
0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

High Performance Dummy Fill Insertion with
Coupling and Uniformity Constraints

Yibo Lin, Bei Yu Member, IEEE, and David Z. Pan Fellow, IEEE

Abstract—In deep-submicron VLSI manufacturing, dummy
fills are widely applied to reduce topographic variations and
improve layout pattern uniformity. However, the introduction
of dummy fills may impact the wire electrical properties, such
as coupling capacitance. Traditional tile-based method for fill
insertion usually results in very large number of fills, which
increases the cost of layout storage. In advanced technology
nodes, solving the tile-based dummy fill design is more and
more expensive. In this paper, we propose a high performance
dummy fill insertion framework, where the coupling capacitance
issues and density variations are considered simultaneously. We
also propose approaches to further consider density gradient
minimization. The experimental results for ICCAD 2014 contest
benchmarks demonstrate the effectiveness of our methods.

I. INTRODUCTIONS

IN current VLSI manufacturing process, chemical mechan-
ical polishing (CMP) is a planarizing technique widely

used to satisfy the planarity requirements. Both mechanical
and chemical methods are adopted in the CMP process. In
spite of its popularity, the CMP-induced design challenge is
its dependence on the features of device and interconnect in
deep-submicron technology [1]. The quality of CMP patterns
is highly-related to the uniformity of density distribution, and
a predictable layout is desired for good CMP performance.
To achieve uniform density distribution in a layout, dummy
fills are inserted to increase the density of sparse regions.
Even though there are specific design rules to restrict the side
effects from the addition of dummy fills, it is still not enough
to resolve all the problems in density variation or coupling
capacitance. Hence powerful CAD tools for multi-objective
fill insertion are still in great demand.

The flow for layout density optimization can be generalized
as two phases: density analysis and fill synthesis [2]. Density
analysis first collects information of wire density and available
fill regions and then calculates the amount of fills for the
layout. In density analysis, regions with violations of density
rules (lower/upper bound) are identified. It is usually based on
fixed dissection where a layout is divided into windows with
dimension of w×w. Each window consists of w/r×w/r tiles
as shown in Fig. 1. The extension to multi-window and multi-
layer analysis was also proposed [3]. Fill synthesis determines
how many fills to be inserted into the layout. Traditional
methods usually aim at minimizing both the density variation

The preliminary version has been presented at Design Automation Con-
ference (DAC) in 2015.

Y. Lin and D. Pan are with the Department of Electrical and Computer
Engineering, University of Texas, Austin, TX 78731 USA.

B. Yu was with the Department of Electrical and Computer Engineering,
University of Texas, Austin, TX 78731 USA. He is now with CSE Depart-
ment, The Chinese University of Hong Kong, Shatin, Hong Kong.

w

w
r

Fig. 1: An example of w × w windows with r2 tiles.

and the number of fills through linear programming (LP)
formulation [4], [5]. In these methods, layout is divided into
windows and each window is further split into tiles for fill
insertion. As the advancement of technology node, circuits
become more and more complicated that LP-based method
reaches their limitation due to problem sizes. In both [1] and
[6], analysis of an example layout with 200µm × 200µm
windows results in over 160K variables, thus the runtime
becomes the bottleneck for LP-based method. Alternative
approaches based on Monte Carlo or heuristic algorithms
have been proposed. However, they are still lacking in either
performance or speed [7]–[9]. The recent study from Liu et
al. [10], [11] proposed an ultra-fast fill insertion engine with
an objective of minimizing density variation and total amount
of fills.

Typically the density uniformity is measured with density
variation, but it is highlighted that density gradient also plays
an important role in post-CMP metal thickness [12] and mask
distortion [13]. Chen et al. [14] mentioned that in modern
process, the polishing pad during CMP can dynamically
adjust pressure and rotation speed according to the density
distribution. If the density changes slowly across neighboring
windows, the CMP system is able to perform local adjustment
for better quality. In addition, the minimization of density
variation does not necessarily contribute to small gradient
because it focuses more on global uniformity rather than local
uniformity. Chen et al. [12] gave an example of two density
distributions with the same variation but yield totally different
gradients. Therefore, gradient based minimization should also
be incorporated into the density uniformity optimization.

Furthermore, the introduction of dummy fills will incur
additional coupling capacitance, causing performance degra-
dation. The first integer linear programming (ILP) based
approach considering coupling capacitance was proposed by
Chen et al. [15]. Xiang et al. [16] also studied the fill-induced
coupling effects and proposed another ILP-based coupling
constrained dummy fill algorithm to handle coupling capac-

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

itance. Their methods efficiently analyze density distribution
and conduct fill optimization based on slots.

Besides runtime, another problem for traditional tile-based
approaches lies in the requirement of large amount of fills for
good uniformity, resulting in the difficulty for layout storage.
Although current layout file standard like GDSII and OASIS
can achieve good reduction in data volume, the problem is
not solved due to the increasing complexity of circuits. In
addition, large file size often leads to usability limitation and
also increases data transfer time [17]. Ellis et al. [18] and
Chen et el. [19] made early trials for data compression in
GDSII and OASIS for tile based fills. They try to utilize those
array tokens in the file formats to describe those regular fill
matrices so that the data is compressed with a hierarchical
structure, such as AREF in GDSII. This approach is suitable
to tile based fills because those tiles are regularly aligned. But
in our problem, as fills are described as arbitrary rectangles,
which is not regular, it is difficult to wrap them in hierarchy.

To motivate the development of more effective dummy fill
algorithms, ICCAD 2014 held a dummy fill contest [17] and
released a suite of industrial benchmarks. Many conventional
issues and emerging concerns were holistically modeled with
layer overlay, density variation, line hotspots, outlier hotspots
and file size. A dummy fill optimizer with comprehensive
optimization is desired. The definitions of these concepts
will be discussed in detail in the next section (Section II).
Besides metrics based on density variation from ICCAD 2014
contest, the density gradient should also be considered for
the reason of better CMP quality and mask distortion as
mentioned above. This is a brand new challenge for multi-
objective optimization that includes density, coupling, and file
size for arbitrary rectangular shapes of fills.

In this paper, we develop a high-performance framework
for dummy fill insertion. Our main contributions can be
summarized as follows.

1) The dummy fill insertion is based on geometric prop-
erties instead of tiles. Target density planning is done
at window level and then candidate fills are generated
under the guidance of target density.

2) The proposed algorithm optimizes for multiple ob-
jectives including density variation, density gradient,
overlay and so on.

3) We propose an ILP formulation and then its dual min-
cost flow formulation to optimize overlay and layout
density efficiently.

4) Experimental results show that our algorithms outper-
form the top teams by over 10% on ICCAD 2014 DFM
contest benchmarks [17].

The rest part of this paper is organized as follows: Section II
shows the definitions of related concepts and problem for-
mulation. Section III explains the optimization algorithms in
detail. Section IV presents the experimental results in different
scores. In the end, we conclude our work in Section V.

II. PRELIMINARIES

A. Overlay Between Layers
The spatial overlaps between neighboring layers will lead

to coupling capacitance, which is not desired in the layout de-

Layer 1
Layer 2
Layer 3

(a)

N Columns

M
R

ow
s

(b)

Fig. 2: Example of (a) overlay between layers (b) square
windows for density analysis.

sign. Dummy fills are actually metal tiles, and their interaction
with other signal wires will inevitably introduce additional
capacitance, resulting in performance degradation. Therefore,
it is necessary to avoid coupling capacitance during dummy
fill insertion. In this work (as in ICCAD 2014 contest),
coupling capacitance is evaluated with the amounts of overlay
area between fills and their neighboring layers (including
signal wires and fills) [20], [21]. As shown in Fig. 2(a), the
enclosure regions of orange lines are counted to overlay area.

B. Layout Density

The performance of CMP is highly related to the layout
density of a given window, and uniform density distribution
contributes to high CMP quality [6]. In other words, density
variation along windows is very critical, and is also the
purpose of introducing dummy fills.

The distribution of window densities in this work is eval-
uated with three scores: variation, line hotspots, and outlier
hotspots [20], [21]. The whole layout is divided into N ×M
square windows as shown in Fig. 2(b). Variation is standard
deviation of window layout densities, represented with σ. It
aims at capturing the uniformity at layout level. Line hotspots
are summation of column-based variation. For a layout shown
in Fig. 2(b), we compute line hotspots as follows,

lh =
N∑
i=1

M∑
j=1

|d(i, j)−
∑M
j=1 d(i, j)

M
|, (1)

where d(i, j) stands for the layout density at window (i, j).
This score is used to verify variations along each column.
Outlier hotspots are summation of outlier deviations. This
score is designed to evaluate the deviation of window densities
outside 3σ range,

oh =
N∑
i=1

M∑
j=1

max(0, |d(i, j)− d| − 3σ), (2)

where d denotes the average density over the layout, and σ
indicates the variation.

All the 3 scores above evaluate different perspectives of the
density distribution, and all are used in ICCAD 2014 contest.
Variation may only provide a general view to the density map,
while line hotspots and outlier hotspots collect more concrete
information about it.

Besides the metrics on density variations, the uniformity
should also include density gradient whose importance has

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

been addressed in previous work [12], [13]. We define the
density gradient g(i, j) for a window (i, j) as follows,

g(i, j) = max(|d(i, j)− d(i+ 1, j)|, |d(i, j)− d(i− 1, j)|,
|d(i, j)− d(i, j + 1)|, |d(i, j)− d(i, j − 1)|), (3a)

avg. grad. =
N∑
i=1

M∑
j=1

g(i, j), (3b)

max. grad. = max g(i, j), ∀i ∈ [1, N], j ∈ [1,M]. (3c)

It describes the maximum density gap between current win-
dow and its four neighboring windows. The density gradient
metric for the whole layout is measured by average density
gradient in Eqn. (3b) and max density gradient in Eqn. (3c)
across all the windows.

C. Problem Formulation

The addition of dummy fills needs a comprehensive view
of the layout. That means both performance degradation and
CMP quality should be taken into consideration. Hence, in this
work, the optimization will focus on a combined objective of
layout overlay and density uniformity.

In ICCAD 2014 contest, all the metrics on layout overlay
and density uniformity are normalized to scores. But density
gradient is not included in the metrics. Therefore, we will
show the values of density gradient separately without nor-
malization.

Given an input layout with initial fill regions and wire
densities across each window, we insert dummy fills to
maximize the following score and minimize density gradient,

score = αovsov + ασsσ + αlhslh + αohsoh + αfssfs, (4)

where sov = fov(
∑
l∈L ov(l)) denotes total overlay score

for all layers in set L; sσ = fσ(
∑
l∈L σ(l)) stands for total

variation score for all layers; slh = flh(
∑
l∈L lh(l)) means

total line hotspot score for all layers; soh = foh(
∑
l∈L σ(l) ·∑

l∈L oh(l)) represents total outlier score for all layers;
sfs = ffs(fs) is file size score. Function f shows how the
score is calculated with its corresponding variables and it can
be generalized to

f(x) = max (0, 1− x

β
), (5)

where αov , ασ , αlh, αoh, αfs and β are benchmark-related
parameters in the contest, which are defined in Table II of
Section IV.

We can see that overlay, variation, line hotspots and outlier
hotspots in each layer are added up for scores. File size score
sfs is introduced to reduce the difficulty for layout storage. In
ICCAD 2014 contest, GDSII format is used as a standard I/O
format. As mentioned above, the metric of density gradient
does not apply to the normalizing function in Eqn. (5).

III. DUMMY FILL INSERTION ALGORITHMS

The flow of our algorithm is summarized in Fig. 3. After
reading the input fill regions, we need to perform polygon
decomposition and assign fill regions to each window. After
the available fill regions for each window are calculated, the

Initial Fill Regions Density Planning

Candidate Fill Generation

Output Fills

Density Planning

Dummy Fill Insertion

Fig. 3: Our dummy fill insertion flow.

TABLE I: Notations used in Fill Insertion Problem

sm, wm, am DRC rule for min. spacing, width and area
aw Window area
dg Density gap (normalized to area)
dt(l) Target density on layer l
dt(i, j) Target density for window (i, j)

ov Overlay
wi, hi width and height of a candidate fill
L Set of layers
F (l) Set of fills on layer l
O(l) Set of fill overlays between layer l and l + 1

P (l) Set of fill pairs with spacing rule violations
e(i, j) Euclidean distance between fills i and j, ∀(i, j) ∈ P (l)

xli, x
h
i left and right bound of fill i

yli, y
h
i lower and upper bound of fill i

density distribution is ready for density planning and target
densities can be obtained. Then we generate candidate fills
according to density demands and overlay cost. After this,
another round of density planning is performed due to the
inconsistency between candidate fills and initial plans. In the
end, dummy fills are inserted with proper sizes to improve
overlay and density variations. Table I gives the definitions of
symbols used in the following explanation.

A. Polygon Decomposition

It is very important to decompose input rectilinear polygons
into rectangles, because rectangles are usually easier to pro-
cess and final fills should also be rectangles. The quality of
final fills is also related to the performance of polygon decom-
position. Our polygon decomposition algorithm is extended
from the efficient polygon-to-rectangle conversion algorithm
from [22]. The procedure can also be explained as a scanning
line move from bottom to top and cut rectangles one-by-one.
It is different from the edge-based decomposition in [10] since
we do not need to differentiate the corners for duplicated
points. We extend the algorithm with one horizontal scanning
line and another vertical scanning line. During each cut, two
candidate rectangles will be generated from the scanning lines
where the better rectangle is chosen. There are various criteria
in choosing the rectangles, such as area and aspect ratio.
We find that a suitable criterion is essential to work together
with candidate fill generation in Section III-D for fewer fills.
Intuitively larger and fewer rectangles in general lead to better

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

performance in terms of file size. It is also observed that fewer
rectangles in this step do not always contribute to fewer fills
due to density requirement. More details will be discussed
empirically in Section IV-B.

B. Target Density Planning

Due to the complexity of objective function and large
amounts of windows in a layout, direct optimization over
the locations and sizes of dummy fills across all windows is
very expensive and thus time consuming. Density planning
is rather important, since it can serve as a guidance for
candidate fill region generation (Section III-D) and final fill
insertion (Section III-E) in each window. Good density plan
is also capable of reducing the problem size, and eventually
contributes to the reduction of run-time.

With the information of feasible fill regions, it is possible to
calculate the density bound of each window. The lower bound
for the window density is the wire density in that window,
while its upper bound is usually related to the area of its fill
regions.

During this step, we do not consider overlay penalty, so
the goal of density planning is to maximize the density score,
the summation of variation score, the line hotspot score and
the outlier hotspot score. It is a function of the density of
each window in each layer. Actually this objective considers
multiple windows in multiple layers. To simplify the analysis,
we assume that in all the following notations, the information
of layers is implicitly included. For each window, its density
d(i, j) is bounded by existing wire density and available fill
regions. Let the lower and upper bound of d(i, j) be l(i, j)
and u(i, j) respectively.

Definition 1 (Target Layout Density). A density value for one
layer represented by dt. Its relation with d(i, j) can be shown
as follows,

d(i, j) =

 l(i, j), if dt < l(i, j),
u(i, j), if dt > u(i, j),
dt, other.

(6)

The density planning problem is now transformed to find
the best dt for maximum density score. To find the best dt,
we can analyze the following two cases.

Case I: If the ranges of d(i, j) for all windows are large
enough, we can get a trivial solution that is optimal by setting

dt = max (l(k, n)),∀k ∈ 1, 2, ..., N, n ∈ 1, 2, ...,M. (7)

It means that the target density dt is equal to the largest wire
density throughout the layout. In this way, an ideal uniform
distribution is achieved since densities in all windows are the
same.

Case II: Not all windows are able to get to target layout
density. For example, the largest wire density may be 0.9,
while a window can only achieve a density as high as 0.7.
This kind of situation will occur when ∃(i, j) satisfies

u(i, j) < max (l(k, n)), (8)

Then the target density for window (i, j) can only be set to
u(i, j) instead of max(l(k, n)). In this case, we simply search

all combinations of target layout densities for all layers with
small steps and then choose the best one. The search range
for dt can be limited to values between max(l(k, n)) and
min(u(k, n)). The run-time for this step is still very fast due
to the simplicity of each calculation and limited number of
layers.

C. Density Gradient Adjusting

The target density planning approach in Section III-B aims
at maximizing total density score, but it does not take density
gradient into consideration. In order to keep the planned
density score and meanwhile optimize density gradient, we
choose to locally adjust gradient for each layer without large
perturbation to the existing results. The problem is formulated
into a quadratic program as follows,

min
∑

1≤i≤N,
1≤j≤M

dg(i, j) · dg(i, j) + ε
∑

1≤i≤N,
1≤j≤M

g(i, j) · g(i, j),

(9a)
s.t. dg(i, j) = d(i, j)− dt, (9b)

g(i, j) ≥ d(i, j)− d(i± 1, j), (9c)
g(i, j) ≥ d(i± 1, j)− d(i, j), (9d)
g(i, j) ≥ d(i, j)− d(i, j ± 1), (9e)
g(i, j) ≥ d(i, j ± 1)− d(i, j), (9f)
l(i, j) ≤ d(i, j) ≤ u(i, j). (9g)

The objective consists of two parts. The first summation
computes the quadratic density gap between current window
density and target layout density. The second summation
computes the quadratic gradient for all the windows. We
want to minimize total density gradient and the amounts of
deviation from target layout density. Coefficient ε is used to
balance the priority between two parts, and it is set to 10 in
the experiment. The density gap for each window is calculated
in Constraint (9b) where dt denotes the target layout density
obtained from Section III-B. Constraints (9c) to (9f) compute
the gradient defined in Eqn. (3a). Since the density gradient
for a window is defined as the maximum density gap between
the window and its four neighbors, it introduces four sets of
constraints for each window. At the same time, it is necessary
to enumerate all the combinations of a−b and b−a to mimic
the absolute operation |a− b| in the density gap computation.
So each set contains two constraints. The constraints from
Constraints (9c) to (9f) represent the eight constraints for each
window.

Problem (9) is a mathematical program with a quadratic
objective function subject to linear equality and inequality
constraints; in other words, it is a quadratic program. If we
rewrite the objective as a general expression, 1

2d
TΦd, we

can see that the Hessian matrix Φ is positive semidefinite,
which means the quadratic program (9) is a convex quadratic
programming problem. It can be solved in polynomial time by
interior point method and the constraints can be integrated into
the objective by barrier functions. By solving the quadratic
program (9), we can obtain locally adjusted density distri-
bution with trade-offs between density gradient and density

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

23Layer 1
Layer 2

Layer 1 Fill
Layer 2 Fill

(a) (b)

Fig. 4: Case I Zero Overlay: Example of (a) Fill Regions
in Neighboring Layers in a Window (b) Fill Solution without
Overlay.

1

2Layer 1
Layer 2

Layer 1 Fill
Layer 2 Fill

3

(a) (b)

Fig. 5: Case II Non-zero Overlay: Example of (a) Fill Regions
in Neighboring Layers in a Window (b) Fill Solution with
Overlay.

scores. The solution of d(i, j) for each window will be used
as the target density for each window (i, j).

D. Candidate Fill Region Generation

In this section, we generate candidate fills in each window
under the guidance of target density and at the same time
minimize overlay. After this step, with all the candidate fills,
the density in a window will be no less than its target density.
So the output of this step is an upper bound of fills which
needs further optimization in the next section to reduce density
variation. For convenience, we only use 2 layers to explain
our strategies.

To optimize overlay area, it is necessary to consider fill
regions in multiple layers simultaneously. The problem can
be analyzed from two cases.

Case I Zero Overlay: Fig. 4(a) shows one case of fill
regions for 2 neighboring layers. We can divide these fill
regions into 3 parts, marked as 1, 2 and 3 in the figure. In
Region 1, there is only one empty space in Layer 1 and the
same space in Layer 2 should contain signal wires. If dummy
fills are inserted to Layer 1 in this region, it is likely to have
overlay with wires in Layer 2, since in this region there is wire
distribution with a certain density. In Region 2, the condition
is similar to Region 1 and Layer 1 contains signal wires, while
it is empty in Layer 2. In Region 3, spaces in both layers are
free of signal wires. There is no need to consider overlay with
signal wires any more in this region. But we should be aware
of overlay between fills in different layers. If we only insert
fills to Region 3, it is possible to achieve zero overlay, as
shown in Fig. 4(b).

Case II Non-zero Overlay: Fig. 5(a) shows that Region 3
may be too small to meet the density requirements. In this
case, if we still limit fills inside Region 3, there will be
inevitable deterioration in density variation. So the extension
of fills to Region 1 and 2 becomes a necessity and small fill-
to-fill overlay is also allowed for better density distribution.

We evaluate the quality of a candidate fill using a score
considering its overlay with fills in lower and upper layers
and its area, shown as Eqn. (10),

q = −fill overlay
fill area

+ γ · fill area

window area
, (10)

where γ is a parameter, and we set it to 1 in the experiment.
Fills with high quality scores have priority in candidate fill
selection.

Algorithm 1 Candidate Fill Region Generation

Require: Feasible fill regions of all layers in a window.
Ensure: Generate candidate fills with small overlay under

density constraints.
1: Assume layer numbers in layer set L are 1, 2, . . . , N;
2: Define fr(l) as the fill region in Layer l;
3: Define dt(l) as the target density in Layer l;
4: Define dw(l) as the wire density in Layer l;
5: Define dg(l) as the density gap in Layer l;
6: Define d(l) as the layout density of Layer l;
7: Define aw as the area of the window;
8: Define λ as a parameter, λ ≥ 1;
9: for l = odd number of layers in L do

10: frs = intersect(fr(l), fr(l + 1));
11: dg(l) = dt(l)− dw(l);
12: dg(l + 1) = dt(l + 1)− dw(l + 1);
13: if area(frs) ≥ (dg(l) + dg(l + 1)) · aw then
14: Assign fills to Layer l until d(l) ≥ λ · dt(l);
15: else
16: Sort fills in fr(l) by area;
17: Assign fills to Layer l until d(l) ≥ λ · dt(l);
18: end if
19: end for
20: for l = even number of layers in L do
21: dg(l) = dt(l)− dw(l);
22: Sort fills in fr(l) by quality score q;
23: Assign fills to Layer l until d(l) ≥ λ · dt(l);
24: end for

Since the number of layers is usually larger than 2, the
actual implementation combines the previous ideas, which is
summarized in Alg. 1. It is impossible to calculate the overlay
between fills before any fill is inserted to the lower/upper
layer, so we determine candidate fills in odd layers first as
a reference for even layers. Function intersect returns the
shared fill region between fr(l) and fr(l + 1). If the shared
fill region fails to meet the density requirements in layer l
and layer l + 1, fill qualities are simply evaluated with the
size of the fill. After the generation of candidate fills in odd
layers, we select fills in even layers according to their quality
score q with Eqn. (10). λ is a parameter to control how many
fills to generate for each layer. It is no less than 1 because
the amount of fills should be large enough to achieve target
density.

Although Alg. 1 considers both density benefit and overlay
cost, it cannot handle some special cases, shown as Fig. 6(a).
Sometimes there are very few choices for candidate fills in a
window and all the rectangular regions have large overlay with

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Window

Layer 1 Fill
Layer 2 Fill

(a) (b)

Fig. 6: (a) Example of candidate fills with large overlay in a
window (b) resolved by splitting candidate fills.

neighboring layers. In such a case, it is difficult to generate
candidate fills with high quality through a selection scheme
like Alg. 1. The overlay impacts from such cases become
unignorable when the fill regions in a window consists of
only several giant fills (occupy more than at of the window
area). Actually a better strategy is to split those candidate fills
and choose their partial components to avoid overlay, shown
as Fig. 6(b).

Such observation results in a post refinement step in Alg. 2.
This step takes candidate fills in a window generated from
previous step as input and aims at reducing overlay for those
giant fills by splitting them. The algorithm starts from even
layers in line 5 and iterates through all the giant candidate
fills in the layer from line 6 to line 20. For a giant candidate
fill f(l) in layer l, its overlay area between its neighboring
layer l+ δ is computed in line 11. We first check the overlay
with layer l − 1 and then layer l + 1, so δ can be -1 and 1.
If more than ovt of the candidate fill has overlap with fills
in neighboring layers, consider to split it for better overlay,
which corresponds to line 12 to line 18. Simply splitting fill
f(l) might not be enough to remove enough overlay regions.
The fill f(l + δ) of largest overlay area with f(l) in layer
l + δ is extracted as the other candidate for splitting. Then
both f(l) and f(l + δ) are split equally by half and we can
replace them with the parts with smallest overlay.

Alg. 2 performs very well for overlay removal, but it
reduces the available area of candidate fills. The parameters
at and ovt are two threshold values for triggering overlay
refinement, which are set to 0.05 and 0.6, respectively. We
will discuss the effects of these parameters in Section IV.
Sometimes it results in the drop of density upper bound
below target density and eventually deteriorates final density
uniformity. This side effect is more severe when it comes
to density gradient that focuses on local uniformity. Special
optimization is needed for density gradient. However, as the
gradient of a window is computed from both its own density
and that of its neighboring windows, it is difficult to determine
the neighboring window densities before the candidate fill
generation of all windows. To solve this issue, we perform
an incremental optimization after all windows finish Alg. 1
and Alg. 2; i.e. extract top κ% windows with worst density
gradient and re-generate fills with Alg. 1 to satisfy target
density. We observe that this approach is very effective to
reduce maximum gradient across all windows. The trade-offs
for the value of κ will be further discussed in Section IV.

Algorithm 2 Overlay Refinement for Candidate Fills

Require: Candidate fills of all layers in a window.
Ensure: Refine candidate fills to reduce overlay

1: Assume layer numbers in layer set L are 1, 2, ... N;
2: Define F (l) as the set of fills generated in Layer l;
3: Define f(l) as a fill in Layer l;
4: Define OV (l1, l2) as the overlay of Layer l1 and Layer
l2;

5: for l = even number of layers in L do
6: for f(l) in F (l) do
7: if area(f(l)) < at × aw then
8: Continue;
9: end if

10: for δ ∈ {−1, 1} do
11: OV (l, l + δ) = intersect(f(l), F (l + δ));
12: if OV (l, l + δ) ≥ ovt × area(f(l)) then
13: Find f(l + δ) with largest overlay with

f(l);
14: Split f(l) into two equal parts;
15: Split f(l + δ) into two equal parts;
16: Choose parts of f(l) and f(l + δ) for
17: minimum overlay and replace original fills;
18: end if
19: end for
20: end for
21: end for

E. Dummy Fill Sizing

In this section, we will determine the sizes of fills to further
reduce density variation and overlay in an efficient way.

1) Mathematical Formulation: So far we have a set of
candidate fills as an upper bound, but there are still DRC
errors and maybe large deviations between fill density and
target density. Further steps are necessary to fix spacing
rule violations and optimize density variation together with
overlay. In this step, the final sizes of fills are determined by
shrinking candidate fills.

Given a set of candidate fills in a window, determine the
dimension of fills under DRC constraints to minimize overlay
area and density variation. Our problem can be described with
mathematical Eqn. (11),

min
xl
i,x

h
i

yli,y
h
i

∑
l∈L

dg(l) + η ·
∑
l∈L

ov(l, l + 1) (11a)

s.t. dg(l) = |
∑
i∈F (l)

wi · hi − dt(l) · aw|, l ∈ L (11b)

ov(l, l + 1) =
∑
i∈O(l)

wi · hi, l ∈ L (11c)

wi = xhi − xli, hi = yhi − yli, (11d)
wi ≥ wm, hi ≥ wm, (11e)
wi · hi ≥ am, (11f)
e(i, j) ≥ sm, ∀(i, j) ∈ P (l), l ∈ L, (11g)

xli, x
h
i , y

l
i, y

h
i ∈ Z,

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

where η is a weight for overlay cost, which is 1 in the
experiment. The objective tries to minimize a combination
of density gap and weighted overlay. In Constraint (11b),
density gap dg is defined as the difference between the area of
fills and the target fill area (derived from target fill density).
Constraint (11c) defines the overlay area ov. Constraints (11e)
to (11g) state required DRC rules, such as minimum width,
minimum area and minimum spacing. e(i, j) is the Euclidean
distance between fills i and j. Eqn. (11) defines a non-convex
problem, so it is very expensive to solve it.

2) Problem Relaxation: Previous formulation contains
multiplication operations between variables in two directions,
which results in non-convex features. We can alternatively
fix one direction when optimizing the other one, and then
the problem is relaxed to a linear program. Without loss
of generality, we set vertical direction fixed and all the
variables related to that direction become constants. Then
Constraint (11b) and (11c) can be relaxed to

dg(l) = |
∑
i∈F (l)

wi · hi0 − dt(l) · aw|, l ∈ L, (12)

ov(l, l + 1) =
∑
i∈O(l)

wi · hi0, l ∈ L, (13)

where hi0 is the initial height of candidate fills from Sec-
tion III-D.

Constraints (11e) to (11f) can be merged into one equation,

wi ≥ max(wm,
am
hi0

). (14)

Constraint (11g) will only exist for pairs of fills that are very
close to each other. For these fill pairs, following constraint
will force fills to keep enough space in horizontal direction,

eh(i, j) ≥ sm. (15)

With Eqns. (12), (13), (14) and (15), a relaxed problem
solvable with ILP is formed for horizontal direction as fol-
lows,

min
∑
l∈L

dg(l) + η ×
∑
l∈L

ov(l, l + 1), (16a)

s.t. dg(l) = |
∑
i∈F (l)

wi × hi0 − dt(l) · aw|, l ∈ L, (16b)

ov(l, l + 1) =
∑
i∈O(l)

wi × hi0, l ∈ L, (16c)

xhi − xli ≥ max(wm,
am
hi0

), ∀i ∈ F (l), l ∈ L, (16d)

e(i, j) ≥ sm, ∀(i, j) ∈ P (l), l ∈ L, (16e)

lli ≤ xli ≤ uli, lhi ≤ xhi ≤ uhi , (16f)

xli, x
h
i ∈ Z,

where dg(l) denotes the density gap in layer l between current
fill area and target fill area as defined in Table I; ov(l, l + 1)
denotes the ovelay area between layer l and l + 1; e(i, j)
denotes the Euclidean distance between fills i and j that
result in spacing rule violations. We alternatively optimize the
problem in horizontal and vertical directions. In other words,
ILP will be run iteratively. During each iteration, variables

are bounded to a certain range to ensure performance, i.e.
lli ≤ xli ≤ uli and lhi ≤ xhi ≤ uhi . These ranges need to be
updated according to the results of each iteration.

3) Dual Min-Cost Flow Formulation: The relaxed problem
in previous section may still suffer from high run-time penalty
when the problem size is large, as ILP problem is generally
NP-hard to solve. Here we show that the formulation is able
to achieve further speedup with dual min-cost flow.

Eqn. (12) contains an absolute operation which ensures the
fill density will converge to target density. Since in this stage,
fills can only shrink in each iteration. It is possible to relax the
problem by removing the absolute operation. We are always
able to calculate the upper bound of fill area by taking the
current sizes of fills. If the upper bound is smaller than dt(l) ·
aw, then |∑i∈F (l) wi · hi0−dt(l) ·aw| is equivalent to dt(l) ·
aw−

∑
i∈F (l) wi · hi0. On the other hand, if current fill density

is larger than target density, we can still remove it by reducing
the shrinking steps for fills in each iteration. It should be
noted that after current iteration fill density drops below target
density, we will switch to the first case and hence the fill
density cannot keep getting away from target density.

Then the relaxed problem in Section III-E2 can be written
in a generalized manner without any absolute operation,

min
xi

N∑
i=1

cixi (17a)

s.t. xi − xj ≥ bij , (i, j) ∈ E, (17b)
li ≤ xi ≤ ui, i = 1, 2, ..., N, (17c)
xi ∈ Z.

Eqn. (17) is a linear program with only differential con-
straints and bounded variables, which can be transformed to
a dual min-cost flow problem [23]. Min-cost flow problem is
a relative mature field with very fast algorithms. Thus it is
often adopted in the physical design flow [24]–[26].

Our problem can be transformed to the following typical
dual min-cost flow format,

min
yi

N∑
i=0

c′iyi, (18a)

s.t. yi − yj ≥ b′ij , (i, j) ∈ E′, (18b)

yi ∈ Z,

where

xi = yi − y0, i = 1, 2, . . . , N, (19a)

c′i =

{
ci, i = 1, 2, . . . , N,

−∑N
i=1 ci, i = 0,

(19b)

b′ij =

 bij , (i, j) ∈ E,
li, i = 1, 2, . . . , N, j = 0,
−ui, i = 0, j = 1, 2, . . . , N.

(19c)

Lemma 1. Eqn. (17) and Eqn. (18) are equivalent.

The proof is omitted here for brevity. The key idea is to
introduce a new variable y0 to convert lower and upper bound
constraints to differential constraints, which is a common
technique in convex optimization [27].

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

The corresponding min-cost flow problem can be written
as follows.

min
∑

(i,j)∈E′

−b′ijfij , (20a)

s.t.
∑

(j,i)∈E′

fji −
∑

(i,k)∈E′

fik = −c′i, i = 0, . . . , N, (20b)

fij ≥ 0, (i, j) ∈ E′. (20c)

So far the dual min-cost flow problem can be mapped to a
graph with N + 1 nodes. The supply of node i is c′i and for
each (i, j) pair in E′, an edge starting from node i to node j
with a cost of −b′ij is inserted to the graph. The edge capacity
is set to infinity. Final solution of y can be obtained from the
potential of each node and x can be derived from Eqn. (19a).

IV. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++ and tested on
an 8-Core 3.40 GHz Linux server with 32 GB RAM. The
results of ICCAD 2014 contest top three teams are tested on
a 2.6 GHz machine with 64 GB RAM. Related results and
executables are released at link (http://www.cerc.utexas.edu/
utda/download/DFI/index.html). LEMON [28] is used as the
min-cost flow solver. GUROBI [29] is used as the quadratic
programming solver. Our solutions have been verified by the
contest organizer [17]. Statistics about benchmarks are listed
in Table II. The total amount of input polygons for fill inser-
tion is shown as “#P”. The total number of layers is shown
as “#L”. It also contains coefficients to calculate following
scores. Since all the metrics are represented in scores, we add
“*” to differentiate them from their original values. Overlay∗

denotes the overlay score stated in Section II; Variation∗

represents variation score; Line∗ is the score for line hotspots;
Outlier∗ is the score for outlier hotspots; Size∗ is the score
for the volume of solution GDSII files, which is the standard
input and output format in the contest; Run-time∗ stands
for run-time score; Memory∗ denotes memory score and it
measures the peak memory usage during the execution. All
the scores above are calculated with Eqn. (5). According to
ICCAD 2014 contest [17], Score is the weighted summation
of all the scores above. Quality is similar to testcase score
but excludes run-time score and memory score. It measures
the quality of solutions. α and β respect to the coefficients
in Eqn. (4) and (5). Run-time score and memory score are
also calculated with Eqn. (5). The fills inserted must lie
in specific regions given inputs and subject to DRC rules,
i.e. minimum metal width and space of 32nm and minimum
metal area of 4800nm2. The window size for fill insertion
is set to 20x20µm2 according to the contest. All the scores
are obtained from the contest organizer [17] except run-time
and peak memory usage which are measured in the server. To
evaluate the effectiveness of our algorithm, we compare our
results with top three teams in the contest. In the result tables,
our dummy fill insertion algorithm for variation minimization
is shown as “DFI”. Our algorithm with gradient minimization
is shown as “G-DFI”.

Table III lists the evaluation results for our algorithm and
top three teams from the ICCAD 2014 contest. It is shown

that our fill insertion engine produces both the highest quality
scores and overall scores for all the testcases. On average, the
quality score of DFI is 13% better and the overall score is
about 10% higher than the top team in the contest. G-DFI
further improves the quality and efficiency of DFI such that
eventually it outperforms the top team by 22% in quality score
and 24.6% in overall score.

According to score calculation, density related scores (vari-
ation, line hotspots and outlier hotspots) take 45%, and over-
lay score takes 20%. From Table III we can see that our overall
density scores are among the highest. e.g. for benchmark
m we get the best density scores, though the overlay score
is a little bit lower than top three teams. We ascribe it to
the comprehensive density analysis and simultaneous control
over density and overlay during fill insertion. Our density
planning directly works on the density score metrics including
variation, line hotspots and outlier hotspots, for optimizing
any of metrics individually may not result in a good overall
score. Furthermore, we consider overlay in both candidate
fill generation and dummy fill sizing under the guidance of
density planning. So the overlay can be reduced without
degrading the density scores too much. We can also see
that our size score is high, which means the number of fills
inserted is much smaller than others. Although the contest
1st team gets even higher size score, their solutions suffer
from larger density variation. When the size of layout file
increases, it takes longer time for reading and writing. In
summary, the results demonstrate that our algorithms produce
more balanced solutions which can handle overlay and density
requirements simultaneously.

We further compare our gradient aware algorithm G-DFI
with DFI together with average and maximum density gradi-
ent metrics, shown as Table IV. Grad. Avg/Max is computed
through the summation of average and maximum gradient
values across all layers. Since the official evaluation script
does not contain gradient metrics and it is not released either,
we try our best to estimate our results as close as possible to
the official values. Comparing the scores in Table III with
that in Table IV and Table V for G-DFI, all the density
related metrics are very close. The slight difference comes
from different starting coordinates of windows which are
determined by the leftmost lowest shape in the official script.
The leftmost lowest shape can be either a dummy fill or an
initial routing segment. As the initial routing is not accessible,
we use (0, 0) as the leftmost lowest coordinates as the starting
coordinates of windows. The overlay includes fill-to-fill and
fill-to-routing overlaps in the official script. Again, we are not
able to access initial routing and what we have is the density
distribution of routing layers in each window. So we assume a
uniform distribution of routing segments in each window for
overlay calculation. While it is true that our evaluation script
produces different result from the official one, the fidelity and
trends are maintained. So the comparison is fair according to
the same baseline and script.

In Table IV, we can see the maximum gradient of G-
DFI is 59.6% better than DFI and the average gradient also
has 53.6% improvement. The local adjustment for gradient
minimization in Section III-C helps to reduce both average

http://www.cerc.utexas.edu/utda/download/DFI/index.html
http://www.cerc.utexas.edu/utda/download/DFI/index.html

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II: ICCAD 2014 Benchmark Statistics

Design #P #L File size Overlay∗ Variation∗ Line∗ Outlier∗ Size∗ Run-time∗ Memory∗

α β α β α β α β α β α β α β
s 382K 3 48M 0.2 79154 0.2 0.077 0.2 11.758 0.15 0.014 0.05 32 0.15 60 0.05 1024
b 8.1M 3 1.1G 0.2 6111303 0.2 0.517 0.2 3578 0.15 22.801 0.05 2048 0.15 600 0.05 32768
m 31.8M 3 2.2G 0.2 10276835 0.2 0.53 0.2 6052 0.15 27.56 0.05 1536 0.15 1200 0.05 32768

TABLE III: Experimental Results on ICCAD 2014 Benchmark for DFI

Design Team Overlay∗ Variation∗ Line∗ Outlier∗ Size∗ Run-time∗ Memory∗ Quality Score

s

1st 0.743 0.636 0.733 1.000 0.976 0.877 0.885 0.621 0.797
2nd 0.743 0.909 0.967 0.975 0.103 0.846 0.831 0.675 0.844
3rd 0.613 0.985 0.990 1.000 0.158 0.842 0.429 0.676 0.823
DFI 0.723 0.948 0.979 0.994 0.887 0.872 0.818 0.724 0.895

G-DFI 0.719 0.977 0.989 1.000 0.938 0.969 0.931 0.734 0.926

b

1st 0.748 0.368 0.364 0.871 0.924 0.515 0.891 0.473 0.594
2nd 0.841 0.381 0.534 0.000 0.053 0.513 0.828 0.354 0.472
3rd 0.576 0.485 0.601 0.000 0.568 0.554 0.339 0.361 0.461
DFI 0.685 0.499 0.470 0.953 0.765 0.351 0.852 0.512 0.607

G-DFI 0.521 0.675 0.670 0.998 0.837 0.886 0.949 0.564 0.745

m

1st 0.598 0.462 0.486 0.204 0.941 0.556 0.845 0.387 0.513
2nd 0.668 0.460 0.618 0.000 0.000 0.780 0.761 0.349 0.504
3rd 0.510 0.509 0.689 0.000 0.807 0.748 0.772 0.382 0.533
DFI 0.493 0.643 0.766 0.088 0.905 0.750 0.786 0.439 0.591

G-DFI 0.425 0.607 0.593 0.967 0.896 0.932 0.917 0.515 0.701

TABLE IV: Comparison of gradient between DFI and G-DFI

Team Grad. Avg/Max

s DFI 0.004/0.023
G-DFI 0.001/0.006

b DFI 0.212/1.127
G-DFI 0.096/0.539

m DFI 0.141/1.395
G-DFI 0.097/0.658

TABLE V: Comparison between G-DFI and [11]

Team Variation∗ Line∗ Outlier∗ Size∗ Quality

s [11] 1.000 1.000 1.000 0.952 0.776
G-DFI 0.977 0.987 1.000 0.938 0.768

b [11] 0.528 0.701 0.000 0.778 0.426
G-DFI 0.675 0.670 0.998 0.837 0.547

m [11] 0.876 0.939 0.838 0.385 0.548
G-DFI 0.607 0.593 0.967 0.896 0.554

and maximum gradients, while the density scores are main-
tained. Actually even the density scores turn out to be slightly
better, we ascribe the reason to the incremental optimization
process after Alg. 2 which contributes to the removal of large
outliers. But this process also results in more overlay because
candidate fills with large overlay are allowed in those critical
windows for better gradient. This explains the drop of overlay
score. Eventually the testcase quality scores are improved by
8.2%. We also reduce runtime and memory usage by replacing
smart pointers with primitive pointers so that faster access is
possible. The new runtime values for benchmark s, b, and m
are 1.8, 68.1, and 81.4 seconds including file IO, respectively.
The peak memory usage values are 70.7, 1662.1, and 2732.7

MB, respectively. According to the results in Table III, the
absolute overlay areas for the three benchmarks in G-DFI are
0.022, 2.9 and 5.9 mm2, respectively.

For the comparison with [11] in Table V, we can see that
G-DFI outperforms in quality scores about 6.8%. Our quality
scores on benchmark b and m are much better than theirs,
while the scores on benchmark s are very close. In benchmark
b and m, our outlier scores are much higher than theirs.
We ascribe the improvement to the incremental optimization
mentioned at the end of Section III-D that often helps remove
outliers by regenerating candidate fills for windows with poor
gradients.

A. Runtime and Memory Scalability of Algorithm

We also study the scalability of our algorithm in runtime
and memory, as shown in Fig. 7. We create large benchmarks
by duplicating benchmark b from 1x to 16x, so the file size of
the input benchmarks grows from 1.1GB to 17GB. It can be
seen that both runtime and memory increase linearly with the
sizes of input benchmarks. In the 1x benchmark, the runtime
is less than 100 seconds and peak memory is around 1.7GB,
while in the 16x benchmark, the runtime is less than 1100
seconds and peak memory is around 25GB. For benchmark
b, the runtime distribution of each step is as follows: polygon
decomposition takes around 16% of runtime, two rounds of
density planning take 37% of runtime, and dummy fill sizing
takes 34% of runtime.

B. Criteria for Polygon Decomposition

As mentioned in Section III-A, various heuristics can
be applied to polygon decomposition to facilitate candidate

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1 3 5 7 9 11 13 15 17
0

100
200
300
400
500
600
700
800
900

1,000
1,100

Scaling factor of benchmark b

Se
co

nd
s

1 3 5 7 9 11 13 15 17
0

5

10

15

20

25

30

G
B

Runtime
Memory

Fig. 7: Experiment on runtime and memory scalability by
scaling benchmark b from 1x to 16x.

fill generation. Since we have both horizontal and vertical
scanning lines, the following five criteria are compared.

1) H: always choose the rectangle cut by the horizontal
scanning lines.

2) V: always choose the rectangle cut by the vertical
scanning lines.

3) LA: always choose the rectangle with larger area during
each cut.

4) SA: always choose the rectangle with smaller area
during each cut.

5) AR: always choose the rectangle with an aspect ratio
closer to one during each cut.

Fig. 8 shows an example of polygon decomposition solutions
from these criteria. The numbers of rectangles denote the
order of rectangles generated. The first two criteria H and V
are faster than rest since they only need to keep one scanning
line. The area related criteria LA and SA are proposed to
generate fewer and larger rectangles. The criterion LA is more
straight-forward since larger rectangles are selected greedily.
The intuition of SA comes from the fact that if smaller
rectangles are selected at the beginning, the rest ones are
likely to be large. The aspect ratio criterion AR prefers square
rectangles to slim ones so that it is less likely to have DRC
rule violation, i.e. minimum width and area rules.

Since the fill generation procedures for odd and even
layers are different in Section III-D, we also compare the
heuristics separately. In the fill generation of odd layers,
we keep collecting largest rectangles until the target density
is satisfied. This procedure prefers the total area of largest
rectangles is able to meet the target density requirement,
while it does not matter for the rest ones to be small. The
results for benchmark b with different criteria on odd layers
are shown in Fig. 9 where even layers are decomposed with
default criterion H. The total amount of rectangles generated
in polygon decomposition is denoted by “#rects”. The total
number of fills generated is denoted by “#fills”. The values
are normalized by the corresponding values of LA for easier
comparison. It can be seen that fewer decomposed rectangles
do not always lead to fewer fills. Criterion LA generates least
decomposed rectangles but most fills in the end. On the other
hand, criterion AR generates most decomposed rectangles but

least fills which 10% less than that of LA. The performance
of other criteria like H and V lies in the middle.

The fill generation of even layers is related to overlay cost,
which is more difficult to be addressed by simple criteria in
polygon decomposition. Therefore, we empirically set that for
even layers to default criterion H that maintains efficient and
stable performance across different benchmarks. But for odd
layers we adopt AR criteria for fewer fills in general.

(a)

8
6
4
2

1

9
7
5
3

(b)

1 7

2

4

3

6

5

(c)

1

2

7

4

8
6
5
3

(d)

1 7

2

4

3

6

5

(e)

1

2 7

4

3

6

5

(f)

Fig. 8: Example of polygon decomposition solutions with
various criteria (a) original polygon and solution of (b) H (c)
V (d) LA (e) SA (f) AR.

H V LA SA AR
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06

N
or

m
al

iz
ed

nu
m

be
r #rects

#fills

Fig. 9: Comparison in the amounts of decomposed rectangles
and generated fills between different selection criteria for
odd layers in polygon-to-rectangle conversion. The values are
normalized by LA for easier comparison.

C. Influences of Parameters

In Alg. 2 of Section III-D, two parameters at and ovt define
the area and overlay threshold to trigger overlay refinement
for large candidate fills. We sweep at from 0.05 to 0.5 and
ovt from 0.3 to 0.8 to study the influences to overlay and final
testcase scores. Eventually we set at = 0.05 and ovt = 0.6
for best testcase scores. Fig. 10 shows two examples of the
trending. Fig. 10(a) gives the trend of two scores with the
increase of ovt when at is set to 0.05 for benchmark b. The
effects of ovt to overlay and testcase scores are very small.
The scores do not change much when ovt increases. Fig. 10(b)
gives the trend of two scores with the increase of at when

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ovt is set to 0.6 for benchmark b. The parameter at has more
impacts on the overlay score, as it drops with the increase
of at. But the testcase score drops much slower than overlay
score, because performing overlay refinement to more fills in
general worsen density scores, such as variation.

As mentioned in Section III-C, the percentage κ in the
incremental optimization for candidate fill re-generation is
very critical to both density gradient and variations. Although
larger κ contributes to smaller gradient and better density
distribution, it inevitably leads to more overlays and runtime.
Fig. 11 plots the trending of total maximum gradient, total
density score and testcase quality score with the growth of κ
for benchmark s, b and m. We can see that with the increase
of κ from 2 to 10, total maximum gradient drops quickly and
then saturates afterwards for benchmark b and m. The total
density score and overlay score grow in an opposite direction
in general from 2 to 20. To trade-off gradient, density and
overlay scores, we use κ = 10 in our implementation.

0.3 0.4 0.5 0.6 0.7 0.8
0.42
0.44
0.46
0.48
0.5

0.52
0.54
0.56

ovt when at = 0.05

overlay score
testcase score

(a)

0.1 0.2 0.3 0.4 0.5
0.42
0.44
0.46
0.48
0.5

0.52
0.54
0.56

at when ovt = 0.6

overlay score
testcase score

(b)

Fig. 10: Trends of overlay and testcase scores with at and
ovt. (a) Sweep ovt when at = 0.05. (b) Sweep at when
ovt = 0.6.

V. CONCLUSION

This work proposes a new methodology for the holistic
fill optimization problem in which file size is included to
the objective along with other cost functions. Experimental
results show the effectiveness of our algorithms in optimizing
multiple objectives including overlay, density variation, den-
sity gradient and file size. In the future work, we will try
to consider exact locations of signal nets to reduce coupling
capacitances rather than only metal density of signal nets from
the benchmarks. Future work would also include evaluation

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

κ

Sc
or

e

0 2 4 6 8 10 12 14 16 18 20
0.001

0.003

0.005

0.007

0.009

G
ra

di
en

t

overlay score total density score
testcase score total max gradient

(a)

0 2 4 6 8 10 12 14 16 18 20
0.35

0.4

0.45

0.5

0.55

0.6

0.65

κ

Sc
or

e

0 2 4 6 8 10 12 14 16 18 20
0.500

0.550

0.600

0.650

0.700

0.750

G
ra

di
en

t

(b)

0 2 4 6 8 10 12 14 16 18 20
0.35

0.4

0.45

0.5

0.55

0.6

0.65

κ

Sc
or

e

0 2 4 6 8 10 12 14 16 18 20
0.500

0.550

0.600

0.650

0.700

0.750

G
ra

di
en

t

(c)

Fig. 11: Trade-offs of percentage κ between gradient, density
and overlays for benchmark (a) s (b) b and (c) m.

on lithography related impacts and methodologies considering
lithograph-friendliness during dummy fill insertion.

ACKNOWLEDGMENT

Thanks to Dr. Rasit Topaloglu for the evaluation of exper-
imental results and helpful comments.

APPENDIX

AN EXAMPLE OF DUAL MIN-COST FLOW IN SEC-
TION III-E3

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 12(a) gives an example of two candidate fills where
A is in layer 1 and B is in layer 2. Assume in an iteration
the relaxed ILP formulation for horizontal direction can be
written as follows,

min (x2 − x1) · 8 + (x4 − x3) · 10 + (x2 − x3) · 2, (21a)
s.t. x2 − x1 ≥ 8, (21b)

x4 − x3 ≥ 8, (21c)
x2 − x3 ≥ 0, (21d)
0 ≤ x1 ≤ 4, 6 ≤ x2 ≤ 10,

4 ≤ x3 ≤ 8, 14 ≤ x4 ≤ 18. (21e)

The objective Eqn. (21a) consists of two terms for density
variations and one term for overlay. Eqn. (21b) to Eqn. (21c)
honor DRC rules such as minimum width rules. Eqn. (21d)
makes sure the overlay computation in the objective is correct.
It is also assumed that initially total area of fills is larger than
target density, so the absolute operations in the objective can
be removed with tighter bound constraints to each variable.

We can construct the dual min-cost flow graph as Fig. 12(b).
Variables x1, x2, x3, x4 correspond to nodes 1, 2, 3, 4,
respectively. Each node is labeled with node supply which
comes from coefficient in the objective Eqn. (21a). For each
differential constraint xi−xj ≥ bij , an edge from node i to j
is inserted with cost of −bij . For each lower bound constraint
xi ≥ li, an edge from node i to t is inserted with cost of −li.
For each upper bound constraint xi ≤ ui, an edge from node
s to i is inserted with cost of ui. The capacity for all edges is
infinite. Node s and t corresponds to additional variable y0 for
bound constraints added by Eqn. (18). They are regarded as
virtually connected by an undirected edge with zero cost and
infinite capacity. Fig. 12(c) shows the solution graph in which
edges are marked with flow values and nodes are marked with
node potentials. The final solution for xi is the difference
between the potential of node i and node s/t. So eventually
x1 = 0, x2 = 8, x3 = 8, x4 = 16.

REFERENCES

[1] A. B. Kahng and K. Samadi, “CMP fill synthesis: A survey of recent
studies,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 27, no. 1, pp. 3–19, 2008.

[2] C. Feng, H. Zhou, C. Yan, J. Tao, and X. Zeng, “Efficient approximation
algorithms for chemical mechanical polishing dummy fill,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 30, no. 3, pp. 402–415, 2011.

[3] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “New multilevel
and hierarchical algorithms for layout density control,” in IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC),
1999, pp. 221–224.

[4] ——, “Filling algorithms and analyses for layout density control,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 18, no. 4, pp. 445–462, 1999.

[5] R. Tian, M. D. F. Wong, and R. Boone, “Model-based dummy feature
placement for oxide chemical-mechanical polishing manufacturability,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 20, no. 7, pp. 902–910, 2001.

[6] C. Feng, H. Zhou, C. Yan, J. Tao, and X. Zeng, “Provably good
and practically efficient algorithms for CMP,” in ACM/IEEE Design
Automation Conference (DAC), 2009, pp. 539–544.

[7] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, “Monte-Carlo
algorithms for layout density control,” in IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), 2000, pp. 523–528.

[8] ——, “Practical iterated fill synthesis for CMP uniformity,” in
ACM/IEEE Design Automation Conference (DAC), 2000, pp. 671–674.

A

B

 x1x1 x2x2 x3x3 x4x4

10

8
2

(a)

1

2

3

4

 ss tt �8,1�8,1 �8,1�8,1
 0,10,1

 �4,1�4,1

 �14,1�14,1

 0,10,1

 �6,1�6,1

 4,14,1

 8,18,1

 10,110,1

 18,118,1

-8 -12

10 10

 0,10,1

(b)

-16

-8

-8

0

-16 -168 2 10

0

0

0

0

0

0

0

0

(c)

Fig. 12: (a) Example of fill shrinking problem (b) dual min-
cost flow graph (c) corresponding solution graph: edges are
marked with flow values and nodes are marked with potential
values.

[9] X. Wang, C. C. Chiang, J. Kawa, and Q. Su, “A min-variance iterative
method for fast smart dummy feature density assignment in chemical-
mechanical polishing,” in IEEE International Symposium on Quality
Electronic Design (ISQED), 2005, pp. 258–263.

[10] C. Liu, P. Tu, P. Wu, H. Tang, Y. Jiang, J. Kuang, and E. F. Y. Young,
“An effective chemical mechanical polishing filling approach,” in IEEE
Annual Symposium on VLSI (ISVLSI), 2015, pp. 44–49.

[11] C. Liu, P. Tu, P. Wu, H. Tang, Y. Jiang, J. Kuang, and E. F. Young, “An
effective chemical mechanical polishing fill insertion approach,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 21, no. 3, p. 54, 2016.

[12] H.-Y. Chen, S.-J. Chou, and Y.-W. Chang, “Density gradient minimiza-
tion with coupling-constrained dummy fill for CMP control,” in ACM
International Symposium on Physical Design (ISPD), 2010, pp. 105–
111.

[13] P. Wu, H. Zhou, C. Yan, J. Tao, and X. Zeng, “An efficient method for
gradient-aware dummy fill synthesis,” Integration, the VLSI Journal,
vol. 46, no. 3, pp. 301–309, 2013.

[14] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, “Closing
the smoothness and uniformity gap in area fill synthesis,” in ACM
International Symposium on Physical Design (ISPD), 2002, pp. 137–
142.

[15] Y. Chen, P. Gupta, and A. B. Kahng, “Performance-impact limited area
fill synthesis,” in ACM/IEEE Design Automation Conference (DAC),
2003, pp. 22–27.

[16] H. Xiang, L. Deng, R. Puri, K.-Y. Chao, and M. D. F. Wong, “Fast
dummy-fill density analysis with coupling constraints,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 27, no. 4, pp. 633–642, 2008.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2638452, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

[17] R. O. Topaloglu, “ICCAD-2014 CAD contest in design for manufac-
turability flow for advanced semiconductor nodes and benchmark suite,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2014, pp. 367–368.

[18] R. B. Ellis, A. B. Kahng, and Y. Zheng, “Compression algorithms for
dummy-fill VLSI layout data,” in Proceedings of SPIE, vol. 5042, 2003,
pp. 233–245.

[19] Y. Chen, P. Gupta, and A. B. Kahng, “Performance-impact limited-area
fill synthesis,” in Proceedings of SPIE, vol. 5042, 2003, pp. 75–86.

[20] R. O. Topaloglu, “Energy-minimization model for fill synthesis,” in
IEEE International Symposium on Quality Electronic Design (ISQED),
2007, pp. 444–451.

[21] A. B. Kahng and R. O. Topaloglu, “A DOE set for normalization-
based extraction of fill impact on capacitances,” in IEEE International
Symposium on Quality Electronic Design (ISQED), 2007, pp. 467–474.

[22] K. D. Gourley and D. M. Green, “Polygon-to-rectangle conversion
algorithm,” IEEE Computer Graphics and Applications, vol. 3, no. 1,
pp. 31–32, 1983.

[23] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall/Pearson, 2005.

[24] J. Vygen, “Algorithms for detailed placement of standard cells,”
in IEEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE), 1998, pp. 321–324.

[25] X. Tang, R. Tian, and M. D. F. Wong, “Optimal redistribution of white
space for wire length minimization,” in IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), 2005, pp. 412–417.

[26] S. Ghiasi, E. Bozorgzadeh, P.-K. Huang, R. Jafari, and M. Sarrafzadeh,
“A unified theory of timing budget management,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 25, no. 11, pp. 2364–2375, 2006.

[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[28] “LEMON,” http://lemon.cs.elte.hu/trac/lemon.
[29] Gurobi Optimization Inc., “Gurobi optimizer reference manual,” http:

//www.gurobi.com, 2014.

Yibo Lin received the B.S. degree in microelectron-
ics from Shanghai Jiaotong University, Shanghai,
China, in 2013. He is currently pursuing the Ph.D.
degree in the Department of Electrical and Com-
puter Engineering, University of Texas at Austin.
His research interests include physical design and
design for manufacturability.

He has received Best Paper Awards at SPIE
Advanced Lithography Conference 2016.

Bei Yu (S’11–M’14) received his Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin in 2014.
He is currently an Assistant Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong. He has served
in the editorial boards of Integration, the VLSI
Journal and IET Cyber-Physical Systems: Theory
& Applications.

He has received three Best Paper Awards at SPIE
Advanced Lithography Conference 2016, Interna-

tional Conference on Computer Aided Design (ICCAD) 2013, and Asia and
South Pacific Design Automation Conference (ASPDAC) 2012, three other
Best Paper Award Nominations at Design Automation Conference (DAC)
2014, ASPDAC 2013, ICCAD 2011, and three ICCAD contest awards in
2015, 2013 and 2012.

David Z. Pan (S’97–M’00–SM’06-F’14) received
his B.S. degree from Peking University, and his
M.S. and Ph.D. degrees from University of Cali-
fornia, Los Angeles (UCLA). From 2000 to 2003,
he was a Research Staff Member with IBM T.
J. Watson Research Center. He is currently the
Engineering Foundation Endowed Professor at the
Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin. He has
published over 200 papers in refereed journals and
conferences, and is the holder of 8 U.S. patents. His

research interests include cross-layer nanometer IC design for manufactura-
bility/reliability, new frontiers of physical design, and CAD for emerging
technologies such as 3D-IC, bio, and nanophotonics.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems (TCAD), IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), IEEE Transactions on Circuits and Systems PART I
(TCAS-I), IEEE Transactions on Circuits and Systems PART II (TCAS-II),
Science China Information Sciences (SCIS), Journal of Computer Science and
Technology (JCST), etc. He has served as Program/General Chair of ISPD,
TPC Subcommittee Chair for DAC, ICCAD, ASPDAC, ISLPED, ICCD,
Tutorial Chair for DAC 2014, Workshop Chair for ICCAD 2015, among
others.

He has received a number of awards, including the SRC 2013 Technical
Excellence Award, DAC Top 10 Author in Fifth Decade, DAC Prolific Author
Award, ASPDAC Frequently Cited Author Award, 11 Best Paper Awards
and several international CAD contest awards, Communications of the ACM
Research Highlights (2014), ACM/SIGDA Outstanding New Faculty Award
(2005), NSF CAREER Award (2007), SRC Inventor Recognition Award three
times, IBM Faculty Award four times, UCLA Engineering Distinguished
Young Alumnus Award (2009), and UT Austin RAISE Faculty Excellence
Award (2014).

http://lemon.cs.elte.hu/trac/lemon
http://www.gurobi.com
http://www.gurobi.com

