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ABSTRACT
Achieving lithography compliance is increasingly difficult
in advanced technology nodes. Due to complicated lithog-
raphy modeling and long simulation cycles, verifying and
optimizing photomasks becomes extremely expensive. To
speedup design closure, deep learning techniques have been
introduced to enable data-assisted optimization and verifica-
tion. Such approaches have demonstrated promising results
with high solution quality and efficiency. Recent research
efforts show that learning-based techniques can accomplish
more and more tasks, from classification, simulation, to op-
timization, etc. In this paper, we will survey the successful
attempts of advancing mask synthesis and verification with
deep learning and highlight the domain-specific learning
techniques. We hope this survey can shed light on the future
development of learning-based design automation method-
ologies.

1 INTRODUCTION
Mask synthesis and verification are critical to the manu-
facturability and yield in advanced technology nodes [1].
With the continuous shrinking of feature sizes, lithographic
masks need to be carefully designed and verified for good
printability before manufacture.
Mask verification takes a mask design as input and sim-

ulates the output patterns to verify whether they match
the target ones. It usually includes optical and photoresist
(use resist for short) simulation. Mask synthesis operates
in an inverse direction by taking a target layout as input
and outputting the actual mask design that can produce the
target patterns after lithography. Typical mask synthesis
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techniques include optical proximity correction (OPC), sub-
resolution assist feature (SRAF) generation, and other inverse
lithography technologies (ILT). Figure 1 shows a rough flow
for mask synthesis and verification. Mask synthesis usually
comes before mask verification, while in practice, the former
often needs to iteratively interact with the latter for better
performance.

Both mask synthesis and verification algorithms are com-
putationally expensive, while they pursue high performance
and accuracy at a nanometer scale in advanced nodes. Mask
verification requires complicated optical and resist models
for accurate simulation of printed patterns. Such lithography
simulation also serves as a subroutine in typical mask syn-
thesis techniques like SRAF generation and OPC to guide the
optimization. In practice, masks are clipped into local regions
with several square micrometers for efficiency. However, the
area of integrated circuits nowadays can scale up to hundreds
or thousands of square millimeters, consisting of billions of
such clips. Thus, developing efficient and high-quality mask
synthesis and verification techniques is urgently desired.

Recent advances in deep learning bring new opportunities
to speedup mask synthesis and verification, and meanwhile
maintaining high quality and accuracy. For example, the
techniques developed to solve computer vision tasks are of-
ten promising in mask-related problems, as a mask can be
naturally represented as image-like data, similar to the case
in computer vision. Existing deep learning applications in
mask-related problems can be roughly categorized into four
major tasks: lithography modeling, mask optimization, print-
ability prediction, and test pattern generation. As illustrated
in Figure 1, these tasks cover different stages in the flow,
most of which essentially perform cross-stage modeling. In
this paper, we review the recent progress in solving such
tasks with emerging deep learning techniques, formalizing
the problems, highlighting the challenges, and summarizing
the current state-of-the-art results.
The rest of the paper will be organized as follows. Sec-

tion 2 to Section 5 will survey the deep learning applications
in lithography modeling, mask optimization, printability pre-
diction, and test pattern generation, respectively. Section 6
will conclude this paper with future directions.
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Figure 2: Lithography simulation [2].

2 LITHOGRAPHY MODELING
In this section, we review the lithography modeling prob-
lem and survey the recent progress in related deep learning
applications.
Lithography simulation requires lithography models to

accomplish the computation. In a typical simulation flow, we
require optical and resist models to obtain the final printed
patterns, as shown in Figure 2. The optical model computes
the aerial image from the input mask patterns, i.e., the light
intensity map near the surface of the resist, and the resist
model determines the slicing thresholds on the aerial image
and calculates the resist patterns.

2.1 Optical Models
Aerial image computation adopts thin mask approximation
or thick mask approximation [3, 4]. Thin mask approxima-
tion (also known as the Kirchhoff approximation) considers
the mask as an infinitely thin object, ignoring the impacts
on the amplitudes, phases, and polarization of the transmit-
ted light from the three-dimensional (3D) structure of the
mask. When the feature sizes become comparable to the
light wavelength, the accuracy of thin mask approximation
is no longer acceptable. Thick mask approximation is then
required to consider various factors like mask topography
effects in the lithography process [5]. While thin mask ap-
proximation is efficient, thick mask approximation is much

more computationally expensive, e.g., 11 seconds v.s. 5 min-
utes on a 2µm × 2µm mask clip on average using Synopsys
Sentaurus Lithography [6].
To speedup thick mask approximation, Ye et al [4] for-

mulate a 3D aerial image learning problem by taking mask
patterns as input and predict a series of 2D aerial images at
different resist heights to capture the spatial image intensity
distribution inside the resist bulk. The objective for learning
is to minimize the pixel-wise normalized root mean square
error (NRMSE) defined as follows,

NRMSE =



Î − I



F

∥I ∥F
, (1)

where ∥·∥F represents the Frobenius norm, I represents the
original aerial image, and Î represents the predicted aerial
image.
The problem formulation can be interpreted as a multi-

domain image translation task from an input image to a
series of output images, where the output images are highly
correlated and correspond to the spatial light intensity distri-
bution of a 3D aerial image. Ye et al then propose the TEMPO
framework based on conditional generative adversarial net-
work (GAN) [7, 8], to generate images at different heights.
Figure 3 illustrates the overall architecture of the model. The
model consists of a generator and a discriminator like the
typical GAN architecture. The generator takes a mask pat-
tern and an aerial image from thin mask as input, encodes
them into latent space, and decodes the latent code to gen-
erate the 2D aerial image at a specific height. The height is
controlled by the additional label (a one-hot vector) concate-
nated into the latent code. The generator is trained together
with a discriminator identifying whether an aerial image is
generated (fake) or not. The loss function to train the model
can be written as [8, 9],

LGAN = Ex,y [logD(x ,y)]
+ Ex,z [log (1 − D(x ,G(x , z)))]

+ λ · Ex,y,z [∥y −G(x , z)∥1],

(2)
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Figure 3: Overview of the TEMPO model [4].

where x is a sample in the input domain, y is its correspond-
ing sample in the output domain, G(·) represents the gen-
erator (including encoder and decoder), D(·) represents the
probability of a sample being real (not generated byG), Ex
represents the expectation over the input data x , z is a ran-
dom noise vector as a seed for image generation, and λ is
the weight parameter.

Eventually, themodel can achieve an average of 27× speedup
over rigorous simulation [6] with the NRMSE around 1.79%.
Such a speedup includes the runtime required for generat-
ing the aerial image using thin mask approximation, which
contributes to high accuracy. If the accuracy can be further
sacrificed, the framework supports to omit the dependency
to the thin mask aerial image and achieve more than 1000×
speedup with the average NRMSE of 4.23%.

2.2 Resist Models
Once we obtain the aerial images from the optical models,
the task for resist modeling is to compute the resist patterns
accurately and efficiently. Watanabe et al [2] discover that
convolutional neural networks (CNNs) have the potential
to achieve higher accuracy than the conventional compact
resist models in Mentor Calibre [10]. However, achieving
high accuracy with CNNs requires a large amount of train-
ing data, which is often not easy to get at the early stage
of process development. Thus, Lin et al [11] formulate a
data-efficient learning problem leveraging the data from old
technology nodes to assist model training at the target node.
In this formulation, they construct CNN models taking an
aerial image as input and outputting the slicing thresholds
at the boundary of the target pattern. Two techniques are
investigated.

Transfer learning. We can regard the old technology
node as the source domain with enough data to train an
accurate model and the target technology node as the target

(a) (b)
Figure 4: Example of active data selection. (a) Bad data
selection and (b) K-Medoids clustering based selection.
Three selected points are highlighted. Circles denote
three clusters centered by selected points [11].

domain that does not have enough data. The knowledge
transfer can be done by finetuning the network weights of
the source domain model when training with target domain
data. To control the degree of knowledge transfer, we can
also fix the first k layers and only finetune the rest ones,
where k is a user-defined variable.

Active data selection. The distribution of training data
also affects the accuracy and generalization of a model. Fig-
ure 4(a) illustrates an example of bad data selection, which
is likely to cause overfitting. A better approach is to perform
clustering and choose the centers of each cluster as the train-
ing data, as shown in Figure 4(b). Note that the data samples
in the plot denote features, not labels. Thus, after clustering,
we can query the labels for the centers to build the training
dataset.
With these techniques, a 3-10× reduction on the amount

of required training data is reported when achieving the
industrial strength of accuracy on datasets equivalent to
10nm and 7nm technology nodes [11]. Meanwhile, around
10× speedup over rigorous simulation can be achieved by
replacing the resist model with neural networks.

2.3 End-to-end Models
While there are individual attempts to introduce deep learn-
ing for optical and resist models, it is unclear whether we can
directly perform end-to-end modeling, i.e., predicting the
resist patterns from the mask patterns, without generating
the intermediate aerial images.
Ye et al [12] propose the LithoGAN model to tackle this

problem. Since both the mask patterns and the resist pat-
terns can be represented as images, one can still formulate
the problem into an image translation task and leverage
generative models to solve the problem.
The major challenge is the limited resolution in existing

learning approaches. Consider the typical critical dimension
(CD) around 1-2µm and the target prediction error less than
1nm. In other words, eachmask clip needs to be at least 1µm×

1µm to capture the peripheral information. Once translated
into an image, it should contain at least 1000 × 1000 pixels
to achieve the resolution of one pixel for 1nm. However,
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Figure 5: Printing with both OPC and SRAF resulting
in better process variation band (PVBand) and edge
placement error (EPE) [13].

even with this construction, misprediction of one or two
pixels can lead to errors larger than 1nm, which is extremely
challenging for deep learning models.
To tackle this challenge, they zoom in the resist patterns

and only predict a small region at the center of the mask
clip and represent it with a full image. In this way, super-
resolution at the output image can be achieved. They further
develop a calibration network to adjust the center of the
predicted pattern, as the GAN model is not able to capture
the locations of the patterns well. On 7nm contact designs,
eventually, an average of less than 1nm edge displacement
errors can be achievedwithmore than 1800× smaller runtime
than rigorous simulation [6, 12].

3 MASK OPTIMIZATION
If we define lithography simulation as a mapping f : X →

Y , where X denotes the mask patterns and Y denotes the
printed patterns, then mask optimization essentially solves
the inverse mapping f −1 : Y → X , as we are given target
resist patterns and try to find the mask design producing
the target after lithography process. As the mapping f is
very complicated, obtaining f −1 is non-trivial. Typical mask
optimization techniques include SRAF generation, OPC, and
other inverse lithography techniques.
Figure 5 shows an example of printing a contact with

both OPC and SRAF that enhance the lithography resolution.
The red rectangles in the plot denote SRAFs and the blue
rectangle denotes the OPC solution. These SRAFs are too
small to be printed, but they will help the imaging of target
patterns. OPC adjusts the edges of target patterns for light
intensity compensation. Conventional methods for OPC and
SRAF generation perform model-based optimization that
invokes lithography simulation as a subroutine, which can
achieve high solution quality but are in general slow.

3.1 SRAF Generation
Xu et al [14] approach the SRAF generation problem as a
pixel-wise prediction task on a mask clip. By representing
a mask clip as an image, they first predict the probability
of whether each pixel needs to insert an SRAF from its sur-
rounding features and obtain an SRAF probability map as

SRAF box

OPC region SRAF region

Desgin targets SRAF

Label 0

Label 1

(a)

Sub-sampling

points

(b)
Figure 6: (a) SRAF label sampling; (b) concentric circle
area sampling (CCAS) at one pixel [14].

shown in Figure 6. They then insert SRAFs based on the lo-
cations of probability maxima at each consecutive insertion
region honoring the design rules. The learning problem can
be tackled as a classification task with conventional machine
learning techniques like logistic regression or support vector
machine (SVM). 10× speedup on 1-2µm2 mask clips and 3×
speedup on 100µm2 clips are reported with 13.5% better EPE
and 1.31% PVBand degradation compared with the model-
based approach [10]. Geng et al [13] further improve PVBand
and EPE by improving the classification accuracy with dic-
tionary learning, and solve an integer linear programming
(ILP) problem for the actual SRAF insertion step considering
the probability map and design rules.
The above approaches follow the pixel-wise prediction

nature that requires to invoke model prediction bym2 times
for anm ×m mask clip, which may not be efficient enough
when it comes to complicated models. Alawieh et al [15] cast
the learning problem into an image translation problem and
develop a conditional GAN based model that can obtain the
full probability map with one prediction. However, achieving
high-quality SRAF solutions is not easy for GANs, as they
usually cannot handle the sharp edges of SRAF shapes well.
Thus, Alawieh et al propose a heatmap encoding method that
replaces each SRAF shape with a Gaussian-like excitement,
as shown in Figure 7. The GAN model first performs image
domain translation to the heatmaps for capturing the global
distributions of SRAFs, and the SRAF solutions can then
be obtained by decoding the predicted heatmaps. Such an
encoding method avoids the challenge of generating sharp
edges with GANmodels and allow efficient parallel decoding.
By introducing the CycleGAN model [16], they report 150×
speedup over themodel-based approach [10] with 2.5% better
PVBand and 8.5% EPE degradation. Despite the larger EPE
degradation, it is argued that PVBand is a more important
metric to judge the quality of SRAF generation, as EPE can
be further improved with better OPC strategies [14, 17].
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Figure 7: (a) Original mask clip and (b) the encoded
heatmap [15].

3.2 OPC and ILT
Typical OPC algorithms perturb the edge segments of tar-
get patterns to enhance lithography resolution. For exam-
ple, conventional segment-based OPC algorithms iteratively
perturb the edge segments of target patterns and perform
lithography simulation until convergence. Inverse lithogra-
phy technologies, on the other hand, refer to more generic
optimization that generalizes SRAF generation and OPC,
such as the gradient-based optimization on mask pixels [18].
As the mask clips can be represented as images, we can

again formulate an image translation task to generate the
OPC results from given mask clips. The image translation
task can be solved with generative models like GANs [19, 20].
Previously, deep learning models are used to produce inter-
mediate solutions of OPC to reduce conventional OPC itera-
tions. Roughly 2× speedup can be achieved, as the conven-
tional iterations can be reduced by half [20]. Such a method-
ology is not limited to OPC only. It is compatible with ILT
as well since we can replace the training dataset with ILT
results and the conventional OPC engines with conventional
ILT engines.
Recently, Jiang et al the [21] propose Neural-ILT frame-

work that replaces the backbone of ILT with a neural net-
work, i.e., U-Net [22], as shown in Figure 8. They introduce a
differentiable lithography simulation layer that can simulate
the printed patterns at nominal,min,max process conditions
given a mask input. Then, they can train the network with
the following loss,

L = Lil t + Lcplx = α ∥Znorm − Zt∥ + β ∥Zmin − Zmax∥ , (3)

where Zt denotes the input target pattern, M̂ denotes the
optimized mask, and Znorm,Zmin,Zmax denote the printed
patterns at nominal, min, max process conditions, respec-
tively. The first loss term Lil t minimizes the differences be-
tween target patterns and printed patterns. The second loss
term Lcplx optimizes for the mask complexity, i.e., minimizes
small shapes, as they observe these shapes usually cannot be
printed in the min process condition. The hyper-parameters
α , β are user-defined. As the lithography simulation layer is
differentiable, the network can be trained with backpropaga-
tion.With such a setup, training the Neural-ILT framework is

U-Net

D
if
fe
re
n
ti
a
b
le

L
it
h
o
-S
im

Znorm

Zmin

Zmax

Zt M̂

Lilt

Lcplx

Figure 8: The Neural-ILT framework that replaces the
backbone of ILT with a neural network [21].

equivalent to solving ILT with a specially designed objective
in Equation (3). Thus, given any new layout clip with target
patterns, we can perform training to obtain a high-quality
solution M̂ as the optimized mask. Meanwhile, we can also
pretrain the U-Net backbone and finetune for new layout
clips with faster convergence. Experiments on ICCAD 2013
benchmarks [23] demonstrate 12.5% smaller mean square
errors than the conventional ILT engine on CPU [18] with
70× speedup. They also implement a GPU-accelerated ILT
engine and show that Neural-ILT can achieve higher solution
quality at the same scale of runtime.

Most of the current works focus on small mask clips. How-
ever, in practice, we need to optimize the mask for full-chip
designs. To tackle mask optimization at a full-chip scale,
Chen et al propose the DAMO framework with stitchless
full-chip splitting for layouts of any size [24]. The algorithm
consists of a coarse step based on DBSCAN clustering and
a fine step based on KMeans++ clustering to generate clips
from a full-chip layout. Figure 9 provides an example of the
splitting steps. In the coarse step, the DBSCAN algorithm
locates the regions of high via density that are apart from
other low-density regions. After DBSCAN clustering, every
via pattern is assigned to a coarse cluster. Within each coarse
cluster, KMeans++ clustering is performed to find the best
splitting windows with the window sizes and a given max-
imum number of vias in each window. The window size is
set to 1024 × 1024nm2. The splitting algorithms enable the
deep-learning-based mask optimization algorithms to work
at a full-chip scale. They also develop high-resolution mask
generation networks and lithography simulation networks
for accurate and efficient mask optimization. The experimen-
tal results on the via layers of the ISPD 2019 contest [25]
demonstrate 9.8% better mean square errors, 0.7% smaller
PVBand, and 5× speedup compared with Mentor Calibre
[10]. This is the first time for deep-learning-based mask opti-
mization engines demonstrating even better solution quality
than industrial tools.

4 PRINTABILITY PREDICTION
To evaluate how good design patterns can be printed, as
shown in Figure 1, we need to go throughmask synthesis and
mask verification, which is often too expensive for feedback
at the early stages. Therefore, printability prediction aims
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Figure 9: Full-chip splitting algorithm in DAMO [24].
(a) Initial layout; (b) coarse step: full-chip DBSCAN
clustering; (c) fine step: KMeans++ on each coarse clus-
ter to get fine clusters; (d) the split clips.

at early-stage evaluation of the quality of design patterns
without going through mask synthesis and verification.

4.1 Hotspot Detection
A typical printability prediction problem is hotspot detec-
tion. That is, given a mask clip before mask synthesis, predict
whether the mask contains patterns failed to print, e.g., caus-
ing short or open. We denote the failure as a hotspot, and
those successfully printed patterns as non-hotspots. Hotspot
detection is an imbalanced classification task, as most of the
patterns are non-hotspots and only a small amount of pat-
terns are hotspots. In general, the task requires to detect all
hotspots, but allows a few false alarms, i.e., regarding non-
hotspots as hotspots. Hence, the key to hotspot detection is
how to learn from imbalanced data with a high true positive
rate (TPR) and a low false positive rate (FPR).

There has been a long history of developingmachine learn-
ing based hotspot detectors, such as support vector machine
(SVM) models [26], hierarchical Bayesian models [27]. Yang
et al [28, 29] systematically explore CNNs for this imbalanced
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Figure 10: Region-based hotspot detection [38].
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Figure 11: Two branches of the clip proposal network
to detect multiple hotspots [38].

learning problem. As representing a mask clip without in-
formation loss needs a high-definition image, they propose
to perform discrete cosine transformation (DCT) to the im-
age and omit the high-frequency components to reduce the
image dimensions to 19 × 19 [28]. Then, they propose a bi-
ased training method that encodes the labels of non-hotspots
as a one-hot vector [1 − ϵ, ϵ] and that of hotspots as [0, 1],
where ϵ ∈ [0, 0.5) is the bias. The purpose of this encoding is
to reduce the confidence of predicting non-hotspots during
training. They prove this contributes to higher accuracy dur-
ing inference. They demonstrate 95.5% TPR on average and
14.9% FPR on ICCAD 2012 contest benchmarks [30]. Later,
besides exploring better network architectures [31–33], stud-
ies have investigated online learning [34], active learning
[35, 36], semi-supervised learning [37], etc.

Recently, Chen et al [38] propose to detectmultiple hotspots
in a mask region, as shown in Figure 10. This problem essen-
tially corresponds to the object detection problem. They pro-
pose an inception-based network containing two branches,
as shown in Figure 11: a classification branch and a regres-
sion branch. The classification predicts whether a clip is a
hotspot or non-hotspot, and the regression branch predicts
the location and shape of the clip as [x ,y,w,h]. Eventually,
they report an average of 95.8% accuracy on ICCAD 2016
contest benchmarks [39].



4.2 Litho-Aware Layout Design
With printability prediction, we can perform litho-aware
layout design at early stages like routing and layout decom-
position. For example, Ding et al [40] consider lithography
compliance during routing. They build a machine learning
model that can predict lithography hotspots with partial
routing solutions and use this model to guide the routing
algorithm. Zhong et al [41] explore simultaneous layout de-
composition and mask optimization, by generating a batch
of decomposition solutions and extracting the ones with the
best printability.

5 TEST PATTERN GENERATION
All the aforementioned studies assume given layout clips.
However, in the real design flow, due to long logic-to-chip
cycles, obtaining versatile layout clips is not easy. Therefore,
process engineers usually rely on generated layout patterns
to evaluate the performance and robustness of a process or
mask synthesis algorithms, especially at the stage of explor-
ing new process recipes. To achieve reasonable evaluation,
the generated layout patterns need to satisfy the following: 1)
no design rule violations; 2) as diverse as possible. In this way,
these patterns can be used to evaluate how good a process
recipe behaves at various corners.
To tackle this problem, Yang et al [42] link this problem

with constrained random image generation. Instead of con-
ditional image generation in previous problems, image gen-
eration based on random noise can be exploited. They use
a transforming convolutional auto-encoder (TCAE) to en-
code a layout pattern into latent space and perturb the latent
vector to obtain variations in generated images. This ap-
proach alone cannot guarantee to generate legal patterns,
so they introduce a squish representation to encode the lay-
out topologies rather than the regular pixel representation.
The TCAE model also generates squish representations for
layout topologies and then they can solve a linear system to
obtain the eventual patterns. Figure 12 shows one example
of generating 1000 topologies from one topology. Note that
the approach still generates illegal patterns that need to be
filtered. It is reported that this method can generate patterns
with higher diversity than the state-of-the-art industrial tool.

6 CONCLUSION
In this paper, we have surveyed the recent progress in deep-
learning-based mask synthesis and verification, especially in
mask optimization, lithographymodeling, printability predic-
tion, and test pattern generation. As a mask can be naturally
represented with an image, deep learning techniques devel-
oped for image classification and translation are promising
to achieve speedup in orders of magnitude. Meanwhile, due
to the uniqueness of mask problems, i.e., rectilinear pattern

Origin TCAE-Random

…

:

Figure 12: Generate 1000 topologies (∼400 legal) from
one topology in the existing pattern library [42].

shapes, design rules, high image resolution, and imbalanced
label distributions, dedicated customization in feature repre-
sentation and network architectures is necessary to achieve
high-quality solutions. We also see a trend of integrating
components from conventional lithography simulation into
neural networks for end-to-end learning and optimization,
like LithoGAN and Neural-ILT.

In the future, we believe the following directions are worth
exploring. 1) With the demonstration of promising results
on mask clips, developing algorithms with full-chip support
is necessary to show the capability of industrial integration.
2) Most proposed lithography modeling and SRAF gener-
ation techniques are demonstrated on contact layers and
extending to metal layers is necessary for further adoption.
3) Obtaining enough training datasets is always expensive
and thus publicly available large datasets like ImageNet are
meaningful to advance the state-of-the-art. 4) Learning with
few data and model migration between technology nodes
would be practically useful in industrial flows.
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