
WellGAN: Generative-Adversarial-Network-Guided
Well Generation for Analog/Mixed-Signal Circuit Layout
Biying Xu, Yibo Lin, Xiyuan Tang, Shaolan Li, Linxiao Shen, Nan Sun, and David Z. Pan

ECE Department, University of Texas at Austin
{biying, yibolin, xitang, slliandy, lynn.shenlx}@utexas.edu, nansun@mail.utexas.edu, dpan@ece.utexas.edu

ABSTRACT
In back-end analog/mixed-signal (AMS) design flow, well genera-
tion persists as a fundamental challenge for layout compactness,
routing complexity, circuit performance and robustness. The imma-
turity of AMS layout automation tools comes to a large extent from
the difficulty in comprehending and incorporating designer exper-
tise. To mimic the behavior of experienced designers in well gener-
ation, we propose a generative adversarial network (GAN) guided
well generation framework with a post-refinement stage leveraging
the previous high-quality manually-crafted layouts. Guiding re-
gions for wells are first created by a trained GANmodel, after which
the well generation results are legalized through post-refinement to
satisfy design rules. Experimental results show that the proposed
technique is able to generate wells close to manual designs with
comparable post-layout circuit performance.

1 INTRODUCTION
Analog/mixed-signal (AMS) integrated circuit (IC) layout design
relies heavily on human experience due to the lack of effective
optimization approaches. Current AMS layout automation tools
would generate solutions inconsistent with designer behavior. Prac-
tically, with such solutions, it would require significant overhead to
unravel and debug the problematic chips if any failure happens. As
a consequence, automatic AMS layout tools have not been widely
adopted. Therefore, it is highly desirable to develop practical AMS
layout tools following designer experience and esthetics to ensure
chip functionality and performance after tape-out.

Well layers are crucial mask layers that define the doping area
serving as the bulk of MOSFETs. Thus, well generation is essential
in establishing the bulk regions which will affect the subsequent
optimization stages. Different from a digital circuit layout where
the well regions are pre-designed in the standard cell layouts and
automatically connected through cell abutting, well regions for
analog layouts usually need to be distinctively drawn. Although
some process design kits (PDKs) provide parametric cells with
pre-drawn well regions, these preliminary shapes often need to
be properly connected by extending the well regions or inserting
well contacts and routing to pass layout versus schematic (LVS)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317930

VDD

VBP

VBNVBN VBNCMFB

VIP VIN

VOP VON

VDD

VBN

VBP

IBIAS

VDD

VCM
VOPVON

VBP VBP

CMFB

Gain Path

Bias Common-mode Feedback

(a) circuit

N-Well Bias

and Stage 1

N-Well Stage 2 &

Nulling Resistor

N-Well

Common mode

Feedback

(b) layout

Figure 1: Op-amp circuit and layout example.

and design rule check (DRC). Well generation can influence the
layout compactness and the routing complexity due to the well
spacing and the interconnection of well contacts. Moreover, the
geometry of wells can influence the well proximity effect (WPE)
[1], the substrate noise coupling [2], etc., potentially degrading
the performance and robustness of AMS circuits. Given the above
constraints, manual AMS layout well generation practice generally
requires careful design with designer experience and insights to
ensure the circuit functionality and robustness. The manual layout
of a two-stage miller-compensated operational amplifier (op-amp)
shown in Fig. 1 provides an example of such practice, where the
capacitors are omitted to conserve space.

While the placement and routing problems for AMS circuits
have been actively explored recently [1, 3–5], well generation re-
mains an unresolved challenge. Prior work [6] generated wells with
a series of simple computational geometry operations, including
geometric expansion and union. More recent works [1, 7] imposed
rectangular-shaped constraints during well generation. Neverthe-
less, the previous approaches didn’t consider the designer expertise
to guide the well region optimization. Recent advances in deep
learning have achieved great success in learning domain-specific
knowledge from existing images and generating new ones mim-
icking the learned styles [8, 9]. The techniques have been widely
applied to image generation, image-to-image translation, etc. Thus,
it would be highly beneficial if the layout automation tools can
learn the designer experience and expertise brought by the existing
high-quality manual designs leveraging deep learning techniques.

In this paper, we proposeWellGAN, a generative adversarial net-
work (GAN) guided well generation framework. Given the previous
high-quality manual layouts by experienced designers, WellGAN
attempts to incorporate the designer expertise by mimicking their
layout behavior via a conditional-GAN model. With a lightweight

https://doi.org/10.1145/3316781.3317930

Placement
Routing

Post-Placement Optimization

Well Generation

Guard Ring and Well/
Substrate Contact Insertion

Post-Routing Optimization
Net Shielding

Layout Result

Device Generation

Figure 2: A typical back-end design flow for AMS circuits.

post-refinement, we are able to generate wells close to manual
designs. Our main contributions are summarized as follows:
• A GAN-guided well generation framework which incor-
porates designer expertise by leveraging previous quality-
proven manually-crafted layouts is presented.
• To the best of our knowledge, this is the first work to ap-
ply deep learning techniques to guide the AMS layout well
generation process.
• An effective post-refinement algorithm is also developed
to satisfy design rules following the guidance of solutions
generated by GAN.
• Experimental results show that the proposed technique is
able to generate wells close to manual designs.

The rest of this paper is organized as follows: Section 2 intro-
duces the preliminaries and the well generation problem. Section 3
explains the details of WellGAN. Section 4 shows the experimental
results. And finally, Section 5 concludes the paper.

2 PRELIMINARIES
Fig. 2 shows a typical back-end design flow for AMS circuits. As
an essential step in post-placement optimization, well generation
takes the placement result as input to establish the bulk regions. In
this work, by assuming manually-crafted layouts from experienced
designers have guaranteed superior performance and robustness,
our goal is to leverage a GAN model to generate wells as close
to the manual designs as possible. The formal definition of the
GAN-guided well generation problem is shown in Problem 1.

Problem1 (GAN-GuidedWell Generation). Given the device place-
ment result, the objective of the GAN-guided well generation prob-
lem is to generate the well regions following the guidance of GAN
to minimize the differences between the generated well regions and
manual designs, with the constraints of correct electrical connec-
tions and clean design rules.

The well generation results shall satisfy two constraints, i.e.,
correct LVS for electrical connections and clean design rules. LVS
correctness must ensure all the devices that should be covered by
the wells are enclosed, and that the well regions should not overlap
the devices which are not supposed to be covered. There are various
design rules in well generation including the minimum spacing,
enclosure, width, and area rules. Theminimum spacing rules specify
the minimum distance between the well and the objects outside of
it. The minimum enclosure rules specify that the well edges should
keep certain distance from the objects enclosed by the well. The
minimum width rules require that the length of any edge and the
distance between any two edges of a well should be no less than a

Post-Refinement

Data Preprocessing

Trained GAN Model

GAN-based Well Guiding
Region Creation

W
el

lG
A

N
Fr

am
ew

or
kAMS Circuit

Layout Databse

Placement Result

Layout Result w/ Wells

GAN
Model

Building

Dashed: training
Solid: inference

Figure 3: Proposed well generation framework (WellGAN).
certain value. Finally, the minimum area rules suggest the enclosing
area of the well should be no less than a certain value.

Without loss of generality, the scope of this paper is the case
where a single type of well is used for layout, e.g., N-well, and the
wells share the same potential so that they can be merged without
violating the electrical connections. Note that, our techniques are
general and can be extended to handle double/triple well processes
and different well potentials with minor modifications, which will
be introduced in Section 3.2.
3 THEWELLGAN ALGORITHM
This section will introduce the overall flow, data representation and
preprocessing, together with the detailed algorithms in WellGAN.

3.1 Overall Flow
As illustrated in Fig. 3, theWellGAN flow takes the placement result
as input and produces the layout result with generated wells as
output. The flow consists of two phases: training and inference. The
training phase is shown with dashed arrows, where an AMS circuit
layout database is utilized to build a conditional-GAN model for the
inference. The inference phase is indicated with solid arrows, where
the GAN model predicts the well region guidance for the input, and
the post-refinement stage generates legal well regions. The entire
flow requires the implementations of the following major tasks: (1)
Preprocessing and extracting layout data for learning. (2) Designing
and training a GAN model leveraging the layout database, which
will guide the well generation at inference time to produce close-to-
manual well generation results. (3) Performing a post-refinement
step to legalize the resulting layout.

We have built a database of AMS circuit layouts for our GAN-
guided well generation task, which will be described in Section 4
in detail. All of the layouts in our database satisfy the assumption
of this work: (1) a single type of wells (N-well) is used, and (2) the
wells share the same electric potential.

3.2 Data Representation and Preprocessing
Raw layouts in the database require special processing before they
can be used as data samples in our learning model. The key tech-
niques include customized data representation and preprocessing
to abstract the data.

2

Data Representation. The data representation scheme has a
tremendous impact on the GAN behavior. The key components that
may impact our well generation are the locations of the devices
both with N-wells (e.g., PMOS and certain types of capacitors, etc.)
and without N-wells. The device placement result is composed of
various layers, including polysilicon, diffusion, etc. We choose the
oxide diffusion (OD) layers as the input patterns, as they are com-
mon among most devices in our layout database. Other irrelevant
layers are omitted to reduce the effect of noise during training. To
preserve the geometric and spatial relationship, we encode the lay-
out patterns into red-green-blue (RGB) channels of images, which
contain adequate information and are friendly for visualization.
Note that as an extension to our framework, more channels can be
added to handle more well types and different well potentials. The
red channel covers all the OD patterns within the wells; the green
channel covers all the OD patterns outside of the wells; and the
blue channel encodes the wells. Thus, the inputs are images with
patterns only in R and G channels, and the output images contain
patterns in all RGB channels.

Data Preprocessing. To prepare the data samples, it is neces-
sary to extract the OD layer patterns and differentiate the ones
which are covered by wells and the others which are not. We per-
form geometric intersection and subtraction operations on the
well layer and the OD layer geometries to obtain the two types
of patterns, respectively. Note that we consider both the analog
and customized digital parts in the AMS circuits, as we observe the
GAN model generates high quality guidance for both. Furthermore,
since the layout dimensions vary from design to design, we apply
clipping, zero-padding, and scaling to transform the layouts into
equally-sized image clips to facilitate the modeling. The clip size
and scaling factor are determined in a way that there are sufficient
layout patterns inside each clip and that the resolution (precision)
loss caused by scaling is acceptable. Detailed settings will be ex-
plained in the experimental results section.

3.3 GAN-based Well Guidance Creation
Recently, GANs [10] have shown promising potential in many
applications, including image processing, computer vision, and
design for manufacturability, etc. [11, 12]. A conventional GAN
architecture is diagrammed in Fig. 4. It simultaneously trains two
models: a generative model G and a discriminative model D. The
generator G tries to capture the distribution over the training data
y to deceive D, while the discriminator D learns to distinguish
between the “real” samples coming from the training data and the
synthetic samples from G. In a conventional GAN, G is trained to
map a random noise vector z ∼ pz (which is the distribution of the
random noise) to the data space, with the objective to maximize
the probability that D classifies the samples from G as “real” data:

Ez∼pz [log D(G(z))]

In contrast, D is trained to maximize the probability of assigning
correct labels to the samples:

Ey∼pd [log D(y)] + Ez∼pz [log(1 − D(G(z)))]

where pd is the distribution of the dataset. However, for our well
generation problem, we are given the placement results containing
the layout patterns. Therefore, instead of mapping from the random

random
noise
vector

G

… …

D

real data sample

synthesized sample

or

probability
of real
or fake

Figure 4: Architecture of a conventional GAN.

random
noise
vector

G

… …

D

probability
of real
or fake

real data sample pair

synthesized sample pair

or

Figure 5: Architecture of a CGAN.
noise to the output, we are looking for a mapping from the input
layout patterns to the layout with wells. The conventional GAN
architecture is thus not directly applicable to our well generation
task.

Conditional GAN (CGAN) [9, 11] is a type of GAN architectures
that learns a conditional generative model as depicted in Fig. 5.
Different from the conventional architecture, both the generator
G and discriminator D see the additional input x . Apart from the
random noise z, G also observes x , and it learns a mapping from
both z and x to the output y. The loss function of the CGAN is in
Equation 1.

LCGAN (G,D) = Ex,y∼pd (x,y)[logD(x ,y)]
+ Ex∼pd (x),z∼pz [log (1 − D(x ,G(x , z)))]
+ λL1Ex,y∼pd (x,y),z∼pz [| |y −G(x , z)| |1].

(1)

And the objective of CGAN is as follows:

min
G

max
D

LCGAN (G,D)

The first two terms of LCGAN are similar to the conventional GAN
loss function whereG tries to minimize the objective against D that
tries to maximize it. The third term is the L1−norm, which is used
to encourage less blurring. Since our well generation problem is
conditioned on the input layout patterns, the CGAN architecture is
suitable.

Our generator and discriminator architecture designs are adapted
from [11] and [13]. One characteristic of our well generation task
is that our input and output share common structures which are
aligned, e.g., the geometries in the placement result. In view of
this, instead of using a conventional encoder-decoder [14] struc-
ture for our generator design (Fig. 6(a)), we embrace an encoder-
decoder with skip connections that follows the U-Net structure
[15] (Fig. 6(b)). This allows the low-level information to bypass
the bottleneck layer in the encoder-decoder network and directly
shuttle to the layers closer to the output.

The CGAN training process alternates between gradient descent
steps onG and D, while during inference, onlyG is run to generate
the output. In our implementation, we employmini-batch stochastic
gradient descent (SGD) and solve it with the Adam method [16].

3

…

downsample upsample

(a)

…

skip connections

(b)

Figure 6: (a) Conventional encoder-decoder architecture,
and (b) Encoder-decoder with U-Net-like skip connections.
In practice, previous work [11] has demonstrated that the noise
vector is typically ignored by G. Hence, in our experiments, noise
is introduced through dropout in the generator instead.

3.4 Post-Refinement
During the usage of our well generation framework, the placement
result is preprocessed and input to the trained GAN model to pro-
duce the well guiding regions. We then perform post-refinement
to legalize the wells based on these guiding regions, such that the
results satisfy the design rules applicable to the well layer, including
minimum spacing, enclosure, width, and area rules. In our post-
refinement, we first merge the GAN-output images of all the clips
into a single image. After that, we perform computational geometry
operations to refine our results, and convert the obtained polygons
back to the final well regions in the layout. The refinement process
is discussed in the following.

3.4.1 Rectilinearization. The well guiding regions generated by
the trained GAN model are essentially polygons. By extracting the
image channel corresponding to the well layer and transforming
it to a binary image through thresholding, we can directly apply
the classical border following algorithm in image processing [17]
to find the polygons (contours) defining the guiding regions. Since
it is illegal to have arbitary shapes for wells, we need to transform
our results to rectilinear polygons.

Our rectilinearization algorithm is described in Alg. 1. First, we
assign either horizontal or vertical directions to the polygon edges
based on their slope (lines 14-16). If the absolute value of the slope
of an edge is less than 1, it is categorized as closer to the horizontal
direction. Otherwise, the edge is assigned to the vertical direction.
We then iteratively merge the neighboring edges with the same
assigned direction, such that the sequence of edges alternates be-
tween horizontal and vertical directions. Subsequently, the merged
edges are rectilinearized. The locations of the rectilinearized edges
are determined according to the average coordinates of the points
on the curve along the specific direction (lines 17-21). Afterwards,
the resultant rectilinearized edges are connected to form the rec-
tilinear polygon. As an example, Fig. 7(b) is the rectilinearization
result for the well guiding regions shown in Fig. 7(a).

3.4.2 Legalization. Since the rectilinearized polygons defining
the well regions may suffer from design rules violations, it is imper-
ative to legalize them. For each rectilinearized well region, the de-
vices outside of it expanded byminimum spacing are first subtracted
from it. Then, it is unioned with the devices inside it expanded by
minimum enclosure.

To address the minimum width design rule violations, we pro-
pose the algorithm presented in Alg. 2. The algorithm works by

Algorithm 1 Rectilinearization.
Input: Polygon p
Output: Rectilinearized polygon pr
1: E← vector of edges of p, Enew ← ∅
2: for all e ∈ E do
3: if AssignEdgeDirection(e) == Enew .last .dir then
4: merge e with Enew .last
5: else
6: Enew ← Enew ∪ e
7: end if
8: end for
9: merge Enew . f irst with Enew .last if same direction
10: for all e ∈ Enew do
11: e .loc ← getLocation(e)
12: end for
13: pr ← polygon formed by Enew

14: function AssignEdgeDirection(e)
15: return |slope(e)| ≥ 1
16: end function

17: function getLocation(e)
18: A← area under the curve formed by points of e
19: d ← distance b/w the first and last points of e
20: return A/d
21: end function

(a) guiding region (b) rectilinearized (c) legalized

Figure 7: Example post-refinement results after each step.

mapping and aligning the polygon edges to a grid whose grid size
equals to the specified minimum width, as illustrated in Fig. 8. Each
polygon builds its own grid. The algorithm will make decisions
on which grid each edge should be aligned to. It will first try to
align the edge to the nearest grid, if the location does not incur
the minimum enclosure nor spacing rule violations. Otherwise, it
will try to align the edge to the other side which would cause no
violation. If that is again infeasible, the algorithm will choose to
align to the grid which satisfies the minimum enclosure rules, and
leave the minimum spacing violations to be fixed at a later stage.
For example, edge e in Fig. 8 is aligned to location e ′ to satisfy the
enclosure requirement. Empirically, since the minimum width is
small compared to the size of the wells and the devices, we are able
to align to the grids without violating the spacing and enclosure
rules for all the layouts in our test set.

Alg. 2 can guarantee to resolve all the minimum width violations
after aligning to grids since no edge will have length less than the
grid size which is the specified minimum width, neither will the
edge distances. It will not cause minimum enclosure rule violations,

4

Legalized well region

Well region before legalization

Placement objects inside the well

Placement objects outside of the well

Gridse
e’ violation!

Figure 8: Grid-based method for the minimum width rule.

Algorithm 2 Legalization.
Input: Polygon p, minimum widthWmin
Output: Legalized polygon pl
1: build grids with sizeWmin
2: for all edge e ∈ p do
3: if nearest grid is feasible then
4: align e to the nearest grid
5: else if second nearest grid is feasible then
6: align e to the second nearest grid
7: else
8: align e to the grid satisfying min. enclosure rules
9: end if
10: end for

either. Besides, the minimum area rule can be easily checked by
calculating the area of each well region. Since the minimum enclo-
sure rule ensures that the wells containing any device will be larger
than the required minimum area, the wells violating the minimum
area rule shall not contain any device, thereby they can be simply
removed to fix the violations.

As discussed previously, although we completely eliminate the
minimum width, enclosure, and area rule violations, there might
still exist minimum spacing rule violations. To settle the spacing
violations, a linear programming formulation can be employed
based on the constraint graphs to spread the devices and wells,
with the objective of displacement minimization, which is widely
adopted for placement legalization [18]. Details are omitted here
to conserve space. The example of a legalization result is shown in
Fig. 7(c).

4 EXPERIMENTAL RESULTS
All of our algorithms are implemented in Python and C/C++, and
the experiments are performed on a Linux server with 3.3GHz
Intel i9 CPU, 128GB memory, and one Nvidia Titan Xp GPU. The
generative adversarial net is developed based on TensorFlow
[19] library. To build our database for well generation, we gather 131
distinguished silicon-measurement-proven AMS circuit layouts (in
GDSII format) from the taped-out chips in TSMC 40nm process
technology. The layouts are split into a total of 881 clips, with each
layout clip transformed into a 256-by-256 RGB image (as in Section
3.2). Random selection of 80% clips are used for training and the
remaining 20% form the test set. Note that all the clips belonging
to the same circuit shall be allocated to the same set, so that during
inference we can recover the entire layout for the test circuit solely
from the test set. We implement the algorithm in [6] as the baseline
for comparison. It performs union on the devices inside the well

expanded by certain distance. In our experiments, it is set to the
minimum enclosure distance.

The training is run for 100 epochs with a mini-batch size of 1.
After that, we run the inference flow on the test dataset with the
trained model. We compare WellGAN with the baseline algorithm
on the same dataset. Both algorithms are very efficient, i.e., within
a few seconds for a typical layout size. The visualization of the well
generation results of several test circuit examples are shown in
Fig. 9, where “golden” means the manual layouts by experienced
designers, “guidance” refers to the well guiding regions output by
our GANmodel, “ours” means the final well generation results from
WellGAN after post-refinement, and “baseline” refers to the results
of the baseline algorithm. Fig. 9(a) shows the results for circuit A,
and Fig. 9(b) are for circuit B, etc. Recall that blue channel encodes
the wells and the other channels are the input patterns. From the
test results, we can see that WellGAN is able to successfully mimic
the designers’ behavior from the manual layout data.

To quantify the similarity between the results, the metric we use
is the Manhattan norm of the element-wise (pixel-by-pixel) differ-
ence between two images on the blue channel which represents the
well regions. If the two images have different sizes due to spacing
rule settling, the smaller image is center-aligned with the larger
one and is zero-padded for comparison. The norm is calculated
as the summation of the absolute values of the difference for all
pixels divided by the image size. The distribution of the Manhattan
norm of the element-wise difference over a total of 43 test circuits
is plotted in Fig. 10. The x-axis is the range of the Manhattan norm
of the element-wise difference, and the y-axis represents the fre-
quency that the norm of difference occurs in the test results. For
example, 19% of the test results for WellGAN are within a differ-
ence of 0 to 2% from the manual layouts, whereas only 5% of the
baseline results fall in this range. From the figure, we can see that
the difference of the majority of our results are within a small scale,
while the baseline algorithm may result in larger differences (up
to 44% as shown in the histogram). Our element-wise difference
distribution demonstrates a smaller mean and standard deviation
than the baseline, as shown in Table 1. Moreover, our results are
free from minimum spacing, enclosure, width, and area design rule
violations.

To evaluate the routing complexity, we count the number of wells
generated by both WellGAN and the baseline for all test circuits. A
larger number of wells means more well contacts to be connected
by routing, thereby potentially increasing the routing complexity.
Our results show that on average, the number of wells generated
by the baseline is 75% more than WellGAN. This demonstrates that
our well generation results are expected to have better routability.

Furthermore, we compare the post-layout circuit performance
simulation results between the layout with our generated wells
and the manual one for the op-amp circuit (see Fig. 1), as shown in
Table 2. The placement is the same for both layouts, while routing
is slightly different due to different well contact locations. The
WellGAN-generated layout circuit performance is comparable to
the manual design. Nonetheless, the well generation result from the
baseline requires dramatic change to both placement and routing
to accommodate the increased number of well contacts, thus the
comparison is less meaningful.

5

golden guidance ours baseline

(a) Circuit A

golden guidance ours baseline

(b) Circuit B

golden guidance ours baseline

(c) Circuit C

golden guidance

ours baseline

(d) Circuit D

Figure 9: Test circuit examples A, B, C, and D.

0-2 2-4 4-6 6-88-1
0
10

-12
12

-14
14

-16
16

-18
18

-20
20

-22
24

-26
36

-38
38

-40
40

-42
42

-44

Manhattan norm of element-wise difference (%)

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y WellGAN
Baseline

Figure 10: Distribution of the Manhattan norm of the
element-wise difference.

5 CONCLUSION
Well generation is a fundamental challenge in back-end AMS design
flow. This work attempts to generate wells by mimicking experi-
enced designers’ behavior from high-quality manually-crafted lay-
outs. A holistic well generation framework, WellGAN, is proposed,
with GAN-guided well geometry creation and post-refinement. Ex-
perimental results demonstrate the proposed framework is able

Table 1: Statistics of the Manhattan norm of element-wise
difference for the test results.

Metric WellGAN Baseline
Mean 5.64% 12.65%

Standard Deviation 3.58 10.25

Table 2: Post-layout simulation results of the op-amp layout
with wells generated by WellGAN.

Design Unity Gain
Bandwidth (MHz)

Phase Margin
(deg.)

Loop Gain
(dB)

Manual 103.70 71.89 36.33
Ours 104.64 65.38 37.61

to generate wells close to manual designs with comparable circuit
performance.

ACKNOWLEDGMENT
This work is supported in part by the NSF under Grant No. 1527320,
No. 1704758, and the DARPA ERI IDEA program.

REFERENCES
[1] H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I. Wu, Y.-W. Chang et al., “Layout-dependent-

effects-aware analytical analog placement,” in Proc. DAC, 2015, p. 189.
[2] R. A. Hastings and R. A. Hastings, The art of analog layout. Pearson Prentice

Hall New Jersey, 2006, vol. 2.
[3] M. M. Ozdal and R. F. Hentschke, “Algorithms for maze routing with exact

matching constraints,” IEEE TCAD, vol. 33, no. 1, pp. 101–112, 2014.
[4] M. Lin, P.-H. Chang, S.-Y. Lee, and H. Graeb, “Demixgen: Deterministic mixed-

signal layout generation with separated analog and digital signal paths,” IEEE
TCAD, vol. 35, no. 8, 2016.

[5] B. Xu, S. Li, X. Xu, N. Sun, and D. Z. Pan, “Hierarchical and analytical placement
techniques for high-performance analog circuits,” in Proc. ISPD, 2017, pp. 55–62.

[6] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley, “Koan/anagram ii: New
tools for device-level analog placement and routing,” IEEE Journal Solid-State
Circuits, vol. 26, no. 3, pp. 330–342, 1991.

[7] S. Nakatake, M. Kawakita, T. Ito, M. Kojima, M. Kojima, K. Izumi, and T. Habasaki,
“Regularity-oriented analog placement with diffusion sharing and well island
generation,” in Proc. ASPDAC, 2010, pp. 305–311.

[8] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1.

[9] M.Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems (NIPS), 2014, pp. 2672–2680.

[11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2017, pp. 5967–5976.

[12] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization
with lithography-guided generative adversarial nets,” in Proc. DAC, 2018, pp.
131:1–131:6.

[13] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[16] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in Proc.
3rd Int. Conf. Learn. Representations (ICLR), 2014.

[17] S. Suzuki et al., “Topological structural analysis of digitized binary images by
border following,” Computer vision, graphics, and image processing, vol. 30, no. 1,
pp. 32–46, 1985.

[18] J. Cong and M. Xie, “A robust mixed-size legalization and detailed placement
algorithm,” IEEE TCAD, vol. 27, no. 8, pp. 1349–1362, 2008.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “Tensorflow: a
system for large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

6

