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ABSTRACT
Post Exposure Baking (PEB) has been widely utilized in advanced
lithography. PEB simulation is critical in the lithography simulation
flow, as it bridges the optical simulation result and the final devel-
oped profile in the photoresist. The process of PEB can be described
by coupled partial differential equations (PDE) and correspond-
ing boundary and initial conditions. Recent years have witnessed
growing presence of machine learning algorithms in lithography
simulation, while PEB simulation is often ignored or treated with
compact models, considering the huge cost of solving PDEs exactly.
In this work, based on the observation of the physical essence of
PEB, we propose DeePEB: a neural PDE Solver for PEB simulation.
This model is capable of predicting the PEB latent image with high
accuracy and >100 × acceleration (compared to the commercial
rigorous simulation tool), paving the way for efficient and accu-
rate photoresist modeling in lithography simulation and layout
optimization.

1 INTRODUCTION
Lithography simulation is one of the key steps in the integrated
circuit (IC) design flow, verifying whether design patterns can be
correctly printed in the photoresist. With continuous scaling of
semiconductor feature size, lithography models become more and
more complicated, increasing the complexity of lithography simu-
lation and slowing down the closure of design verification [1].

Lithography simulation composes of two parts: optical simula-
tion and photoresist simulation. Optical simulation describes the
behavior of the light illuminated from the source, including pass-
ing through the mask, focusing and imaging in the photoresist,
and generating the aerial image. Photoresist simulation models
consecutive process steps, including post-exposure baking (PEB)
and development. Fig. 1 sketches the entire lithography simulation
flow for chemical amplified photoresist (CAR), which receives great
popularity in modern high-resolution lithography. After exposure
simulation, the latent image in the photoresist (distribution of the
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Figure 1: Middle column: a representative lithography simulation

flow for CAR. Left column: example of the calculation results. Right

column: the core catalytic reaction happening in PEB.

photoacid, product of the light-induced reaction) can be computed
according to the aerial image. Then PEB activates the photoacid-
catalyzed deprotection of the development inhibitor, converting it
from insoluble to soluble. PEB simulation calculates the PEB latent
image of unreacted inhibitor distribution from the latent image. The
following development simulation simulates the etching process of
the inhibitor and produces the final photoresist profile. To this end,
metrology and inspection can be conducted to check the quality of
the profile. During the entire flow, PEB simulation serves as a bridge
between the optical simulation and the development calculation.
According to our studies on the commercial rigorous simulation
tool, Synopsys Sentaurus Lithography (S-Litho) [2], PEB simula-
tion takes about 10 ∼ 30% of the runtime in the whole rigorous
lithography simulation flow, as shown in Fig. 2.

Recent advances in machine learning (ML) bring new oppor-
tunities for optical simulation [3–6], hotspot detection [7, 8], and
photoresist modeling [9, 10]. For example, Ye et al. [4] propose
TEMPO, capable of predicting 3d aerial image efficiently and ac-
curately, and succeed to reduce the time consumed in exposure
simulation greatly, as shown in Fig. 2. As a consequence, the PEB
simulation now takes the longest time in the flow. However, the
PEB process happening in the photoresist is typically ignored or
treated with compact models in the previous work, bringing about a
non-negligible error. Additionally, most studies regard lithography
simulation as a black box modeling problem without considering
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Figure 2: Typical runtime distribution ratio of each part in lithogra-

phy simulation flow for different simulation schemes.

its fundamental physical interpretation. Thus, accurately and effi-
ciently simulating the PEB process based on its physical essence is
critical to the closure of lithography simulation.

To describe the complex transitions between multiple chemical
states involved in the PEB process, various models have been pro-
posed [11–14] to trace and approximate the physical and chemical
reactions. These models typically solve partial differential equa-
tions (PDE) with numerical methods to calculate the PEB latent
image. Traditional numerical PEB solvers discretize the govern-
ing equations in the space-time domain and derive the solutions
by repeatedly evaluating the time advancement equations. Mesh-
dependent algorithms such as finite element methods (FEM) and
finite differencemethods (FDM) [15] are usually exploited, imposing
a trade-off between resolution and runtime. Fine discretization in
terms of time and space is usually required to achieve convergence
and high accuracy, at the cost of runtime.

To model the crucial PEB process in lithography simulation, in
this work, we propose DeePEB, a neural PDE solver for efficient and
accurate PEB simulation. PEB modeling of the positive-tone CAR
is discussed, while our algorithm can be extended for other types
of photoresist. We approximate the elementary physical dynamics
in PEB with neural networks (NN). For one thing, we model the
dynamic behaviors in the Fourier domain with a neural operator.
For another, we capture the local high-frequency features with
customized convolution operations. The major contributions of this
paper are highlighted as follows:

• We propose DeePEB for PEB simulation, a physics-inspired
neural network architecture to learn both low-frequency and
high-frequency information by combining neural operator
and convolution operations. To the best of our knowledge,
this is the first work that seeks to apply physics-inspired deep
learning algorithms for PEB simulation, with the potential of
accelerating lithography simulation and layout optimization.

• We customize a superior norm loss for optimization of DeePEB,
and validate its superiority over thewidely-usedmean squared
loss.

• Weevaluate DeePEB compared to the industry verified lithog-
raphy simulation software S-Litho. DeePEB can give a pre-
diction with >100x acceleration (as shown in Fig. 2), with
the critical dimension error ∼ 1 nm at both X and Y direc-
tions. DeePEB also outperforms other learning-based meth-
ods with the normalized root mean squared error to be 5.7%
and 1.1% for PEB latent image and corresponding develop-
ment rate respectively.

The rest of this paper is organized as follows. Section 2 reviews
the basic concepts and formulates the problems in our work. Sec-
tion 3 provides a through explanation of the proposed DeePEB
framework and optimization strategy. Section 4 demonstrates the
effectiveness of our approaches with comprehensive results, fol-
lowed by the conclusion in Section 5.

2 PRELIMINARIES
In this section, we will first set up the PDEs describing the PEB
process in 2.1 and the development model in 2.2. Progress on Neural
network-based PDE solvers is then summarized in 2.3. Finally we
will formulate the problem discussed in this paper.

2.1 PDEs describing PEB
There exist various types of photoresists in lithography technol-
ogy. Among them, positive-tone CARs are widely utilized in KrF
(𝜆 = 248 nm) and ArF (193 nm) exposure to meet sensitivity require-
ments in advanced technology nodes. They are normally composed
of inhibitors of dissolution (typically polymer resin, impeded to de-
velopment), light-sensitive agent called photoacid generator (PAG),
base quencher, and other additives [16]. As soon as photoacid is
generated by light-induced decomposition of PAG and the photore-
sist is heated, acid-catalyzed deprotection of inhibitor takes place.
A tiny concentration of photoacid can induce complete decomposi-
tion in a large area, known as chemical amplification. This can be
described by the common catalytic reaction equation [14]:

𝜕[𝐼 ]
𝜕𝑡

= −𝑘𝑐 [𝐼 ] [𝐴] (1)

where [I], [A] represent the normalized concentration distribution
of inhibitor and photoacid, and 𝑘𝑐 is the reaction coefficient.

Meanwhile, a portion of photoacid will vanish due to thermal-
induced absorption/evaporation (in/out-diffusion) and neutraliza-
tion with the base quencher. In addition, heating of the photoresist
will cause diffusion of photoacid and base molecules. The reaction-
diffusion process can be simplified and described by [14]:

𝜕[𝐴]
𝜕𝑡

= −𝑘𝑟 [𝐴] [𝐵] + ∇(𝐷𝐴∇[𝐴]) (2a)

𝜕[𝐵]
𝜕𝑡

= −𝑘𝑟 [𝐴] [𝐵] + ∇(𝐷𝐵∇[𝐵]) (2b)

where [B] represent the normalized concentration distribution
of base, 𝑘𝑟 is the reaction coefficient, and 𝐷𝐴, 𝐷𝐵 specifies the
diffusion coefficients of photoacid and base. The diffusion terms are
included in the most general form. Diffusion length is an important
metric describing the diffusion process, derived from the diffusion
coefficient 𝐷 as: 𝐿 =

√
2 · 𝐷𝑇𝑃𝐸𝐵 (𝑇𝑃𝐸𝐵 is the PEB duration time).

The above PEB equations are augmented by initial conditions
(I.C.) for all components, and by suitable boundary conditions (B.C.)
for the diffusing species. In the lateral direction, both periodicity
B.C. and mirror B.C. are usually imposed to ensure the conservation
of compounds, and the latter is more frequently used. Appropriate
choice of the simulation domain is vital for avoiding the unrealistic
solution at the boundary. In the vertical direction, in-/out-diffusion
of photoacid molecules can be modeled by the Robin B.C.:

𝐷𝐴 × 𝜕[𝐴]
𝜕𝑧

����
top

= ℎ

(
[𝐴] top − 𝑎∗

)
(3)

here 𝑎∗ is the saturation concentration, and ℎ the sorption constant.



Typically, PEB simulation is initiated with spatially uniform base
and inhibitor distribution ([𝐵(𝑡 = 0)], [𝐼 (𝑡 = 0)]), while the initial
photoacid distribution [𝐴(𝑡 = 0)] is calculated from 3D aerial image
according to the Dill Model [17].

2.2 Development Models
The development stage following PEB is a surface-limited etching
process. The development rate 𝑅 [𝐼 (𝑥,𝑦, 𝑧)] is assumed to be an
isotropic function of the local inhibitor concentration only. The
propagation of the development front 𝑆𝑑 (𝑥,𝑦, 𝑧) (photoresist profile
at certain development arrival time 𝑡𝑑 ) can be described formally
by the Eikonal equation [1]: |∇Sd (𝑥,𝑦, 𝑧) |2 = 1

𝑅 [𝐼 (𝑥,𝑦,𝑧) ]2 .
Among themanymodels describing𝑅 [𝐼 (𝑥,𝑦, 𝑧)], theMackmodel

and its variants receive great popularity [18]:

𝑅(𝑥,𝑦, 𝑧) = 𝑅max
(𝑎 + 1) (1 − [𝐼 ])𝑛
𝑎 + (1 − [𝐼 ])𝑛 + 𝑅min, 𝑎 = (1 −𝑀𝑡ℎ)𝑛

𝑛 + 1
𝑛 − 1

here 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 specifies the minimum and maximum devel-
opment rate,𝑀𝑡ℎ an experimentally determined threshold, and 𝑛
the developer selectivity. Fast marching level set algorithm [19] is
often adopted to simulate the development arrival time distribution
and thus the final photoresist profile (the undeveloped part with
arrival time larger than the development duration). In this paper
we use the open-sourced tool Structured Eikonal Solver [20] for
development simulation.

2.3 Neural network-based PDE solver
Recent years have witnessed rapid progress in NN-based PDE
solvers. These methods can be roughly classified into the following
categories according to their fundamental principles:

The neural surrogate models [21, 22] construct NNs as surrogate
solutions of PDE(s), which are optimized according to the loss em-
bedding PDE’s governing equation(s), B.C.(s), and I.C.(s). Compared
to traditional numerical algorithms, these methods are mesh-free
and can provide continuous solutions, at the cost of time-consuming
optimization for each new PDE instance. Such a huge cost can not
meet the efficiency requirements in PEB simulation.

Finite dimension mappings establish the solution mapping be-
tween functions defined in finite-dimensional Euclidean space. Such
data-driven approaches can provide solutions for a class of PDEs
upon appropriate supervised training, but they are mesh-dependent
and suffer from the constraint of resolution and discretization
[23, 24]. PEB solvers based on these mappings are also unable to
generalize between different grid sizes.

It has been proposed that a NN can approximate the mesh-free
solution operator class for a class of PDEs with a single set of
parameters [25]. Different from finite dimension mappings, these
type of algorithms [26, 27] usually apply to different discretization
schemes. Neural operators [27] stand out for their strong capability
of approximation, benefiting from the iterative kernel integration.
Each iterative layer follows the update rule:

𝑢 (𝑥) = 𝜎

(
𝑊𝑣 (𝑥) +

∫
𝐷

𝜅 (𝑥,𝑦)𝑣 (𝑦)d𝑣 (𝑦) + 𝑏 (𝑥)
)

∀𝑥 ∈ 𝐷 (4)

where 𝐷 ⊂ R𝑑 is the bounded function domain, 𝑣 and 𝑢 the input
and output function of each layer,𝑊 a local linear transformation,
𝜅 (𝑥,𝑦) a non-local integral kernel operator, and b the bias. Neural

operators exhibit powerful efficiency and generalization ability,
satisfying the requirements of PEB simulation.

2.4 Problem Formulation
In PEB simulation, what we care about most is the PEB latent
image (final 3D inhibitor distribution), rather than the computation-
intense intermediate states. Therefore, evaluating the performance
of the PEB solver comes down to evaluating the quality of the
predicted distribution of inhibitor, development rate, and the pho-
toresist profile. Considering this, we choose the following metrics
as criteria:

Root Mean Squared Error (RMSE):
It is straightforward to define such a criterion to discriminate

between the predicted distribution and the ground truth:

RMSE =

√︂
1
𝑛

𝐺pred −𝐺label
2, 𝐺 = [𝐼 ], [𝑅] . (5)

Normalized Root Mean Squared Error (NRMSE):
Since the value of the relative distribution could vary signifi-

cantly (ten orders of magnitude, as the minimum gets very close to
0), we also choose the normalized root mean squared error (NRMSE)
to quantify the model performance:

NRMSE =
𝐺pred −𝐺label


𝐹
/∥𝐺label∥𝐹 , 𝐺 = [𝐼 ], [𝑅] (6)

where ∥𝐷 ∥𝐹 = (Σ𝑖, 𝑗𝐷2
𝑖, 𝑗
)
1
2 represents the Frobenius norm.

Critical Dimension (CD):
In addition to the direct comparison of inhibitor distribution

and development rate, we also evaluate the simulated photoresist
profile. Critical Dimension is ametric often used in both lithography
simulation and industrial process development.We calculate the CD
value for the contacts at different heights in the X and Y directions,
and define the CD error as:

CD𝛼 Error =
√︂

1
𝑛
(𝐶𝐷𝛼,pred −𝐶𝐷𝛼,label)2, 𝛼 = 𝑥,𝑦 (7)

Based on these metrics, we then define the photoresist modeling
problem studied in this work as follows:

Given a set of initial photoacid distribution and corresponding
final inhibitor distribution, the objective is to design and train a deep
learning model that can accurately predict the inhibitor distribution of
test mask patterns, with the RMSE, NRMSE, and CD error minimized,
and runtime as short as possible.

3 DEEPEB FRAMEWORK
In this section, we first demonstrate the motivation of DeePEB,
based on the physical essence of the PEB process. DeePEB composes
of a Fourier branch learning the low-frequency features utilizing
the neural operator structure, and a local branch capturing the local
high-frequency behavior with convolution operations. Finally, we
introduce our optimization strategy, including label normalization
scheme and choice of the loss function.

3.1 Motivation
Our objective is to learn the PEB dynamics and predict the PEB la-
tent image (i.e., the inhibitor distribution at the final stage) from the
photoacid distribution at the initial stage. Mathematically speaking,



FFT

(a) Photoacid at the initial stage

FFT

(b) Inhibitor at the final stage

Figure 3: Left column: 3D concentration distribution of pho-

toacid and inhibitor. Middle column: top view of the 3D dia-

grams. Right column: Fourier information of the top surface dis-

tribution. The middle squares represent the low frequency area

(𝑘𝑥 , 𝑘𝑦 < 0.05 nm−1
).

G : S𝑖𝑛 → S𝑜𝑢𝑡 is the solution operator that satisfies the govern-
ing equations (Eq. 1 & 2) and corresponding boundary and initial
conditions for PEB simulation, where S𝑖𝑛, S𝑜𝑢𝑡 are the function
spaces defined on domain of input [𝐴]𝑖𝑛 and output ˆ[𝐼 ]pred. Our
goal is to design a parameterized PEB solver G𝜃 : S𝑖𝑛 × Θ → S𝑜𝑢𝑡
that operates as similarly to G as possible, where 𝜃 ∈ Θ is the NN
parameter space. In this paper, we assume a uniform distribution
of the resist, and a discrete cubic function domain is adopted. Since
the photoresist spin onto the silicon substrate has a non-negligible
thickness, calculating a 3D concentration distribution rather than a
planar distribution uniform in the vertical direction is vital for the
actual photoresist model.

To begin with, we analyze the physical essence of the PEB pro-
cess. Diagrams in the left and middle column of Fig. 3 give an
example of the 3D distribution of photoacid and inhibitor, derived
by numerically solving the PDEs by S-Litho for one test clip. We
can observe the photoacid spread all over the space except inside
the contacts, and the values on the top surface are typically larger
than that at the bottom surface, a result of the less sheltered ex-
posure there. In contrast, the inhibitor concentrates around the
contacts, especially at the bottom surface, since a larger photoacid
concentration corresponds to a more intense local decomposition
of the inhibitor. The Fast Fourier Transform (FFT) results of the
planar distributions at the top surface are also provided in the right
column of Fig. 3. We can vividly see that the concentration infor-
mation gather in low-frequency modes, as indicated by the squares.
Furthermore, the dynamic transition from the above distribution
to the below one concentrates in the low-frequency modes, along
with prominent information exchange between low-frequency and
high-frequency modes and different heights (not shown here). This
is consistent with the intuition that the evolution of reactants over
time will not behave dramatically or concentrate in a small range.

We then extract the low-frequency and high-frequency informa-
tion of the final inhibitor distribution, by exerting Inverse FFT (IFFT)
on the low-frequency and high-frequency modes (Fourier modes

(a) Original distribution of the Inhibitor at the top surface

(b) Low-frequency information of (a)

(c) High-frequency information of (a)

Figure 4: The low-frequency (b) and high-frequency (c) information

of the (top surface) inhibitor distribution (a) in Fig. 3, corresponding

to IFFT amplitudes of Fourier modes inside/outside the square

in the FFT amplitude pattern. Patterns of the center contact are

enlarged and shown on the left.

inside/out-of the square in Fig. 3). The results in Fig. 4 confirm the
idea that low-frequency information is well representative to re-
store and retain the global pattern, and high-frequency modes affect
the distribution around the contacts, exhibiting small-amplitude
ripple features. What’s more, the spatial period of the ripple is
close to the lateral diffusion length of the acid (∼ 10 nm). We then
propose to learn the PEB process with two parts: Fourier learning
branch to learn the global features in the Fourier domain, and the
local learning branch to learn the limpid details around contacts
with customized convolution operations, as illustrated in Fig. 5.

To conclude, we construct DeePEB inspired by the following
observations:

(1) most of the concentration information is contained in the
low-frequency modes of the reactants;

(2) dynamics of the PEB process can be almost captured within
low-frequency modes;

(3) the high-frequency information decides the local feature
around the contacts.



Figure 5: Schematic of DeePEB structure. In the yellow and green box are the Fourier learning branch and Local learning branch, respectively.

The detailed structure of Fourier layer is shown in the blue box. "Conv." is the abbreviation of "convolution operation".

3.2 Learning Low-Frequency Information with
Fourier Learning Branch

Based on the first two observations, we propose to learn the low-
frequency dynamic behabvior of governing equations of PEB in
the Fourier domain. Fourier learning branch is thus constructed to
learn the low-frequency information motivated by Fourier Neural
Operator [28, 29]. As mentioned in 2.3, a neural operator learns
the representation of PDEs’ solution operator G iteratively. FNO
employs FFT to serve as the non-local integral kernel operator 𝜅 in
the Fourier domain in Eq. 4.

The Fourier branch has five basic components: (i) downsample
(D) of the original input data to reduce the overall size with a 3d
convolution operation; (ii) projection (P) of the data into a higher-
dimensional space (more channels than the original data) using a
fully connected layer; (iii) one Fourier layer (L) as the non-local
kernel operator, performing both a non-local operation in the low-
frequency Fourier domain and local linear operation in the spatial
domain; (iv) projection (Q) of the extracted features to the target
dimension with a high dimension intermediate state using two fully
connected layers and (v) upsample (U) of the output data to the
required resolution. The analytic expression of this branch reads
(for input 𝑥 ):

F𝜃 (𝑥) := U(Q(L(P(D(𝑥))))). (8)

In this branch, the Fourier layer plays a key role to establish
the solution mapping between the input and output functions. The
basic structure of a Fourier layer is illustrated in the blue box in
Fig. 5. Li et al. [28] formulate its analytical expression to be:

L(𝑥) = 𝜎

((
A + 𝐹𝐹𝑇−1 (W · 𝐹𝐹𝑇 )

)
(𝑥)

)
(9)

where A is the point-wise affine transformation, W the channel-
wise linear transformation, and 𝜎 the activation function. To be
more concrete, the input x undergoes two paths: in the top path,
Affn operation (A) defines a spatial affine mapping to inherit spa-
tial information; while in the bottom path, the information of low-
frequency dynamics in x is learned. Firstly, FFT operation extracts
the frequency information in all spatial dimensions as new features:
x(𝑥,𝑦, 𝑧) 𝐹𝐹𝑇−→ x̃(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧), which are more representative than
purely spatial domain features, as discussed before. Then opera-
tion Trunc discards all high-frequency components in the lateral
directions, while all features in the vertical direction are retained:
x̃(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) ≡ 0, ∀𝑘𝑥,𝑦 > 0.05 nm−1. Linear transformation W is
applied to transfer information between remaining Fourier modes
and different channels. Following operation IFFT transforms all
features back to the spatial domain. Finally, the results of two paths
are added and non-linearly activated byAct. (𝜎). Iterative kernel in-
tegration using Fourier layers is proven to be expressive enough to
approximate any measurable operator mapping [29]. In this work,
we find that simply one layer possesses sufficient learning ability.

As to the B.C., according to our experiments, the mirror B.C.
on the lateral boundary is well learned as there exist almost no
intense reactions. While in the vertical direction, the Robin B.C. is
also captured since no truncation operates in the vertical direction.

3.3 Learning High-Frequency Information with
Customized Convolution Layers

The local high-frequency information is under-learned by the Fourier
layer discussed above, which focuses on the low-frequency dynam-
ics and discards all high-frequency modes. To extract more local



high-frequency information, we customize a local learning branch
combining various types of convolution operations.

In the first place, we decide to keep the resolution of the origi-
nal distribution since any operation related to downsampling will
always lead to information loss, especially high-frequency infor-
mation. Besides, a receptive field larger than 10 nm in the lateral
direction is needed in order to learn the information within a whole
"ripple", as discovered in Fig. 4(c). In the vertical direction, convolu-
tions with large kernel size also enhance the learning of both the
vertical diffusion and the Robin B.C. at the top surface. However,
large standard (dilation-free) kernels combined with convolutions
without downsampling will bring about a high computational bur-
den and GPU memory usage, reducing the efficiency.

For this reason, a dilated 3d kernel combined with 3 standard
kernels is adopted, processing the raw input data in parallel without
downsampling. The green box in Fig. 5 illustrates these customized
convolution layers: They work in parallel and bear a nonlinear
activation operation Act. between two successive convolution op-
erations. The three standard kernels learn the information within
nearest neighbors, while the dilated 3d convolution enlarges the
perceptive field to 10 nm in both directions (since the resolution
of input data is 2 nm/pixel), with a significantly lower computa-
tion load compared to stack standard 3d kernel of size 5. In this
way DeePEB can perceive the local high-frequency information,
compensating for the disadvantages of simple Fourier layer.

To sum up, we formulate the parameterized PEB solver G𝜃 from
input to output (G𝜃 : S𝑖𝑛 × Θ → S𝑜𝑢𝑡 ) formally:

𝐼 (𝜃 )pred = G𝜃 ( [𝐴]𝑖𝑛)
= F𝜃 ( [𝐴]𝑖𝑛) + Σ4𝑖=1 (𝐶𝑖 ⊗ (𝜎 (𝐶𝑖 ⊗ [𝐴]𝑖𝑛)) (10)

where S𝑖𝑛, S𝑜𝑢𝑡 are finite dimension spaces corresponding to do-
main of input [𝐴]𝑖𝑛 and output functions 𝐼 (𝜃 )𝑝𝑟𝑒𝑑 , 𝜃 ∈ Θ is the
NN parameter space. F𝜃 is defined in Eq. 8 and 𝐶𝑖 , (𝑖 = 1 − 4) are
the convolution kernels, with ⊗ the corresponding convolution
operation.

3.4 Label Normalization
Optimizing the neural network comes down to solving the empirical-
cost minimization problem, that is, minimizing the target cost func-
tion (loss function concerning the predicted inhibitor concentration
and the ground truth in our problem) by optimizing the parameters
of DeePEB. Instead of directly comparing the output of NN with
the golden truth concentration, we apply a quadratic negative loga-
rithm transformation on the values of the golden truth, transform-
ing it from [𝐼 ] to−𝑙𝑛(−𝑙𝑛( [𝐼 ])/𝑘1). We propose this transformation
based on that Eq.1 can be formally solved as:

[𝐼 ] (𝑡) = [𝐼 ] (𝑡 = 0) · 𝑒−𝑘𝑐
∫ 𝑡

0 [𝐴] (𝑡 ′)𝑑𝑡 ′ (11)

For one thing, this transformation can avoid direct fitting of
golden truth, featuring a value range of more than ten orders, a
result of the exponential calculation in Eq. 11. For another, the
catalysis equation describing the evolution of inhibitor and the
reaction-diffusion equations for photoacid and base are then decou-
pled: any change in the catalysis velocity 𝑘𝑐 or the initial photoacid
distribution [𝐼 ] (𝑥,𝑦, 𝑧, 𝑡 = 0) will not lead to a change in the output,
since the NN is merely learning the reaction-diffusion process and
predicting −𝑙𝑛(

∫ 𝑇𝑃𝐸𝐵
0 [𝐴] (𝑡 ′)𝑑𝑡 ′) from [𝐴] (𝑡 = 0) now.

3.5 Loss Function
Many functions have been reported to work as the criteria for the
training of NN. In DeePEB we choose the superior norm loss (max-
imum squared error in practice), rather than the mean squared loss,
which is commonly employed in the regression problem. Superior
norm loss seeks to minimize the maximum deviation between the
predicted result and the golden truth. Theoretically, the sup-norm
loss can provide both a stronger distance measure and a more bal-
anced prediction compared to the mean squared error, as suggested
in [29]. We experimentally validate this idea, by comparing the
performance of sup-norm loss and mean squared loss in 4.3.

To conclude, the training target during the learning process of
DeePEB reads:
𝑚𝑖𝑛
𝜃
E( [𝐴], [𝐼 ]) ∈D𝑡𝑟𝑎𝑖𝑛

[𝑚𝑎𝑥 | |Î(𝜃 )pred − (−Ln(−Ln( [I])/k1) | |2]
(12)

where 𝜃 represents the undetermined parameters in the NN, E
is the expectation of loss results of training dataset D𝑡𝑟𝑎𝑖𝑛 , and
𝐼 (𝜃 )pred, [𝐼 ] are the predicted and labeled data tensor correspond-
ing to input tensor [𝐴]𝑖𝑛 . Eventually, the predicted final inhibitor
distribution (PEB latent image) is computed as:

[I]pred = Exp(−k1 × Exp(−Î(𝜃 )pred)) (13)

4 EXPERIMENTAL RESULTS
In this section, we first elaborate on the experimental setup in our
work. Then we compare the performance of DeePEB with other
learning-based algorithms. Finally, we investigate the results of
DeePEB to provide a deeper understanding of our algorithm.

4.1 Experimental Setup
We obtain 100 (enough in our experiments) mask clips of size 2 × 2
𝜇m2 from [30]. The fabricated contact size and distribution pattern
of the masks are compatible with technology nodes of 28nm and
below. S-Litho is employed to run the rigorous simulation. For the
exposure simulation, the wavelength and numerical aperture are
set to be 𝜆 = 193 nm and NA = 1.35. A simulation window of 2 × 2
𝜇m with an optical influence range of 5𝜆/𝑁𝐴 is configured and the
simulation resolution is set to be 0.5 nm in all directions. While for
the PEB simulation and development simulation, the resolutions in
X, Y, and Z directions are set to be 2 nm, 2 nm, and 1 nm respectively.
Important parameters in the simulation are summarized in Table 1.

Resist
Resist thickness 80 nm SiON Thickness 30 nm

PEB
Normal Diffusion
Length 𝐿𝑁,𝐴, 𝐿𝑁,𝐵

70, 15 nm Lateral Diffusion
Length 𝐿𝐿,𝐴, 𝐿𝐿,𝐵 10, 10 nm

catalysis rate 𝑘𝑐 0.9 /s reaction rate 𝑘𝑟 8.6993 /s
sorption

constant ℎ𝐴, ℎ𝐵 0.027, 0 saturation
concentration 𝑎∗, 𝑏∗ 0.9, 0

[I](t=0) 1.0 [B](t=0) 0.4
Baseline Time step 0.1 s Duration 90 s

Develop
𝑅𝑚𝑎𝑥 40 nm/s 𝑅𝑚𝑖𝑛 0.0003 nm/s
𝑀𝑡ℎ 0.5 n 30

Duration 60 s

Table 1: Critical parameters in photoresist simulation.

For all experiments, we use the Adam optimizer [31] to train for
500 steps, with the initial learning rate being 0.01, and decaying
using the step function with the step size of 50 and decay ratio of 0.7.



We use LeakyReLU as the non-linear activation function instead of
ReLU. Models are implemented with PyTorch [32], and trained on
two Nvidia A40 GPUs for about 16 h. We randomly sample 80% of
the data for training while the remaining clips are used for testing.
We set the batch size to be 30. For the restriction of GPU memory,
we sum up the gradient of 30 clips one by one and finally update
the model during each step.

4.2 Performance Comparison between
ML-based PEB Solvers

We first compare DeePEB with other ML-based photoresist mod-
els: DeepCNN, CGAN, and FNO. DeepCNN is modified from [33],
where we come up with a ResNet ([34])-like structure to adapt to
our problem. CGAN (Conditional-Generative-Adversarial-Network
[35]) is adapted from TEMPO [4] to accommodate our 3D settings.
All these networks are trained with label normalization and mean
squared loss. More details can be found in our implementations 1.

Table 2 provides a detailed comparison between different meth-
ods on the test dataset using the criteria defined in 2.4 (RMSE,
NRMSE, and CD Error). DeePEB outperforms other learning-based
methods in all error-concerning metrics. In addition to the direct
comparison of 3D concentration and rate distribution, we also eval-
uate the effectiveness of our proposed methods based on the quality
of generated resist profiles by the CD error. Fig. 6 shows the nor-
malized count of CD errors of different methods: The CD errors of
DeePEB concentrate in 0 ∼ 1 nm, while that of the other methods
spread over a larger range of values. Meanwhile, the CD errors
of all methods center at the negative axis, representing that the
predicted CD values are usually smaller than the golden truth. As
demonstrated in the following section, this is a result of the under-
learning of high-frequency components, which leads to a larger
development rate at the edge area and thus a smaller developed
contact size.

What’s more, DeePEB consumes ∼ 1.22 s in average compared
to ∼ 147 s of S-Litho, realizing a speed up as high as > 100× while
keeping high accuracy. The significant acceleration benefits from
the well-optimized FFT, convolution, and matrix multiplication op-
eration implemented in GPU. Considering the acceptable CD error,
DeePEB is strongly recommended for the early stage lithography
simulation in mask optimization and hotspot detection where speed
has higher priority than accuracy.

4.3 Analysis of Results and Ablation Study
We then delve into the results of DeePEB. Table 3 provides the
comparison between prediction and ground-truth of inhibitor and
development rate distribution at the bottom and top surface re-
spectively, for the same test clip of Fig. 3. We can find that the
prediction results resemble the actual distributions to a great ex-
tent. Specifically, the NRMSE of predicted Inhibitor concentration
at the bottom and top area (both 10 nm in height) are 6.11% and
8.77%, and the NRMSE of development rate at the top area is 1.20%.
Most of the prediction error concentrates at the edge of the con-
tacts as expected: the inhibitor within contacts of the golden truth
exhibits plateaus distribution, featuring intense change at the con-
tact edge and prominent high-frequency modes correspondingly.
In DeePEB, the complex reactions among these high-frequency
1https://github.com/Brilight/DeePEB.git
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Figure 6: Percentage count of the CD error in the X and Y direction

of different methods.

modes are learned with customized convolution operations, while
the longer-range interactions are almost ignored, leaving directions
for future improvements. Besides, the relative error between the
predicted inhibitor concentration and the golden truth at the top
area (∼ 8%) is larger than that at the whole domain (∼ 6%). This is
owing to the smaller area of non-zero values at the top, rather than
under-learning of the top B.C. of photoacid.

Luckily, the under-learning of the high-frequency information
does not bring much error to the final predicted development rate
and so the resist profile, as shown in the predicted rate distribution
at the top surface in Table 3. This comes from the saturation of
development rate for both high (gets 𝑅𝑚𝑖𝑛 when [I]>0.7) and low
(𝑅𝑚𝑎𝑥 when [I]<0.4) inhibitor concentration values, smoothing out
the variation of the under-fitting.

Finally, we conduct 4 groups of ablation experiments to study
the effectiveness of each technique utilized in DeePEB architecture.
Superior norm loss is replaced with the mean squared loss, which
is commonly used in the regression problem, for groups 1, 2, and 3.
Their detailed implementation and results are summarized in Table
4. We can observe that each technique employed in DeePEB polish
its performance, and the local learning branch do help DeePEB to
capture more information from the data.

https://github.com/Brilight/DeePEB.git


Algorithm Inhibitor Rate CD Error/nm Runtime/sRMSE/E-3 NRMSE/% RMSE NRMSE/% x y
DeepCNN [33] 8.25 12.53 0.65 1.63 3.14 6.26 0.99
CGAN [4] 7.67 12.55 0.50 1.26 2.12 2.45 5.25
FNO [28] 7.91 11.68 0.68 1.69 2.34 3.71 0.97
DeePEB 3.99 5.70 0.48 1.19 0.98 1.24 1.22

Table 2: Performance comparison between different PEB solvers. Here runtime contains both the time of data processing and transfering

between CPU and GPU.

Mask Distribution Type Golden Truth Prediction Error
Global Center Global Center Global Center

Inhibitor at Bottom

Inhibitor at Top

Rate at Bottom

Rate at Top

Table 3: An example of the predicted distribution of Inhibitor and development rate at different heights (the top surface and the bottom

surface). Corresponding golden truth and the error between them ([𝐺]pred − [𝐺]label) are also provided. Enlarged pictures of the distribution

around the center contact and the color bar are displayed on the right of each figure.

Technique NRMSE/% CD Error/nm
Fourier
Branch

Label
Normalization

Local
Learning

Superior
Norm Loss Inhibitor Rate X Y

1 ✓ 15.36 2.00 3.32 4.75
2 ✓ ✓ 11.68 1.69 2.34 3.71
3 ✓ ✓ ✓ 10.41 1.70 1.79 2.63
4 ✓ ✓ ✓ ✓ 5.70 1.19 0.98 1.24

Table 4: Results of the ablation study.

5 CONCLUSION
PEB simulation acts as the bridge between the aerial image and the
final resist profile in lithography simulation. To accelerate the PEB
simulation without sacrificing accuracy, we propose DeePEB, a neu-
ral PDE solver. We construct DeePEB based on the observation of
the physical essence of PEB: most of the dynamic information of the
PEB process is contained in low-frequency modes of related reac-
tants, and the high-frequency information affects the local features.
So we combine both neural operator and customized convolution
operations for learning the solution operator of PEB. Our algorithm
is validated with an industry-strength software S-Litho under real
manufacturing conditions, exhibiting high efficiency and accuracy.

Comparison with other learning-based methods further demon-
strates its power. We believe that DeePEB can shed more light on
lithography simulation and early-stage mask optimization due to
its performance and runtime advantages.
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