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Abstract—Analog circuit sizing is a critical challenge due to
increasing circuit complexity and diverse performance require-
ments. Existing algorithms struggle with poor scalability in high-
dimensional spaces and frequent convergence to local optima. To
address these limitations, we propose MOSTAR, a multi-stage
hierarchical Bayesian optimization framework that integrates
a local-to-global GNN (L2G-GNN). L2G-GNN identifies circuit
substructures and adds symmetric constraints to the circuit.
MOSTAR employs additive Gaussian processes and stage-adaptive
constrained acquisition function to improve scalability in high-
dimensional circuits. Furthermore, its dynamic search space
adjustment strategy helps avoid local optima during optimization.
Experiments show that our L2G-GNN achieves a substructure
identification accuracy of 97.22%, and MOSTAR achieves an
optimization performance improvement ranging from 1.04× to
4.13× on three basic circuits and two high-dimensional circuits,
highlighting its efficacy in automating complex analog circuit
sizing.

Index Terms—Bayesian Optimization, high-dimensional cir-
cuits, L2G GNN, MOSTAR

I. INTRODUCTION

Analog circuit design usually requires designers to invest
significant time in determining the size of circuit components
due to the increased complexity from shrinking scales and
diverse performance specifications. To speedup the design pro-
cess, automated analog circuit sizing techniques have become
increasingly important. One common approach is to formu-
late the circuit sizing task as a single-objective optimization
problem using a comprehensive Figure of Merit (FOM) [1],
and then employ conventional algorithms to optimize it [2],
[3], [4]. Alternatively, a more practical strategy is to solve it
as a multi-objective optimization problem directly with corre-
sponding algorithms [5], [6]. However, these methods struggle
with high-dimensional circuits due to their poor scalability.
Thus, developing an efficient method for high-dimensional
constrained circuit optimization is crucial.

Existing work on optimization algorithms for analog circuit
sizing can be categorized into three classes: heuristic algo-
rithms, reinforcement learning-based optimization algorithms,
and constrained Bayesian optimization algorithms.

Firstly, existing heuristic algorithms [7], [8] like NSGA-II
[9] and MOEA/D [10] optimize multiple objectives to gener-
ate Pareto-optimal solutions for analog circuit sizing. NSGA-
II uses non-dominated sorting and crowding distance, while
MOEA/D decomposes problems into weighted subproblems.
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However, their effectiveness drops in high-dimensional circuits
due to complexity.

Secondly, reinforcement learning (RL) algorithms optimize
analog circuit sizing using reward-driven feedback. For in-
stance, [11] uses deep RL with symbolic filters for efficient
sizing. [12] introduces a prioritized RL framework with non-
uniform sampling for data-efficient optimization. GCN-RL [13]
combines graph convolutional networks with RL for transfer-
able transistor sizing. PVTSizing [14] employs TuRBO-RL-
based batch sampling for PVT-robust sizing via trust region
Bayesian optimization. However, RL methods face challenges:
(1) formulating sizing as a Markov Decision Process increases
complexity, and (2) high simulation data and resource demands
limit their practicality for smaller teams.

Thirdly, constrained Bayesian optimization (CBO) algo-
rithms [15], [16] use probabilistic models for analog circuit
sizing, requiring less data and lower complexity than RL for
simpler EDA tasks. Notable methods include PESMOC [17],
reducing Pareto set entropy; USEMOC [18], using two-stage
optimization; and MACE [19], leveraging multiple acquisi-
tion functions. For high-dimensional problems, hypervolume
improvement-based (HVI) CBO methods like MORBO [20],
optimizing parallel trust regions; LoCoMOBO [21], using local
surrogate models with Thompson Sampling; and ABCMOBO
[22], employing Expected HVI [23] with dynamic reference
points, are proposed. However, CBO often gets trapped in local
optima, scales poorly in high-dimensional circuits, and HVI-
based methods rely on EHVI sampling, limiting efficacy under
strict constraints.

According to the analysis of the above algorithms, the current
challenges mainly include circuit complexity, the tendency to
get trapped in local optima, and poor scalability in high-
dimensional circuits. To address these challenges, we propose
MOSTAR, a novel approach using a local-to-global GNN
to reduce circuit complexity and a multi-stage hierarchical
Bayesian optimization method to mitigate local optima and
enhance scalability in high-dimensional circuits. The primary
contributions of this paper are as follows:

1) We propose a local-to-global GNN to identify circuit sub-
structures and incorporate symmetric constraints, thereby
reducing the complexity of the high dimensional circuit.

2) We propose MOSTAR, a multi-stage hierarchical
Bayesian optimization framework that leverages additive
Gaussian processes as the surrogate model, employs a
stage-adaptive constrained acquisition function for opti-
mization, and integrates a dynamic strategy to update the



search space adaptively. This framework addresses the
challenges of poor scalability and local optima.

3) Experimental results show our local-to-global GNN
achieves 97.22% prediction accuracy on our dataset.
Moreover, MOSTAR demonstrates superior optimization
in both basic and high-dimensional circuits, with im-
provements ranging from 1.04× to 4.13×.

II. PRELIMINARIES

A. Problem Formulation

The analog circuit sizing problem can be formulated as a
constrained optimization task [24] aiming to minimize an ob-
jective function while meeting multiple constraints, expressed
as:

min f0(x), x ∈ X

s.t. fj(x) ≥ Cj , j = 1, . . . , nc

(1)

Here, X = {x ∈ Rd | xL ≤ x ≤ xU} defines the search space
of design variables, set by Process Design Kit (PDK) rules
and designer experience. The vector x includes d device size
variables, with xL and xU as lower and upper bounds. f0(x)
is the objective function, and fj(x) ≥ Cj are the constraint
functions with minimum values Cj .

B. Bayesian Optimization

Bayesian optimization (BO) [25], [26] is an efficient method
for optimizing expensive black-box functions, using a surrogate
model to approximate the objective and an acquisition function
to select the next candidate point. Gaussian Process Regression
(GPR) [27] is a common surrogate model. For an input x with
d dimensions and an unknown function y = f(x) + ϵ, where
ϵ ∼ N(0, σ2

n), given N samples in a dataset D = {X,y}, GPR
provides the posterior for any input x∗:

µ(x∗) = m(x) + k(x∗,X)
[
K + σ2

nI
]−1

(y −m(x)) (2)

σ2(x∗) = k(x∗,x∗)− k(x∗,X)
[
K + σ2

nI
]−1

k(X,x∗) (3)

where µ(x∗) is the predicted mean, σ(x∗) is the standard
deviation, k(x∗,X) are kernel values, and K = k(X,X) is the
kernel matrix. We set m(x) = 0 and use the RBF kernel [28]
for simplicity. Common acquisition functions, such as Expected
Improvement (EI), Probability of Improvement (PI), and Upper
Confidence Bound (UCB), guide the optimization process.

C. Graph Representation of the Netlist

In our work, We use an undirected bipartite graph G(V,E)
to model the circuit netlist [29], with vertex set V split into Ve

(components like transistors, resistors) and Vn (nets connecting
components), and edge set E linking Ve to Vn, ensuring
bipartiteness. For example, Figure 1 shows a current mirror
circuit with nets as blue vertices, components as green vertices,
and edges labeled with a three-bit tag (e.g., ’001’ for drain
connection). By converting the netlist into this graph structure,
Graph Neural Networks (GNNs) can process circuits.
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Fig. 1: The bipartite graph representation of the current mirror.
III. ALGORITHM

A. Overview of MOSTAR

MOSTAR comprises two key components: L2G-GNN and
MOSTAR. The former (detailed in Section B) includes a
netlist dataset generation method and the L2G-GNN model.
The latter, MOSTAR integrates additive Gaussian processes, a
stage-adaptive constrained acquisition function, and a dynamic
search space adjustment strategy (Sections C-E).

The overall workflow of our method is as follows: Initially,
the L2G-GNN recognizes relevant substructures in the target
analog circuit. Following this identification, we add symmetry
constraints to certain substructures. Finally, we apply MOSTAR
to optimize the resulting circuit, where the dynamic search
space adjustment strategy iteratively refines the search space
during the optimization.

B. Local-to-Global GNN

1) Data Generation Method: The training of Graph Neural
Network (GNN) models is constrained by the scarcity of circuit
netlist datasets. We investigated open-source datasets [30], [31],
[32], but found they lack proper classification, substructure
annotations, and clear netlist structures. To overcome these
challenges, we developed a program to generate annotated
netlist datasets, enabling effective GNN training.

Firstly, we collect common circuit substructures (e.g., current
mirrors, differential pairs), creating a netlist for each. These
are then encapsulated as Python functions and stored in a
substructure library. Using this, we build single, two, and three-
stage operational amplifier (opamp) circuits, forming an opamp
library. Finally, leveraging both libraries, we construct diverse
circuit types, such as comparators and low-dropout regulators
(LDOs). Figure 2 illustrates this dataset construction process.

The generated dataset has a unified format: a circuit netlist as
input and a set of labeled components as output. For example,
for a five-transistor OTA, the input is its netlist, and the output
is: P Current Mirror:[MM1, MM2], N Different Pair:[MM3,
MM4], N Current Source:[MM5].

2) Local-to-Global GNN(L2G-GNN): GNNs are commonly
used for circuit structure identification [33], [34], [35]. How-
ever, different GNNs have different limitations: GCN [36] uses
1st-order filters for efficient neighbor feature extraction, but
may miss long-range dependencies; GraphSAGE [37] uses con-
volutional aggregators for local filter approximation, offering
aggregation flexibility, but its performance is function-sensitive
and it struggles with complex relationships; CR-GCN [38]
learns subgraph features with GIN and processes connections
with GAT [39] to capture circuit structure, but it is complex
and lacks generalization ability.

Inspired by CR-GCN and to address the aforementioned lim-
itations, we introduce L2G-GNN. This model uses a local GNN
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Fig. 2: The construction process of the circuit netlist dataset.

for intra-module feature extraction, an MLP for local feature
processing, and a global GNN for inter-module relationship
capture. During our experiments, we observed that GCNs are
well-suited for substructure identification. Therefore, we use
GCN as the building blocks for the local GNN (two GCN layers
with ReLU after the first) and the global GNN (five GCN layers
with ReLU after the first four).

The L2G-GNN workflow, illustrated in Figure 3, begins by
converting the circuit netlist into a bipartite graph G. For each
node in G, we extract its 1-hop subgraph, representing the
directly connected circuit elements. All extracted subgraphs are
then processed by the shared local GNN layer. Subsequently,
an average pooling operation is performed over the processed
subgraphs associated with each node, resulting in a new graph
G′ that retains the original bipartite structure. G′ is then passed
through the MLP layer, yielding G′′, which effectively inte-
grates local information learned from the subgraphs. Finally, an
element-wise sum of G′′ and the original graph G is computed,
and the resulting graph is processed by the global GNN layer
to produce the circuit structure’s prediction.

3) Incorporation of Symmetrical Constraints: Based on the
aforementioned L2G-GNN model, we are able to identify
substructures within the circuit. In our experiments, we apply
symmetric constraint conditions to two specific structures in the
circuit: the current mirror and the differential pair. Specifically,
we impose the constraint that the length and width of the two
transistors in symmetric positions must be equal.

C. Additive GP-Based Surrogate Model

A primary challenge in analog circuit sizing is the curse of
dimensionality, where the performance of traditional BO [40]
degrades significantly in high-dimensional space. To address
this, our approach is based on the fact that an analog circuit
sizing problem can be effectively optimized by leveraging its
hierarchical structure [41], [42]. Specifically, we employ the
Additive Gaussian Process (Add-GP) model [43] and utilize
the specific hierarchical information of the circuit to address
this problem.

The Add-GP model enables us to reformulate the high-
dimensional objective function f(x) as a sum of lower-
dimensional components:

f(x) =

P∑
i=1

f (i)(x(Xi)). (4)

Here, x(Xi) ∈ Xi are sub-variables in subspace Xi, with⋃P
i=1 Xi = X. The number of partitions P equals the circuit’s

hierarchical levels (e.g., Rail-to-Rail Opamp includes first stage,
second stage, and bias, P = 3, Figure 6(d)). Each subspace
Xi contains parameters of one level (e.g., X1 represents the
parameter in the first stage).

Each function f(x) models a performance metric (such as
gain, bandwidth) and consists of P independent GPs with mean
µ(i) and kernel k(i), so:

f(x) ∼ GP

(
P∑
i=1

µ(i),

P∑
i=1

k(i)

)
. (5)

For M performance metrics, M × P GPs are used.
The hyperparameters of the Add-GP model are optimized by

maximizing the log marginal likelihood of the observed data
y, which is given by:

L = −1

2
log |Σ| − 1

2
yTΣ−1y − n

2
log(2π), (6)

with Σ = K + σ2I , K =
∑N

i=1 k
(i)(x

(Xi)
w ,x

(Xi)
y ). Posterior

mean and variance at x∗(Xi) are:

µ(i)(x∗(Xi)) = k(i)(x∗(Xi),X(Xi))TΣ−1y,

σ2(x∗(Xi)) = k(i)(x∗(Xi),x∗(Xi))

− k(i)(x∗(Xi),X(Xi))TΣ−1k(i)(X(Xi),x∗(Xi)).

(7)

This approach mitigates the curse of dimensionality by
splitting high-dimensional problems into the sum of low-
dimensional problems. For circuits with lower dimensionality,
there is no need to use an additive structure; instead, a standard
GP is sufficient for modeling.

D. Stage-Adaptive Constrained Acquisition Function

In analog circuit sizing, we aim to minimize an objective per-
formance while satisfying multiple constraints. We propose a
stage-adaptive constrained acquisition function with two stages:
(1) feasible point search, to quickly identify a point satisfying
all constraints, and (2) objective function minimization, to
optimize the objective from the feasible point.

Feasible Point Search Stage: If no initial samples satisfy
the strict constraints, this stage starts. We focus on finding
feasible points by maximizing each constraint’s Probability of
Improvement (PI):

Maximize Φ

(
C1 − µ1(x)

σ1(x)

)
· · ·Φ

(
Cnc
− µnc

(x)

σnc(x)

)
(8)

Where Cj is the constraint threshold, ensuring feasibility before
objective optimization.
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Objective Function Minimization Stage: When the first
feasible point is present in the initial dataset or obtained
from the previous stage, we continue to optimize the objective
function. The goal here is to simultaneously consider both the
satisfaction of the constraint conditions and the improvement
of the objective function:

Maximize
nc∑
j=1

(
min(µj(x), Cj)

Cj
+ λ

(
min(µj(x), r · Cj)

Cj
− 1

))
,

− Φ

(
fbest − µ0(x)

σ0(x)

)
(9)

Where the first term balances constraint satisfaction, λ is
a reward-punishment factor, r controls reward scaling, and
the second term minimizes the objective by maximizing im-
provement over the current best value fbest. Multi-objective
algorithms like NSGAII optimize these functions, achieving
efficient circuit designs.
E. Dynamic Search Space Adjustment Strategy

Trapping into local optima due to a fixed search space is a
key challenge in BO. To address this, we propose a strategy that
dynamically changes the search space by adjusting its center.

After simulating a candidate point xcan, we check if it
satisfies constraints and improves the objective performance
over f best

0 . If so, a better solution xbet is found. The search
space center is updated as:

xnew = xcur + g · η

where the gradient g = xbet−xcur and η is dynamically adjusted
using the following decay function:

η = ηmin + (ηmax − ηmin)e
−γt (10)

Here, ηmin and ηmax are the step size bounds, γ is the decay
factor, and t is the time step. As iterations progress, t increases,
reducing the learning rate gradually. When a better solution xbet
is found, t resets to 0.

The new search space is defined as X = (xl,xu) = (xnew ×
(1 − r),xnew × (1 + r)), where r = 50% sets the fluctuation
range.

MOSTAR uses Add-GP as a surrogate model, optimizes with
a stage-adaptive constraint acquisition function, and adaptively
updates the search space using a dynamic search space adjust-
ment strategy. The overall workflow of MOSTAR is shown in
Algorithm 1. IV. EXPERIMENTAL RESULTS

In this section, we validate our proposed algorithm through
three experiments. First, we verify the L2G-GNN’s accuracy on

Algorithm 1 MOSTAR Algorithm

1: Input: Design space X, initial data D, iterations N , hier-
archy number P .

2: Output: Best sizing solution
3: for i = 1 to N do
4: Partition D into P subsets: D =

⋃P
j=1 D

(j), where
D(j) = {X(Xj),Y}

5: for j = 1 to P do
6: Train M sub-GPs SubGP

(j)
k on D(j) , (k ∈ [1,M ])

7: if feasible point in D exists then
8: x(Xj) ← argmax(Acq. Func. 2, Eq. 9) in Xj

9: else
10: x(Xj) ← argmax(Acq. Func. 1, Eq. 8) in Xj

11: end if
12: end for
13: Combine P points {x(Xj)}Pj=1 to get candidate xi.
14: Simulate xi to get observation yi.
15: D← D ∪ {(xi,yi)}
16: if xi is feasible and f0(xi) < f best

0 then
17: X← Dynamic Search Space Adjustment Strategy
18: f best

0 ← f0(xi) (Update the current best value)
19: end if
20: end for
21: return Best sizing solution in D.

substructure identification. Second, an ablation study evaluates
our dynamic search space and symmetry-handling strategies.
Finally, five sizing experiments on three basic and two high-
dimensional circuits demonstrate the algorithm’s effectiveness
and scalability. All experiments are performed on a CentOS
workstation (Intel Xeon Gold 5218R CPU, 128GB RAM) using
Python/GPytorch, and all circuits are built based on the TSMC
65nm library.
A. Circuit Substructure Identification Experiment

To evaluate the efficiency of our proposed L2G-GNN model
in identifying substructures, we conduct a dedicated experiment
focused on circuit substructure identification. In this exper-
iment, the recognition accuracy of L2G-GNN is compared
against several GNN architectures, namely GCN [36], Deep-
GCN, GraphSAGE [37], and CR-GCN [38].

The experiment is performed using a custom-built dataset
comprising 1870 test circuits, meticulously designed based on
established circuit schematics and informed by authoritative
resources such as [44], [45], [46], [47], and other pertinent
literature.The dataset contains various analog circuits, including



1359 opamps, 176 LDOs, 324 bandgap references, and 11 other
circuit types. The netlist dataset is divided into an 80% training
dataset and a 20% testing dataset.

The circuit substructure identification results are summarized
in Table I and the prediction accuracy curves are shown in
Figure 4, revealing that our L2G-GNN achieves the highest
accuracy at 97.22%. This significantly outperforms GCN at
87.48%, DeepGCN at 90.64%, and the lower accuracies of
GraphSAGE at 67.15% and CR-GCN at 65.40%, clearly in-
dicating L2G-GNN’s superior performance in this task.
TABLE I: The accuracy comparison of different GNN models.

Model GCN[36] DeepGCN GraphSAGE[37] CR-CRN[38] L2G-GNN
Accuracy 87.48% 90.64% 67.15% 65.40% 97.22%

Fig. 4: Accuracy curves comparison of different GNN models.
B. Ablation Study of DSSAS and SC

To assess the individual benefits of the dynamic search
space adjustment strategy (DSSAS) and the incorporation of
symmetrical constraints (SC) within the MOSTAR framework,
we perform an ablation study on a two-stage circuit. The
results are shown in Figure 5. It is observed that the complete
MOSTAR method, integrating DSSAS and SC, exhibits the
best optimization performance, achieving the lowest predicted
current. The complete MOSTAR method achieves a 1.69×
improvement compared to the version without DSSAS. No-
tably, the complete MOSTAR achieves a 13.14× performance
improvement compared to the version without SC. In sum-
mary, the experimental data clearly support the effectiveness of
DSSAS and SC in achieving optimized analog circuit sizing.

Fig. 5: Results of ablation experiments on DAASA and SC.

C. Circuit Sizing Experiments

We evaluate our algorithm’s sizing performance on a
diverse suite of five circuits—three basic and two high-

dimensional—benchmarking it against several baseline meth-
ods including NSGAII [9], MOEA/D [10], PVTSizing [14],
MACE [19], and ABCMOBO [22]. The circuit topologies and
terget performance comparisons are shown in Figure 6(a) to
Figure 6(j), with final results in Table II. For this analysis,
improvement is defined as the ratio of the worst-performing
model’s objective function value to the specific model’s value.

The design parameters and constraints for each circuit are
as follows: For a two-stage operational amplifier (opamp), the
constraints are a voltage gain (Gain) > 40 dB, gain-bandwidth
product (GBW) > 5 MHz, and phase margin (PM) > 60°. The
goal is to minimize current by optimizing 28 parameters, using
50 initial samples and 100 optimization simulations.

For a three-stage opamp, the constraints are a gain > 90
dB, GBW > 2 MHz, and PM > 60°. The goal is to minimize
current by optimizing 25 parameters, using 100 initial samples
and 100 optimization simulations.

For a bandgap circuit, the constraints are a TC < 30 ppm/°C
and current < 55 µA. The goal is to minimize output noise by
optimizing 36 parameters, using 100 initial samples and 100
optimization simulations.

For a rail-to-rail opamp, the constraints are a gain > 50 dB,
GBW > 5 MHz, PM > 60°, and input/output swing > 3 V.
The goal is to minimize current by optimizing 94 parameters,
using 100 initial samples and 150 optimization simulations.

For a gain-boosted opamp, the constraints are a gain > 100
dB, GBW > 10 MHz, and PM > 60°. The goal is to minimize
current by optimizing 114 parameters, using 100 initial samples
and 200 optimization simulations.

Add symmetry constraint: Following structure identifica-
tion by L2G-GNN, symmetry constraints are applied to all
five circuits, targeting components like current mirrors and
differential pairs. We add 10, 6, 4, 44, and 52 constraint pairs
for the two-stage opamp, three-stage opamp, bandgap circuit,
rail-to-rail opamp, and gain-boosted opamp, respectively. For
fair comparison, all baseline algorithms incorporate these same
symmetry constraints.

Optimization result analysis: In the two-stage opamp,
MOSTAR demonstrates superiority by achieving the lowest
current consumption, with a 4.124× improvement compared
to MOEAD. The improvements of the other methods are as
follows: 2.290× for NSGA-II, 2.678× for PVTSizing, 1.921×
for MACE, and 2.040× for ABCMOBO.

In the three-stage opamp, MOSTAR maintains its leading
position with the lowest current, attaining a 1.317× improve-
ment over MOEAD. The improvements of the other methods
are: 1.213× for NSGA-II, 1.061× for PVTSizing, 1.063× for
MACE, and 1.134× for ABCMOBO.

In the bandgap circuit, MOSTAR achieves the lowest noise,
showing a 1.039× improvement over NSGA-II, which is taken
as the reference. The improvements of the other methods
are: 1.030× for MOEAD, 1.011× for PVTSizing, 1.026× for
MACE, and 1.009× for ABCMOBO.

In the rail-to-rail opamp, MOSTAR takes the lead with
the lowest current, resulting in a 1.955× improvement over
MOEAD. PVTSizing shows a notable 1.452× improvement,



(a) Two-stage opamp. (b) Three-stage opamp. (c) Bandgap circuit. (d) Rail-to-rail opamp schematic.

(e) Gain-boosted opamp schematic. (f) Two-stage opamp comparison. (g) Three-stage opamp comparison.

(h) Bandgap circuit comparison. (i) Rail-to-rail opamp comparison. (j) Gain-boosted opamp comparison.
Fig. 6: Schematics and comparison results of five module-based circuits.

TABLE II: The optimization results and statistics for all five circuits, arranged in two sections for improved readability.

Method 2-Stage OpAmp (16 Dev, 28 Param) 3-Stage OpAmp (21 Dev, 25 Param) Bandgap Circ. (33 Dev, 36 Param)

Gain GBW PM I/µA I(mean) Improv. Gain GBW PM I/µA I(mean) Improv. TC I No No(mean) Improv.

Constraint >40dB >5M >60° Min Min – >90dB >2M >60° Min Min – <30 <55µA Min Min –

NSGA II [9] 46.86 6.08 66.51 763 941 2.29× 105.5 5.41 69.88 255 265 1.21× 23.25 50.28 1.46e-6 1.44e-6 1.00×
MOEAD [10] 41.41 5.31 66.41 2046 2156 1.00× 109.4 3.65 71.90 339 321 1.00× 23.26 44.43 1.40e-6 1.40e-6 1.03×
PVTSizing [14] 41.79 5.34 72.73 872 805 2.68× 112.0 6.51 61.49 294 302 1.06× 28.80 46.66 1.43e-6 1.42e-6 1.01×
MACE [19] 42.51 6.85 61.23 1055 1122 1.92× 108.3 5.73 60.15 291 302 1.06× 27.22 50.96 1.40e-6 1.40e-6 1.03×
ABCMOBO [22] 41.08 5.13 70.19 1124 1057 2.04× 110.7 4.46 66.66 287 283 1.13× 25.45 39.73 1.44e-6 1.43e-6 1.01×

MOSTAR 41.10 5.40 65.56 495 523 4.13× 97.25 9.13 84.77 239 244 1.32× 29.69 51.19 1.38e-6 1.38e-6 1.04×

Method R-to-R OpAmp (62 Dev, 94 Param) Gain-Boost OpAmp (70 Dev, 114 Param)

Gain GBW PM In/Out I/µA I(mean) Improv. Gain GBW PM I/µA I(mean) Improv.

Constraint >50dB >5M >60° >3 Min Min – >100dB >10M >60° Min Min –

NSGA II [9] 53.82 7.69 75.91 3.00 307 348 1.20× 101.5 12.09 79.63 463 470 1.02×
MOEAD [10] 53.77 9.65 72.94 3.08 356 418 1.00× 100.4 13.64 76.50 477 472 1.01×
PVTSizing [14] 54.12 21.55 74.24 3.13 302 288 1.45× 100.9 18.17 69.05 464 456 1.05×
MACE [19] fail 101.0 14.09 61.58 472 478 1.00×
ABCMOBO [22] 57.87 19.45 61.04 3.15 230 329 1.27× 108.8 11.64 61.05 445 441 1.09×

MOSTAR 67.61 8.16 65.00 3.18 201 214 1.95× 104.8 17.88 71.58 379 374 1.28×

followed by ABCMOBO (1.269×) and NSGA-II (1.199×).
MACE failed in this optimization task.

In the gain-boosted opamp, MOSTAR again secures the
lowest current, with a 1.280× improvement over MACE (the
reference). The improvements of the remaining methods are:
1.085× for ABCMOBO, 1.048× for PVTSizing, 1.018× for
NSGA-II, and 1.012× for MOEAD.

V. CONCLUSION

In this paper, we propose MOSTAR, a multi-stage hierarchi-
cal Bayesian optimization framework integrating L2G-GNN for

substructure identification and symmetry constraints. MOSTAR
improves scalability in high-dimensional scenarios with Add-
GP and stage-adaptive constrained acquisition function, and
avoids local optima using a dynamic search space adjust-
ment strategy. Experiments show L2G-GNN achieves 97.22%
substructure identification accuracy, while MOSTAR yields
1.04×–4.13× optimization improvements across three basic
and two high-dimensional circuits, demonstrating potential for
high-dimensional analog circuit sizing.
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