with a target accuracy by utilizing
the data from other configurations.
• We explore the impacts from various lithography configura-
tions on the knowledge transfer.
• The experimental results demonstrate 2-10X reduction in the
amount of training data to achieve accuracy comparable to
the state-of-the-art learning approach [25].

The rest of the paper is organized as follows. Section 2 illustrates
the problem formulation. Section 3 explains the details of our ap-
proach. The effectiveness of our approach is verified in Section 4 and
the conclusion is drawn in Section 5.

2 PRELIMINARIES
In this section, we will briefly introduce the background knowledge
on lithography simulation and resist modeling. Then the problem
formulation is explained. We mainly focus on contact layers in this
work, but our methodology shall be applicable to other layers.

2.1 Lithography Simulation
Lithography simulation is generally composed of two stages, i.e.,
optical simulation and resist simulation, where optical and resist
models are required, respectively. In the optical simulation, an optical
model, characterized by the illumination tool, takes mask patterns to

x

y

(a)

x
y

Intensity

(b)

yc

(c)

x, y = yc

Intensity

(d)
Figure 2: (a) Design target of 3 contacts and (b) the light intensity
plot of aerial image. Assume that RETs such as SRAF and OPC have
been already applied to the contacts before optical simulation. (c) A
dotted line horizontally crosses the centers at y = yc and the circles
denote the contours of printed patterns. (d) Light intensity profiling
along the dotted line at y = yc extracted from the aerial image and
different slicing thresholds for each contact.

compute aerial images, i.e., light intensity maps. Then in the resist
simulation, a resist model finalizes the resist patterns with the aerial
images from the optical simulation. Generally, there are two types of
resist models. One is a variable threshold resist (VTR) model in which
the thresholds vary according to aerial images, and the other is a
constant threshold resist (CTR) model in which the light intensity is
modulated in an aerial image. We adopt the former since it is suitable
to learning-based approaches [25].

Figure 2 shows an example of lithography simulation for a clip
with three contacts. We assume that proper resolution enhancement
techniques (RETs) such as OPC and SRAF have been applied before
the computation of the aerial image [12]. The optical simulation
generates the aerial image, as shown in Figure 2(b). Resist simulation
then computes the thresholds in the aerial image to predict printed
patterns. If we consider the horizontal sizes of contacts along the
dotted line in Figure 2(c), the light intensity profiling can be extracted
from the aerial image along the line and calculates the CDs for each
contact with the thresholds.

2.2 Historical Data and Transfer Learning
Since the lithography configurations evolve from one generation to
another with the advancement of technology nodes, there are plenty
of historical data available for the old generation. As mentioned in
Section 1, accurate models require a large amount of data for training
or calibration, which are expensive to obtain during the exploration
of a new generation. If the lithography configurations have no funda-
mental changes, the knowledge learned from the historical data may
still be applicable to the new configuration, which can eventually
help to reduce the amount of new data required.

Transfer learning represents a set of techniques to transfer the
knowledge from one or multiple source domains to a target domain,
utilizing the underlying similarity between the data from these do-
mains. Various studies have explored the effectiveness of knowledge
transfer in image recognition and robotics [6, 19, 20], while it is
not clear whether the knowledge between different resist models is
transferable or not.

In this work, we consider the evolution of the contact layer from
the cutting edge technology node N10 to N7 [10, 11]. A large amount



Table 1: Lithography Configurations for N10 and N7

N10 N7
N7a N7b

Design Rule A B B

Optical Source A B B

Resist Material A A B

(a) (b)
Figure 3: Optical sources (yellow) for (a) N10 and (b) N7.

of available N10 data are assumed. During the evolution to N7, dif-
ferent design rules for mask patterns, optical sources and resist ma-
terials for lithography are explored. Table 1 shows the lithography
configurations considered for N10 and N7. Differences in letters A,B
represent different configurations of design rules, optical sources, or
resist materials. One configuration for N10 is considered, while two
configurations are considered for N7, i.e., N7a , N7b , with two kinds
of resist materials (about 20% difference in the slopes of dissolution
curves). From N10 to N7, both the design rules and optical sources
are changed. For N10, we consider a pitch of 64nm with double pat-
terning lithography, while for N7, the pitch is set to 45nm with triple
patterning lithography [10]. The width of each contact is set to half
pitch. The lithography target of each contact is set to 60nm for both
N10 and N7. Optical sources calibrated with industrial strength for
N10 and N7 are shown in Figure 3, with the same type of illumination
shapes.

Various combinations of knowledge transfer can be explored from
Table 1, such as N10→N7, N7i→N7j , and N10+N7i→N7j , where
i , j, i, j ∈ {a,b}.

2.3 Learning-based Resist Modeling
The thresholds of positions near the contacts are of significant im-
portance since they usually determine the boundaries of printed
contacts. Hence we consider the middle of the left, right, bottom
and top edges for each contact, as shown in Figure 4(a), where the
positions for prediction are highlighted with black dots. In addition,
the threshold is mainly influenced by the surrounding mask patterns.
Therefore, resist models typically compute the threshold using a
clip of mask patterns centered by a target position. To measure the
thresholds in Figure 4(a), we select a clip where the target position
lies in its center, as shown in Figure 4(b) to Figure 4(e). The task of a
resist model is to compute the thresholds for these positions of each
contact [25].

Learning-based resist modeling consists of two phases, training
and testing. In the training phase, training dataset with both aerial
images and thresholds are used to calibrate the model, while in the
testing phase, the model predicts thresholds for the aerial images
from the testing dataset and compares with the golden thresholds to
validate the model.

(a) (b) (c) (d) (e)
Figure 4: (a) The thresholds for themiddle of the 4 edges of the center
contact are predicted. (b) (c) (d) (e) The clip window is shifted such
that the target position lies in the center of the clip.

2.4 Problem Formulation
The accuracy1 of a model is evaluated with root mean square (RMS)
error defined as follows,

ϵ =

√√√
1
N

N∑
i=1

(ŷ − y)2, (1)

where N denotes the amount of samples,y denotes the golden values
and ŷ denotes the predicted values. We further define relative RMS
error,

ϵr =

√√√
1
N

N∑
i=1

(
ŷ − y

y
)2, (2)

where a relative ratio of error from the golden values can be repre-
sented. Both metrics can refer to errors in either CD or threshold.
Although during model training, the RMS error of threshold is gen-
erally minimized due to easier computation, the eventual model is
often evaluated with the RMS error of CD for its physical meaning
to the patterns. The RMS errors in threshold and CD essentially have
almost the same fidelity, and usually yield consistent comparison.
For convenience, we report relative RMS error in threshold (ϵthr )
for comparison of different models since it removes the dependency
to the scale of thresholds, and use RMS error in CD (ϵCD ) for data
efficiency related comparison.

Definition 1 (Data Efficiency). The amount of target domain data
required to learn a model with a given accuracy.

Given a specific amount of data from a target domain, if one can
learn a model with a higher accuracy than another, it also indicates
higher data efficiency. Thus improving model accuracy benefits data
efficiency as well.

The resist modeling problem is defined as follows.

Problem 1 (Learning-based Resist Modeling). Given a dataset con-
taining information of aerial images and thresholds at their centers,
train a resist model that can maximize the accuracy for the prediction
of thresholds.

In practice, accuracy is not the only objective. The amount of
training data should be minimized as well due to the high cost of
data preparation. Therefore, we propose the problem of data efficient
resist modeling as follows.

Problem 2 (Data Efficient Resist Modeling). Given datasets from N10
and N7 containing information of aerial images and thresholds, train
a resist model for target dataset N7i that can achieve high accuracy
and meanwhile minimize the amount of data required for N7i , where
i ∈ {a,b}.

1Note that the accuracy we talk about in this paper refers to the accuracy at end of lithography flow
including all RETs.
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(a) (b) (c)
Figure 6: (a) A clip of 3×3 contact array. (b) A clip of 3×3 randomized
contact array. (c) A clip of contacts with random positions.

3 ALGORITHMS
In this section, we will explain the structure of our models and then
the details regarding the transfer learning scheme.

3.1 Data Preparation
Figure 5 gives the flow of data preparation. We first generate clips
and perform SRAF insertion and OPC. The aerial images are then
computed from the optical simulation, and at the same time, the
golden thresholds need to be computed from either the rigorous
simulation or the manufactured data. Each data sample consists of
an aerial image and the threshold at its center.

3.1.1 Clip Generation. Following the design rules such as mini-
mum pitch of contacts, we generate three types of 2 × 2µm clips. It
is necessary to ensure that there is a contact in the center of each
clip since that is the target contact for threshold computation.

Contact Array. All possiblem × n arrays of contacts within the
dimensions of clips are enumerated. The steps of the arrays can be
multiple times of theminimumpitchp, i.e.,p, 2p, 3p, . . . , in horizontal
or vertical directions. An example of 3×3 contact array with a certain
pitch is shown in Figure 6(a). It needs to mention that the same 3× 3
contact array with different steps should be regarded as different
clips due to discrepant spacing.

Randomized Contact Array. The aforementioned contact ar-
rays essentially distribute contacts on grids and fill all the slots in the
grid maps. The randomization of contact arrays is implemented by a
random distribution of contacts in those grid maps. Fig 6(b) shows
an example of randomized contact array from the 3× 3 contact array
in Figure 6(a). Various distribution of contacts can be generated even
from the same grid maps.

Contacts with RandomPositions. Contacts in this type of clips
do not necessarily align to any grid map, as their positions are ran-
domly generated, while the design rules are still guaranteed. An
example is shown in Figure 6(c). No matter how the surrounding
contacts change, the contact in the center of the clip should remain
the same.

3.1.2 Data Augmentation. Due to the symmetry of optical sources
in Figure 3, data can be augmented with rotation and flipping, im-
proving the data efficiency [4]. Eight combinations of rotation and
flipping are shown in Figure 7, where new data samples are obtained

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 7: Combinations of rotation and flipping. (a) Original. (b) Ro-
tate 90◦. (c) Rotate 180◦. (d) Rotate 270◦. (a) Flip. (b) Flip and rotate 90◦.
(c) Flip and rotate 180◦. (d) Flip and rotate 270◦.

without new thresholds. Data augmentation inflates datasets to ob-
tain models with better generalization.

3.2 Convolutional Neural Networks
Convolutional neural networks (CNN) have demonstrated impressive
performance on mask related applications in lithography such as
hotspot detection, and resist modeling [25, 29]. The structure of
CNN mainly includes convolution layers and fully connected layers.
Features are extracted from convolution layers and then classification
or regression is performed by fully connected layers. Figure 10(a)
illustrates a CNN structure with three convolution layers and two
fully connected layers [25]. The first convolution layer has 64 filters
with dimensions of 7 × 7. Although not explicitly shown most of
the time, a rectified linear unit (ReLU) layer for activation is applied
immediately after the convolution layer, where the ReLU function is
defined as,

x l =

{
x l−1, if x l−1 ≥ 0,
0, otherwise. (3)

Then the max-pooling layer performs down-sampling with a factor
of 2 to reduce the feature dimensions and improve the invariance to
translation [4]. After three convolution layers, two fully connected
layers are applied where the first one has 256 hidden units followed
with a ReLU layer and a 50% dropout layer, and second one connects
to the output.

3.3 Residual Neural Networks
One way to improve the performance of CNN is to increase the
depth for a larger capacity of the neural networks. However, the
counterintuitive degradation of training accuracy in CNN is observed
when stacking more layers, preventing the neural networks from
better performance [7]. An example of CNNs with 5 and 10 layers
is shown in Figure 8, where the deeper CNN fails to converge to a
smaller training error than the shallow one due to gradient vanishing
[2, 3], eventually resulting in the failure to achieve a better testing
error either. The study from He et al. [7] reveals that the underlying
reason comes from the difficulty of identity mapping. In other words,
fitting a hypothesis H (x ) = x is considerably difficult for solvers
to find optimal solutions. To overcome this issue, residual neural
networks (ResNet), which utilizes shortcut connections, are adopted
to assist the convergence of training accuracy.

The building block of ResNet is illustrated in Figure 9, where a
shortcut connection is inserted between the input and output of two
convolution layers. Let the function F (x ) be the mapping defined by
the two convolution layers. Then the entire function for the building
block becomes F (x ) + x . Suppose the building block targets to fit
the hypothesisH (x ). The residual networks train F (x ) = H (x ) −x ,
while the convolution layers without shortcut connections like that
in CNN try to directly fit F (x ) = H (x ). Theoretically, ifH (x ) can
be approximated with F (x ), then it can also be approximated with
F (x )+x . Despite the same nature, comprehensive experiments have
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Figure 8: Counterintuitive (a) training and (b) testing errors for dif-
ferent depth of CNN with epochs.
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Figure 9: Building block of ResNet.

demonstrated a better convergence of ResNet than that of CNN for
deep neural networks [7]. We also observe a better performance of
ResNet with the transfer learning schemes than that of CNN in our
problem, which has never been explored before.

The ResNet is shown in Figure 10(b) with 8 convolution layers
and 2 fully connected layers. Different from the original setting
[7], we add a shortcut connection to the first convolution layer by
broadcasting the input tensor of 64 × 64 × 1 to 64 × 64 × 64. This
minor change enables better empirical results in our problem. For
the rest of the networks, 3 building blocks for ResNet are utilized.

3.4 Transfer Learning
Transfer learning aims at adapting the knowledge learned from data
in source domains to a target domain. The transferred knowledge
will benefit the learning in the target domain with a faster conver-
gence and better generalization [4]. Suppose the data in the source
domain has a distribution Ps and that in the target domain has a
distribution Pt . The underlying assumption of transfer learning lies
in the common factors that need to be captured for learning the
variations of Ps and Pt , so that the knowledge for Ps is also useful
for Pt . An intuitive example is that learning to recognize cats and
dogs in the source task helps the recognition of ants and wasps in the
target task, especially when the source task has significantly larger
dataset than that of the target task. The reason comes from the low-
level notions of edges, shapes, etc., shared by many visual categories
[4]. In resist modeling, different lithography configurations can be
viewed as separate tasks with different distributions.

Typical transfer learning scheme for neural networks fixes the first
several layers of the model trained for another domain and finetune
the successive layers with data from the target domain. The first
several layers usually extract general features, which are considered
to be similar between the source and the target domains, while the
successive layers are classifiers or regressors that need to be adjusted.
Figure 11 shows an example of the transfer learning scheme. We
first train a model with source domain data and then use the source
domain model as the starting point for the training of the target
domain. During the training for the target domain, the first k layers
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Figure 10: (a) CNN and (b) ResNet structure.

are fixed, while the rest layers are finetuned. We denote this scheme
as TFk , shortened from “Transfer and Fix”, where k is the parameter
for the number of fixed layers.

4 EXPERIMENTAL RESULTS
Our framework is implemented with Tensorflow [1] and validated
on a Linux server with 3.4GHz Intel i7 CPU and Nvidia GTX 1080
GPU. Around 980 mask clips are generated according to Section 3.1
for N10 and N7 separately following the design rules in Section 2.2,
respectively. N7a and N7b use the same set of clips, but different
lithography configurations. SRAF, OPC and aerial image simulation
are performed with Mentor Calibre [18]. The golden CD values are
obtained from rigorous simulation using Synopsys Sentaurus Lithog-
raphy models [23] calibrated from manufactured data for N10, N7a ,
and N7b according to Table 1. Then golden thresholds are extracted.
Each clip has four thresholds as shown in Figure 4. Hence the N10
dataset contains 3928 samples and each N7 dataset contains 3916 sam-
ples, respectively. The data augmentation technique in Section 3.1.2
is applied, so the training set and the testing set will be augmented
by a factor of 8 independently. For example, if 50% of the data for N10
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Figure 11: Transfer learning scheme with the first k layers fixed
when training for target domain, denoted as TFk .

are used for training, then there are 3928×50%×8 = 15712 samples. It
needs to mention that always the same 50% portions are used during
the validation of a dataset for fair comparison of different techniques.
The batch size is set to 32 for training accommodating to the large
variability in the sizes of training datasets. Adam [9] is used as the
stochastic optimizer and maximum epoch is set to 200 for training.

The training time for one model takes 10 to 40 minutes according
to the portions of a dataset used for training, and prediction time
for an entire N10 or N7 dataset takes less than 10 seconds, while the
rigorous simulation takes more than 15 hours for each N10 or N7
dataset. Thus we no longer report the prediction time which is negli-
gible compared with that of the rigorous simulation. Each experiment
runs 10 different random seeds and averages the numbers.

4.1 CNN and ResNet
We first compare CNN and ResNet in Figure 12(a). Column “CNN-5”
denotes the network with 5 layers shown in Figure 10(a). Column
“CNN-10” denotes the one with 10 layers that has the same structure
as that in Figure 10(b) but without shortcut connections. Column
“ResNet” denotes the one with 10 layers shown in Figure 10(b). When
using 1% to 20% training data, ResNet shows better average relative
RMS error ϵthr than CNN-10, but CNN-5 provides the best error. We
will show later that ResNet on the contrary outperforms CNN-5
when transfer learning is incorporated.

The impacts of depth on the performance of ResNet are further
explored in Figure 12(b), where we gradually stack more building
blocks in Figure 9 before fully connected layers. The x-axis denotes
total number of convolution and fully connected layers correspond-
ing to different numbers of building blocks. For instance, 0 building
block leads to 4 layers and 3 building blocks result in 10 layers (Fig-
ure 10(b)). The testing error decreases to lowest value at 10 layers and
then starts to increase, indicating potential overfitting afterwards
[4]. Therefore, we use 10 layers for the ResNet in the experiment.

4.2 Knowledge Transfer From N10 to N7
We then compare the testing accuracy between knowledge transfer
from N10 to N7 and directly training from N7 datasets in Figure 13(a).
In this example, the x-axis represents the percentage of training
dataset for the target domain N7a , while the percentage of data
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Figure 12: (a) Comparison on testing accuracy of CNN-5, CNN-10, and
ResNet on N10. (b) Impact of depth on the testing accuracy of ResNet.
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Figure 13: Testing accuracy of transfer learning from N10 to N7a . (a)
Comparison between CNN and transfer learning. (b) Comparison be-
tween transfer learning schemes where different numbers of layers
are fixed.

from the source domain N10 is always 50%. Similar trends are also
observed for N7b . Curve “CNN” denotes training the CNN of 5 layers
in Figure 10(a) with data from target domain only, i.e., no transfer
learning involved. Curve “CNN TF0” denotes the transfer learning
scheme in Section 3.4 for the same CNN with zero layer fixed. Curve
“ResNet TF0” denotes applying the same scheme to ResNet. The most
significant benefit of transfer learning comes from small training
dataset with a range of 1% to 20%, where there are around 52% to
18% improvement in the accuracy from CNN. Meanwhile, ResNet
TF0 can achieve an average of 13% smaller error than CNN TF0.

Figure 13(b) further compares the results of fixing different num-
bers of layers during transfer learning. In this case, ResNet TF0 and
ResNet TF4 have the best accuracy, while the error increases with
more layers fixed. It is indicated that the tasks N10 and N7 are quite
different and both feature extraction layers and regression layers
need finetuning.

4.3 Knowledge Transfer within N7
The transfer learning between different N7 datasets, e.g., from N7a
to N7b , is also explored in Figure 14. The x-axis represents the per-
centage of training dataset for the target domain N7b , while the
percentage of data from the source domain N7a is always 50%. Com-
pared with the knowledge transfer from N10 to N7, we achieve even
higher accuracy between 1% and 20% training datasets in Figure 14(a).
For example, with 1% training dataset, there is around 65% improve-
ment in accuracy from CNN, and with 20% training dataset, the
improvement is around 23%. ResNet TF0 keeps having lower errors
than that of CNN TF0 as well, with an average benefit around 15%.
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Figure 14: Testing accuracy of transfer learning from N7a to N7b . (a)
Comparison between CNN and transfer learning. (b) Comparison be-
tween transfer learning schemes where different numbers of layers
are fixed.

The curves in Figure 14(b) show different insights from that of
the knowledge transfer from N10 to N7. The accuracy of ResNet
TF0 can be further improved with more layers fixed, e.g., ResNet
TF8, by around 28% to 14%. This is reasonable since N7a and N7b
have the same design rules and illumination shapes, and the only
difference lies in the resist materials. Therefore, the feature extraction
layers are supposed to remain almost the same. With the sizes of
the training dataset increasing to 15% and 20%, the differences in
the accuracy become smaller, because there are enough data to find
good configurations for the networks.

4.4 Impact of Various Source Domains
In transfer learning, the correlation between the datasets of source
and target domains is critical to the effectiveness of knowledge trans-
fer. Thus, we explore the impacts of source domain datasets on the
accuracy of modeling for the target domain. Figure 15 plots the test-
ing errors of learning N7b using ResNet TF0 with various source
domain datasets. Curves “N1050%” and “N750%a ” indicate that 50% of
the N10 or the N7a dataset is used to train source domain models,
respectively. Curve “N1050% + N71%a ” describes the situation where
we have 50% of the N10 dataset and 1% of the N7a dataset for train-
ing. In this case, as shown in Figure 16, we first use the 50% N10
data to train the first source domain model; then train the second
source domain model using the first model as the starting point with
the 1% N7a data; in the end, the target domain model for N7b is
trained using the second model as the starting point with N7b data.
Curves “N1050% + N75%a ” and “N1050% + N710%a ” are similar, simply
with different amounts of N7a data for training.

The knowledge from N750%a is the most effective for N7b due to
the minor difference in resist materials between two datasets. For the
rest curves, the accuracy of N1050% + N75%a and N1050% + N710%a is
in general better than or at least comparable to that of N1050%. This
indicates that having more data from closer datasets to the target
dataset, e.g., N7a , is still helpful.

4.5 Improvement in Data Efficiency
Table 2 presents the accuracy metrics, i.e., relative threshold RMS
error (ϵthr ) and CD RMS error (ϵCD ), for learning N7b from various
source domain datasets. Since we consider the data efficiency of
different learning schemes, we focus on the small training dataset
for N7b , from 1% to 20%. Situations such as no source domain data
(∅), only source domain data from N10 (N1050%), only source domain
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Figure 15: Testing accuracy of ResNet TF0 for N7b from different
source domain datasets.
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Figure 16: Transfer learning from 50% of N10 dataset and 1% of N7a
dataset (i.e., N1050% + N71%a ) to N7b with x% of N7b dataset.

data from N7a (N750%a ), and combined source domain datasets, are
examined. As mentioned in Section 2, the fidelity between relative
threshold RMS error and CD RMS error is very consistent, so they
share almost the same trends. Transfer learning with any source
domain dataset enables an average improvement of 23% to 40% from
that without knowledge transfer. In small training datasets of N7b ,
ResNet also achieves around 8% better performance on average than
CNN in the transfer learning scheme. At 1% of N7b , combined source
domain datasets have better performance compared with N1050%
only, but the benefits vanish with the increase of the N7b dataset.

In real manufacturing, models are usually calibrated to satisfy a
target accuracy or target CD RMS error. Figure 17 demonstrates the
amount of training data required in the target domain for learning the
N7b model. Curve “CNN” does not involve any knowledge transfer,
while curves “CNN TF0” and “ResNet TF0” utilize transfer learning
in CNN and ResNet, respectively. The curves in Fig 17(a) assume
the availability of N10 data. Consider the CD RMS error from 1.5nm
to 2.5nm, which is around 10% of the half pitch for N7 contacts.
This range of accuracy is also comparable to that of the state-of-
the-art CNN [25]. ResNet TF0 requires significantly fewer data than
both CNN and CNN TF0. For instance, when the target CD error
is 1.75nm, ResNet TF0 demands 5% training data from N7b , while
CNN requires 20% and CNN TF0 requires 15%. Figure 17(b) considers
the transfer from N7a to N7b . Both ResNet TF0 and CNN TF0 only
require 1% training data from N7b for most target CD RMS errors,
where CNN TF0 cannot achieve the accuracy unless given 30% data.
Overall, ResNet TF0 can achieve 2-10X reduction of training data
within this range compared with CNN. It needs to mention that 1% of
dataset only correspond to fewer than 40 samples owing to the data
augmentation, indicating only thresholds of 40 clips are required.

5 CONCLUSION
A transfer learning framework based on residual neural networks is
proposed for resist modeling. The combination of ResNet and transfer
learning is able to achieve high accuracy with very few data from the
target domains, under various situations for knowledge transfer, indi-
cating high data efficiency. Extensive experiments demonstrate that
the proposed techniques can achieve 2-10X reduction according to
various requirements of accuracy comparable to the state-of-the-art



Table 2: Relative Threshold RMS Error and CD RMS Error for N7b with Different Source Domain Datasets
Source
Datasets ∅ N1050% N750%a N1050% + N75%a N1050% + N710%a

Neural
Networks CNN CNN TF0 ResNet TF0 CNN TF0 ResNet TF0 ResNet TF0 ResNet TF0

ϵ thr
(10−2) ϵCD

ϵ thr
(10−2) ϵCD

ϵ thr
(10−2) ϵCD

ϵ thr
(10−2) ϵCD

ϵ thr
(10−2) ϵCD

ϵ thr
(10−2) ϵCD

ϵ thr
(10−2) ϵCD

N7b

1% 4.44 4.76 2.34 2.48 2.29 2.39 1.69 1.79 1.52 1.60 1.94 2.03 1.82 1.91
5% 2.78 2.96 1.73 1.86 1.60 1.70 1.53 1.64 1.34 1.43 1.67 1.78 1.57 1.67
10% 1.92 2.04 1.63 1.76 1.47 1.57 1.50 1.60 1.30 1.38 1.50 1.60 1.51 1.61
15% 1.72 1.84 1.56 1.68 1.39 1.47 1.48 1.55 1.27 1.35 1.41 1.50 1.43 1.52
20% 1.60 1.71 1.50 1.61 1.31 1.39 1.44 1.55 1.23 1.31 1.32 1.41 1.34 1.43

ratio 1.00 1.00 0.77 0.77 0.70 0.69 0.69 0.69 0.60 0.60 0.69 0.69 0.69 0.68
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Figure 17: Amount of training data required for N7b given target
CD RMS errors when (a) 50% N10 dataset is available or (b) 50% N7a
dataset is available.

learning approach. It is also shown that the performance of transfer
learning differs from dataset to dataset and is worth exploring to see
the correlation between datasets. Examining the quantitative rela-
tion between the correlation of datasets and performance of transfer
learning is valuable in the future.
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