
Stitch Aware Detailed Placement for Multiple E-Beam Lithography

Yibo Lin1, Bei Yu2, Yi Zou1,3, Zhuo Li4, Charles J. Alpert4, and David Z. Pan1

1ECE Department, University of Texas at Austin, Austin, TX, USA
2CSE Department, The Chinese University of Hong Kong, NT, Hong Kong

3College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
4Cadence Design Systems, Inc., Austin, TX, USA

ABSTRACT

As a promising candidate for next generation lithography,
multiple e-beam lithography (MEBL) is able to improve man-
ufacturing throughput using parallel beam printing. In MEBL,
a layout is split into stripes and the layout patterns are cut by
stripe boundaries, then all the stripes are printed in parallel. If a
via pattern or a vertical long wire is overlapping with a stitch, it
may suffer from poor printing quality due to the so called stitch
error; then the circuit performance may be degraded. In this
paper, we propose a comprehensive study on the stitch aware
detailed placement to simultaneously minimize the stitch error
and optimize traditional objectives, e.g., wirelength and den-
sity. Experimental results show that our algorithms are very ef-
fective on modified ICCAD 2014 benchmarks that zero stitch
error is guaranteed while the scaled half-perimeter wirelength
is very comparable to a state-of-the-art detailed placer.

I. INTRODUCTIONS

Due to the capability of accurate pattern generation, e-beam
lithography (EBL) is a promising candidate for next genera-
tion lithography technologies for sub-14nm nodes, along with
other techniques such as extreme ultra violet (EUV) and di-
rected self-assembly (DSA) [1]. However, low throughput
is still the bottleneck of an EBL system. Recently, an ex-
tended EBL technique, multiple e-beam lithography (MEBL),
is proposed to improve manufacturing throughput using paral-
lel beam printing [2]. MEBL system utilizes thousands of par-
allel beams to write multiple layout patterns simultaneously.
Industry has already explored different MEBL implementa-
tions and has demonstrated promising performance in terms of
both lithography accuracy and throughput [3, 4].

In MEBL manufacturing process, a layout is split into
stripes, and the boundary between two touching stripes is de-
fined as a stitch line. Each stripe has width of 50⇠200 microns,
and different stripes are printed simultaneously through differ-
ent electron beams. Although the parallel writing scheme can
dramatically improve the system throughput, it also introduces
serious printability issues. That is, each stitch can introduce so
called stitch error, in an area with width around 15nm [3]. If
a pattern is overlapping with a stitch, it may suffer from poor
printing quality due to the stitch error. Therefore, if not care-
fully designed, due to the shape distortion, an MEBL system
may confront yield issue or even functional error.

We observe very significant shape distortions on via patterns
and long vertical wires. Fig. 1 shows two SEM images of shape

Stitching Regions

(a)

Stitching Regions

(b)

Fig. 1. SEM images of stitch error for (a) via layer and (b) metal layer vertical
wires.

distortion on via layer and metal layer, respectively. In Fig. 1(a)
we can see that all vias are very regular inside the beam stripes.
However, at the stripe boundaries, the vias suffer from obvious
distortions and irregular shrinking. In Fig. 1(b) we can see that
the vertical wires are malformed in the stitch regions. Simi-
lar observations were also reported by Fang et al. [5] that the
vertical wires are more susceptible to stitch errors than the hor-
izontal wires.

There are several methods to minimize the impacts of stitch
errors from lithography perspective, e.g., avoiding dividing a
critical pattern into adjacent sub-fields [6], using different field
sizes [7], or reducing the field size [8]. Recently, Fang et al. [5]
considered the stitch error during detailed routing stage. How-
ever, detailed routing is a very late stage in physical design
flow, thus there may exist some stitch errors difficult to be re-
moved. For instance, stitch errors from vias dropped on pins of
a standard cell cannot be optimized during routing stage.

In this work we propose a comprehensive study to consider
the stitch error removal in detailed placement. We can di-
rectly optimize the positions of both vias and intra-cell vertical
wires. In addition, we consider local congestion, thus a router
(e.g. [5]) has more routing options to effectively remove stitch
errors in higher metal layers. Fig. 2 shows a placement exam-
ple with three gates, where the density of vertical metal1 seg-
ments varies from cell to cell. Some cells are more susceptible
to stitch errors as they have vertical wire segments distributed
at every site, while other cells have more space to avoid stitch
errors. The comparison between Fig. 2(a) and Fig. 2(b) shows
that it is possible to smartly avoid stitch errors with small cell
movement.

To the best of our knowledge, this is the first work taking
stitch errors into consideration in placement stage. Our contri-
butions are summarized as follows.

• We propose a comprehensive detailed placement study to

(a)

(b)

Fig. 2. An example of (a) stitch errors in placement and (b) e-beam friendly
placement.

simultaneously minimize the stitch error and optimize tra-
ditional objectives, e.g., wirelength and density.

• We develop a swap-based detailed placement engine with
an optimal stitch aware single row placement.

• We present an O(nM) pruning technique to speed-up the
single row problem, where n and M are number of cells
in a row and maximum displacement respectively. Our
pruning technique is very generic that it is applicable to
conventional placement and other applications.

The rest of this paper is as follows. Section II introduces
the stitch constraints and the problem formulation. Section III
explains the optimization algorithms in detail. Section IV lists
the experimental results, followed by conclusion in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In an MEBL system, stitch lines repeat periodically with
equal intervals. If a standard cell is not carefully placed and
overlaps with one stitch line, it may suffer from stitch error. In
this work we consider three kinds of possible stitch errors, as
follows. (1) Stitch over via: if a via is cut by a stitch line, it can
lead to potential disconnection. (2) Vertical routing: a vertical
routing segment suffers more from stitch lines than horizon-
tal lines. (3) Short polygon: short horizontal routing segment
with vias may also result in problem.

To accurately capture a stitch error, we partition each cell
into sites with width equal to the poly pitch. Since some intra-
cell segments or vias are very susceptible to stitches, we note
those sites covered by these segments/vias as dangerous sites.
For example, Fig. 3 shows the dangerous sites of cell BUF X8.
Note that for simplicity, here only intra-cell segments are illus-
trated. A stitch error happens iff one dangerous site overlaps
with an MEBL system stitch line.

This work adopts scaled half-perimeter wirelength (sHPWL)
from ICCAD 2013 placement contest, defined as follows.

sHPWL = HPWL ⇥ (1 + ↵ ⇥ P
ABU

) (1)

where ↵ is set to 1, and HPWL denotes half-perimeter wire-
length. P

ABU

represents ABU penalty to evaluate the place-

Dangerous Sites

Fig. 3. An example of cell BUF X8, where dangerous sites are labeled as red.

Initial Placement

Zero Stitch
Errors? Stitch Aware Global Swap

Stitch Aware
Single Row Placement

Output Placement

N

Y

Fig. 4. Overall flow of our stitch aware detailed placement.

ment congestion. Please refer to [9] for more details regarding
the P

ABU

calculation.

Problem 1 (Stitch Aware Detailed Placement). Given an initial
detailed placement with the information of dangerous sites for
each standard cell, we seek a legal placement to minimize the
stitch errors and the sHPWL, simultaneously.

III. DETAILED PLACEMENT ALGORITHMS

In this section we describe the details of our placement al-
gorithms. As shown in Fig. 4, our framework mainly consists
of two stages. In the first stage, single row based approach
is applied to optimize wirelength and stitch errors optimally.
If all stitch errors are removed successfully by this stage, we
directly output placement solutions. Otherwise, in the second
stage, cell swapping and movement are introduced to improve
both wirelength and congestion. Note that the stitch error is
considered through the whole flow.

A. Single Row Placement

As a powerful approach in detailed placement, single row
based placement is widely studied in both conventional place-
ment [10–12] and lithography aware application, such as triple
patterning lithography (TPL) compliance [13–15]. If there are
fixed macros in the layout, conventional single row algorithms
(e.g. Abacus [12]) divide a row into several sub-rows. How-
ever, this strategy is not suitable for MEBL application, as the
stitch lines are soft constraints rather than hard constraints. In
TPL compliance, the main challenge lies in the distance be-
tween abutting cells, while the stitch errors in MEBL are not
related to neighboring cells. In addition, in the single row al-
gorithm proposed by [13], a graph based approach is applied
to find optimal solution in O(mnK). Here m is the site num-
ber in the row, n is the cell number, and K is the number of
pre-coloring solutions for each cell. Usually m is a very large

TABLE I
NOTATIONS USED IN SINGLE ROW PLACEMENT

M Maximum displacement for a cell.
p

0
i Initial position of Cell ci.

pi The position of Cell ci, p0i �M pi p

0
i +M .

↵i(pi) solution of c1 to ci in which ci is placed at pi.
ti(pi) The cost of best placement solution from c1 to ci in

which ci is placed at pi.
�i(pi) The position of ci�1 in the optimal solution of c1 to ci�1

in which ci is at pi.
ri(pi) Whether the solution corresponding to ti(pi) is inferior

or not.
costi(pi) The cost of ci when it is placed to pi.
wi Width of Cell ci.

�M

1 � M

M � 1

M

�M �M �M

1 � M 1 � M 1 � M

M � 1 M � 1 M � 1

M M M

 c1c1 c
i

c
i

 c
i+1c
i+1 c

n

c
n

 ss tt

Fig. 5. Single row placement algorithm.

number, thus this algorithm may suffer from runtime for large
size circuits.

In this paper we adapt a dynamic programming based al-
gorithm [16] to solve single row detailed placement. Differ-
ent from other techniques (e.g. [12]), it can naturally han-
dle both hard constraints (fixed macros) and soft constraints
(stitch errors). Each cell is associated with a movable range,
which is usually a finite site candidates. The dynamic program-
ming scheme is able to achieve optimal solution for combined
cost functions, such as movement, wirelength and stitch errors.
Note that comparing with [16], we significantly improve the
runtime complexity while still maintaining the optimality.

For convenience, Table I lists some definitions used in the
single row placement. The algorithm for single row placement
is explained with a graph in Fig. 5. All candidate displacement
values of a cell is listed as a column of nodes. There is an edge
between two nodes if they can reach their displacement values
without overlap. For example, the maximum displacement for
cell c

i

is M , so the displacement range for c
i

is from �M to
M , the value of which is marked in the node. Each edge also
contains a cost according to Eqn. (2). Two additional nodes, s
and t, are inserted to the graph. The problem is stated as finding
the path with lowest cost from node s to node t, which can be
solved with dynamic programming.

The cost
i

(p
i

) function in the experiments is as follows,

cost
i

(p
i

) = ⌧ · WL(p
i

) + � · MOV (p
i

) + ⌫ · SP (p
i

),

SP (p
i

) =

⇢
0, no stitch,
large number, generate a stitch error,

(2)

where WL denotes wirelength cost, MOV denotes movement,
and SP denotes stitch error penalty. SP is set to a very large
number when a stitch error is generated, e.g., half-perimeter of
the layout. In our experiments, ⌧ , �, and ⌫ are set to 10, 1, and

1. In legalization step, we simply set ⌧ and ⌫ to zero.
Given an ordered sequence of cells S, to calculate wirelength

cost for cell c
i

, we need to fix the positions for all other cells.
The wirelength cost is determined by the bounding boxes of
nets. But if cell c

i

has connection to any cell in S, the wire-
length cost for cell c

i

cannot be determined since cells in S are
not fixed. To handle this, we introduce the wirelength model
in [17] which ensures the wirelength cost for cell c

i

is indepen-
dent to other cells in S, while the optimality of the solutions are
maintained. It turns out that this wirelength model is equivalent
to HPWL.

We can see that function cost
i

(p
i

) is quite flexible, since we
can include movement, wirelength and stitch errors. For hard
constraints like fixed macros, we only need to set its maximum
displacement M to zero. For soft constraints like stitch lines,
additional cost is applied if a cell has overlap with them.

Lemma 1. Algorithm shown in Fig. 5 is optimal for cost func-
tion in Eqn. (2).

The proof is similar to that in [16], and is omitted here for
brevity. The basic idea is that the optimal placement solution
can be found through a shortest path from s to t, and all the po-
sitions of cells can be derived from the displacement values of
corresponding nodes. Since the constructed graph is a directed
acyclic graph, the shortest path can be calculated using topo-
logical traversal in O(nM2

) steps, where n is the cell number
in the row, and M is the maximum displacement for each cell.

B. An O(nM) Pruning Algorithm

The runtime complexity of the above single row placement
is O(nM2

). When M is very large, the runtime becomes un-
acceptable. Here we propose a set of pruning techniques to
achieve further speedup, while still keeping the optimality. In
addition, we can theoretically prove that the runtime complex-
ity can be improved from O(nM2

) to O(nM).

Algorithm 1 Single Row Placement with Pruning
Require: A set of ordered cells c1 to cn of a row.
Ensure: All the cells in the set are placed subjecting to optimal objective func-

tion
1: t1(p1) cost1(p1), p1 2 [p01 �M,p

0
1 +M];

2: ti(pi) 1, i 2 to n, pi 2 [p0i �M,p

0
i +M];

3: ri(pi) 0, i 1 to n, pi 2 [p0i �M,p

0
i +M];

4: for each ci, i 2 to n do
5: N p

0
i�1 �M ;

6: for each pi 2 [p0i �M,p

0
i +M] do

7: for each pi�1 2 [N, p

0
i�1 +M] do

8: if ri�1(pi�1) = 0 then
9: cost ti�1(pi�1) + costi(pi);

10: if cost < ti(pi) then
11: ti(pi) cost;
12: �i(pi) pi�1;
13: N pi�1;
14: else
15: break;
16: Check inferior solutions and mark their ri(pi) to 1;
17: costmin 1;
18: for pn 2 [p0n �M,p

0
n +M] do

19: if tn(pn) < costmin then
20: costmin tn(pn);
21: Pn pn;
22: for i n down to 2 do
23: Pi�1 �i(pi);

The details of our O(nM) implementation is shown in Algo-
rithm 1. The main difference between the problems in [13, 16]
and our problem lies in the cost function. That is, the cost
functions for a cell in the former problems depend on other
cells, such as the distance or coloring cost between two abut-
ting cells, while the cost defined in Eqn. (2) is only related to
the cell itself; i.e., it is independent to any other cell. Due to
the independence in the cost function, we can minimize the to-
tal cost with O(nM) time complexity. Our speedup technique
is generic that it can also be applied into conventional detailed
placement and legalization with an objective like wirelength or
movement.

Lemma 2. Comparing two solutions ↵
i

(p
i

) and ↵
i

(q
i

), if
t
i

(p
i

) � t
i

(q
i

) and p
i

� q
i

, then ↵
i

(p
i

) is inferior to ↵
i

(q
i

)

Proof. Suppose cell c
i

has two candidate positions p
i

and q
i

,
where p

i

� q
i

and t
i

(p
i

) � t
i

(q
i

). Now consider any candidate
position p

i+1 for cell c
i+1. If cell c

i

can be placed at p
i

without
overlapping with cell c

i+1, then q
i

is also a legal position for
cell c

i

. We can always move cell c
i

from p
i

to q
i

for better
cost, because the total cost at cell c

i+1 is the minimum value
of t

i

(p
i

) + cost
i+1(pi+1). Therefore, solution ↵

i

(q
i

) is better
than ↵

i

(p
i

).

Lemma 2 corresponds to line 8 and line 20 in Algorithm 1
where all inferior solutions are marked and skipped in the for
loop. It implies that t

i

(p
i

) < t
i

(q
i

) when p
i

> q
i

.
If p

i�1 introduces overlaps between cell c
i�1 and c

i

, the cost
is assigned to infinity. After skipping all inferior solutions, one
should also note that in line 10, the condition cost < t

i

(p
i

) is
always satisfied when no overlapping occurs. The reason lies in
that t

i�1(pi�1) is decreasing w.r.t p
i�1 according to Lemma 2

and cost
i

(p
i

) does not change in the for loop from line 7 to 18.
So the else condition in line 14 only happens when p

i�1 results
in overlaps, and we can break the loop under such a condition.

Lemma 3. Let p⇤
i�1 be the optimal position of cell c

i�1 when
cell c

i

is placed at p
i

, and q⇤
i�1 be the optimal position of cell

c
i�1 when cell c

i

is placed at q
i

. If q
i

� p
i

, then q⇤
i�1 � p⇤

i�1.

Proof. For a legal position p
i

of cell c
i

, to minimize t
i

(p
i

), we
need to find the smallest t

i�1(pi�1) for all possible p
i�1, be-

cause cost
i

(p
i

) has been determined by p
i

. Let P
i�1 be the set

of all legal values of p
i�1 and Q

i�1 denote all possible values
of q

i�1. Suppose p⇤
i�1 is the best position for cell c

i�1 when c
i

is placed at p
i

and q⇤
i�1 is the best position for cell c

i�1 when
c
i

is placed at q
i

. P
i�1 and Q

i�1 should share the same left
boundary l. Let P r

i�1 be the right boundary of set P
i�1 and

Qr

i�1 be the right boundary of set Q
i�1. P r

i�1 is no larger than
Qr

i�1, as q
i

� p
i

. In other words, we have P
i�1 ✓ Q

i�1. The
relationship can be rewritten as,

P
i�1 = {p

i�1| l p
i�1 P r

i�1, pi�1 2 Z},

Q
i�1 = {q

i�1| l q
i�1 Qr

i�1, qi�1 2 Z},

P r

i�1 Qr

i�1.

If q⇤
i�1 lies in the range between l and P r

i�1, it must be equal
to p⇤

i�1; otherwise, it is equal to some value between P r

i�1 and
Qr

i�1. Hence, q⇤
i�1 � p⇤

i�1.

Lemma 3 corresponds to line 5, 7 and 13 in Algorithm 1.
After computing the optimal solution for cell c

i

at position p
i

=

q, We can start p
i�1 from N (line 5 of Algorithm 1) instead of

p0
i�1 � M to find an optimal solution for a value p

i

> q.
The above analysis guarantees the optimality of Algorithm 1.

Compared with previous O(M2
) algorithms in [13, 16], Algo-

rithm 1 changes the complexity of the local search (from line
6 to line 19) to O(M). Line 20 also takes O(M) time to mark
all inferior solutions. The runtime complexity of Algorithm 1
is O(nM).

It should be noted that our pruning algorithm is flexible to
any cost function cost

i

(p
i

) as long as it only depends on p
i

itself. That is, it can be applied to speed-up the conventional
single row detailed placement problems [10–12].

C. Stitch Aware Global Swap

In this step, the main objective is to optimize regions that
contain cells involved in stitch errors. After the optimization
of single row placement, most stitch errors have been resolved.
The remaining ones usually appear in highly congested place-
ment bins. Therefore, we only try to move cells in such bins to
alleviate the congestion and meanwhile reduce wirelength.

Due to the congestion of these regions, it is difficult to re-
solve them with local perturbation such as reordering or slid-
ing window. Thus global swap [17, 18] is adopted where cells
are allowed to move anywhere within the displacement con-
straints. Generalized swap not only enables swapping with
cells but also white spaces, which integrates both swapping and
moving strategies. The basic procedure for cell swap is itera-
tively repeating the following three steps: (1) Select a source
cell to swap; (2) Identify optimal region for source cell; (3)
Find the best cell or white space to swap with the source cell in
the optimal region.

In our implementation, we set the score function for swap as
follows,

score(c
i

, c
j

) = �sHPWL � � · P
ds

� µ · P
ov

, (3)

where �sHPWL indicates sHPWL improvement, P
ds

indi-
cates the penalty for density increase of dangerous sites, and
P

ov

is overlap penalty. Suppose cell c
i

is in bin B
i

and cell
c
j

belongs to bin B
j

. The area of both bins is A
b

. We define
the density of dangerous sites as the number of dangerous sites
over total amount of available sites in a bin. If a bin has overlap
with any stitch line, we account only 70% of its total sites as
available. Let D

ds

(i) denote the density of dangerous sites in
bin B

i

before swap and D0
ds

(i) denote the density of danger-
ous sites in bin B

i

after swap. Then we can define P
ds

with the
following equation,

P
ds

= max(0, |D0
ds

(i)�D0
ds

(j)|�|D
ds

(i)�D
ds

(j)|)·A
b

(4)

The overlap penalty is the area difference between the source
cell and target cell or white space. If the target white space is
larger than the source cell, overlap penalty is zero. To achieve
an equivalent numeric scale to wirelength cost, P

ds

and P
ov

are divided by site half-perimeter in the implementation. In
this way, all the costs have the same unit as distance. � and µ
are set to 100. Only swapping attempt with best positive scores
is accepted.

The scoring scheme proposed in Eqn. (3) aims for balanc-
ing the density of cells and dangerous sites while improving
wirelength. Although the penalty from ABU density is able to
handle global density distribution, local control is necessary to
avoid extremely dense regions. Furthermore, it is easier for a
congested region with very few dangerous sites to find a stitch-
error-free solution than that with a lot of dangerous sites. Thus
we introduce P

ds

as the additional penalty for such kind of
regions. Since row-based legalization engine is applied, the
height of bins for P

ds

is set to row height.
Overlap penalty is introduced to control the efforts during

legalization. High legalization efforts will incur large displace-
ment for some cells and thereby large wirelength degradation.
Hence, after every 5000 swaps, legalization algorithm will be
performed to remove overlaps. Legalization algorithm is based
on single-row placement (Section A) with minimum movement
as an objective.

We observe that the runtime for global swap is highly re-
lated to the complexity of score function. Considering that
wirelength is included in the calculation, it will be very slow
to query the bounding box of large nets. Thus we develop a
data structure in which pins of a net are stored as an ordered
sequence according to pin positions. Cells in a row is kept in a
linked-list [18] for fast cell swap and movement.

Usually a cell is connected to limited number of nets, thus
its degree can be treated as constant. Using the data struc-
tures above, it only takes constant time to query the bounding
box and O(log e) to update cell position in a net with e pins.
Since score calculation happens much more frequent than ac-
tual cell swap or movement, faster score calculation helps to
reduce overall runtime. Let k be the number of swapping can-
didates for a cell c

i

, we can achieve O(k) time complexity for
score calculation and O(log e

max

) for cell position update if a
swap or movement is accepted, where e

max

is the maximum e
of nets connected to cell c

i

.

IV. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++ and tested on a
3.40 GHz Linux machine with 32 GB memory. Since tra-
ditional academic placement benchmark suites has no intra-
cell wire information, we integrated the NanGate 15nm stan-
dard cell library [19] into ICCAD 2014 placement benchmarks
[9]. ICCAD 2014 placement contest defines two maximum
displacement values for each benchmark, and we choose the
smaller ones for less perturbation to the original placements.
We applied a state-of-the-art detailed placer, RippleDp [20],
to generate the initial placement solutions. We scaled the bin
dimensions for ABU density analysis from the ICCAD 2014
benchmarks, so most generated test cases match to the number
of bins in the original ones. We pre-computed dangerous sites
for all standard cells in the library, which was served as input
to our placer. We set the stripe width of each single beam to
50µm.

The metrics of the new benchmarks are shown in Table II,
where columns “#cells” and “#nets” list the total cell number
and net number, respectively. Besides, columns “#blk”, “d

t

”
and “Disp.” represent the blockage (fixed macro) number, the
target density, and the maximum displacement in um. Note

TABLE II
BENCHMARKS FOR STITCH AWARE PLACEMENT

Design #cells #nets #blk Density d
t

Disp.
vga lcd 165K 165K 0 68.94% 70% 10

b19 219K 219K 0 44.85% 70% 20
leon3mp 649K 649K 0 72.02% 75% 30

leon2 794K 795K 0 84.19% 90% 40
mgc edit dist 131K 133K 13 67.26% 70% 30

mgc matrix mult 155K 159K 16 59.31% 65% 30
netcard 959K 961K 12 66.29% 70% 50

that test cases mgc edit dist, mgc matrix mul and netcard con-
tain mixed-sized cells.

Table III lists the performance of our placer at different
optimization stages. The initial placement solutions (column
“Init.”) are generated by a traditional detailed placer, RippleDp
[20], which aims at minimizing wirelength. As the state-of-
the-art detailed placer, RippleDp can produce very high quality
placement solutions in terms of both HPWL and sHPWL. Here
we set displacement constraint to be a very large number so
that RippleDp can produce converged results. Column “SR”
stands for single row placement, while column “Full Flow”
denotes the whole flow combining global swap and single row
placement. To evaluate the effectiveness of our algorithms, fol-
lowing metrics are introduced. HPWL stands for half perime-
ter wirelength which is used as a metric for wirelength. ST#
represents the number of cells that contains stitch errors. It
is measured by how many dangerous sites are covered by the
beam boundaries. Placement solutions with high congestion
are not desired, so we introduce sHPWL as discussed in Sec-
tion II. When measuring Runtime, which is the CPU run time
in seconds, single thread is applied for consistency of results.

From Table III we can see that, with certain displacement
constraints, the proposed single row placement can achieve
very good efficacy in stitch error cancellation. That is, 99.9%
of the initial stitch errors are removed. Meanwhile, an average
of 0.19% HPWL improvement and slight sHPWL increase are
observed. However, for some corner cases, such as leon2 and
netcard, the single row placement is not powerful enough due
to the movement constraints from blockages or congestions.
Therefore, global swap is introduced as a follow-up optimiza-
tion step, and the corresponding results are shown in the last
column. We can see that swapping cells between rows im-
proves congestion in dense regions and optimize wirelength.
By applying global swap together with single row algorithm,
we are able to achieve zero stitch errors for all test cases. As
only small number of bins are considered for global swap, the
runtime overhead can be neglected. Small changes in HPWL
and sHPWL also indicate that the algorithm produces little per-
turbation to initial placement.

It should be noted that the runtime of single row placement in
Table III for case netcard is very close to that of leon2, while
the former has much larger cell number. The reason lies in
those blockages in netcard. That is, the runtime of single row
placement is not only related to the number of cells, but also the
amount of maximum displacement. Blockages have zero max-
imum displacement. So during the propagation of candidate
solutions in the dynamic programming process, many infeasi-
ble solutions are automatically pruned. Therefore, the solution
space has been significantly reduced and as a consequence, the

TABLE III
RESULT COMPARISON AMONG DIFFERENT APPROACHES.

Design
Init. SR Full Flow

HPWL sHPWL ST �HPWL �sHPWL ST Runtime �HPWL �sHPWL ST Runtime
(⇥10

6) (⇥10

6) # (%) (%) # (s) (%) (%) # (s)
vga lcd 1.42 1.87 1266 -0.28 +0.36 0 7.70 -0.28 +0.36 0 7.74

b19 0.97 1.14 1435 -0.25 -0.00 0 10.54 -0.25 -0.00 0 10.74
leon3mp 5.34 6.84 6474 -0.32 -0.14 0 33.36 -0.32 -0.14 0 33.59

leon2 13.09 14.49 8172 -0.09 +0.12 1 42.24 -0.10 +0.11 0 49.90
med 1.52 1.88 864 -0.14 +0.18 0 6.05 -0.14 +0.18 0 6.11

mmm 0.91 1.13 1117 -0.17 -0.13 0 7.22 -0.17 -0.13 0 7.28
netcard 14.57 20.19 7789 -0.11 +0.06 21 44.68 -0.10 +0.08 0 50.02

avg. 5.40 6.79 3873 -0.19 +0.06 3 21.68 -0.19 +0.07 0 23.62
ratio - - 1 - - 0.001 1.00 - - 0 1.09

Fig. 6. Comparison on algorithm scalability.

best solution is found in shorter time.
Fig. 6 compares the runtime difference for variant amounts

of cells in a row between whether applying pruning techniques
or not. The data is directly collected from benchmarks in Table
II and the runtime values of rows with the same number of
cells are averaged. We can see the runtime grows linearly with
the problem size and the difference in the slopes shows that
pruning techniques effectively drop runtime. On average, the
O(nM) pruning technique can provide around 30⇥ speedup
without any loss of optimality.

V. CONCLUSION

This work develops the first placement framework consid-
ering e-beam stitch errors during detailed placement stage. A
linear-time single row placement algorithm is proposed with
highly-adaptable objective functions. Experimental results
show its effectiveness in stitch cancellation while maintaining
wirelength and congestion. With the collaboration of stitch
aware post-placement optimization such as [5], better manu-
factorability can be achieved. In addition, our high perfor-
mance pruning technique can be natually embedded into ex-
isting physical design flow with different metrics (e.g., wire-
length, routability, or congestion).

ACKNOWLEDGMENT

This work is supported in part by NSF and SRC. Thanks to
William Chou and Prof. F. Y. Young for the updated version of
RippleDp.

REFERENCES

[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerg-
ing nanolithography,” IEEE Transactions on CAD, vol. 32, no. 10, pp.
1453–1472, 2013.

[2] B. J. Lin, “Future of multiple-e-beam direct-write systems,” Journal of
Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 11, no. 3, pp.
033 011–1, 2012.

[3] C. Van den Berg, G. De Boer, S. Boschker, E. Hakkennes, G. Holgate,
M. Hoving, R. Jager, J. Koning, V. Kuiper, Y. Ma et al., “Scanning expo-
sures with a MAPPER multibeam system,” in Proc. of SPIE, vol. 7970,
2011.

[4] M. A. McCord, P. Petric, U. Ummethala, A. Carroll, S. Kojima, L. Grella,
S. Shriyan, C. T. Rettner, and C. F. Bevis, “REBL: design progress to-
ward 16 nm half-pitch maskless projection electron beam lithography,”
in Proc. of SPIE, vol. 832311, 2012.

[5] S.-Y. Fang, I.-J. Liu, and Y.-W. Chang, “Stitch-aware routing for multiple
e-beam lithography,” in DAC, 2013, pp. 25:1–25:6.

[6] K. Suzuki, T. Fujiwara, K. Hada, N. Hirayanagi, S. Kawata, K. Morita,
K. Okamoto, T. Okino, S. Shimizu, and T. Yahiro, “Nikon EB stepper:
its system concept and countermeasures for critical issues,” in Proc. of
SPIE, vol. 3997, 2000.

[7] D. Dougherty, R. Muller, P. Maker, and S. Forouhar, “Stitching-error re-
duction in gratings by shot-shifted electron-beam lithography,” Journal
of Lightwave Technology, vol. 19, no. 10, pp. 1527–1531, oct 2001.

[8] J. Albert, S. Theriault, F. Bilodeau, D. Johnson, K. Hill, P. Sixt, and
M. Rooks, “Minimization of phase errors in long fiber bragg grating
phase masks made using electron beam lithography,” IEEE Photonics
Technology Letters, vol. 8, no. 10, pp. 1334–1336, oct. 1996.

[9] M.-C. Kim, J. Hu, and N. Viswanathan, “ICCAD-2014 CAD contest in
incremental timing-driven placement and benchmark suite,” in ICCAD,
2014, pp. 361–366.

[10] U. Brenner and J. Vygen, “Faster optimal single-row placement with
fixed ordering,” in DATE, 2000, pp. 117–121.

[11] A. B. Kahng, I. L. Markov, and S. Reda, “On legalization of row-based
placements,” in GLSVLSI, 2004, pp. 214–219.

[12] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: fast legal-
ization of standard cell circuits with minimal movement,” in ISPD, 2008,
pp. 47–53.

[13] B. Yu, X. Xu, J.-R. Gao, and D. Z. Pan, “Methodology for standard cell
compliance and detailed placement for triple patterning lithography,” in
ICCAD, 2013, pp. 349–356.

[14] J. Kuang, W.-K. Chow, and E. F. Y. Young, “Triple patterning lithography
aware optimization for standard cell based design,” in ICCAD, 2014, pp.
108–115.

[15] T. Lin and C. Chu, “TPL-aware displacement-driven detailed placement
refinement with coloring constraints,” in ISPD, 2015, pp. 75–80.

[16] T. Taghavi, C. Alpert, A. Huber, Z. Li, G.-J. Nam, and S. Ramji, “New
placement prediction and mitigation techniques for local routing conges-
tion,” in ICCAD, 2010, pp. 621–624.

[17] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in ICCAD, 2005, pp. 48–55.

[18] S. Popovych, H.-H. Lai, C.-M. Wang, Y.-L. Li, W.-H. Liu, and T.-C.
Wang, “Density-aware detailed placement with instant legalization,” in
DAC, 2014, pp. 122:1–122:6.

[19] “NanGate FreePDK15 Open Cell Library,” http://www.nangate.com/
?page id=2328, 2015.

[20] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell density-
driven detailed placement with displacement constraint,” in ISPD, 2014,
pp. 3–10.

