
1

ABCDPlace: Accelerated Batch-based Concurrent
Detailed Placement on Multi-threaded CPUs and GPUs

Yibo Lin Member, IEEE, Wuxi Li Member, IEEE, Jiaqi Gu Student Member, IEEE,
Haoxing Ren Senior Member, IEEE, Brucek Khailany Senior Member, IEEE, David Z. Pan Fellow, IEEE

Abstract—Placement is an important step in modern very-large-scale
integrated (VLSI) designs. Detailed placement is a placement refining
procedure intensively called throughout the design flow, thus its efficiency
has a vital impact on design closure. However, since most detailed place-
ment techniques are inherently greedy and sequential, they are generally
difficult to parallelize. In this work, we present a concurrent detailed
placement framework, ABCDPlace, exploiting multithreading and GPU
acceleration. We propose batch-based concurrent algorithms for widely-
adopted sequential detailed placement techniques, such as independent
set matching, global swap, and local reordering. Experimental results
demonstrate that ABCDPlace can achieve 2 × −5× faster runtime than
sequential implementations with multi-threaded CPU and over 10× with
GPU on ISPD 2005 contest benchmarks without quality degradation. On
larger industrial benchmarks, we show more than 16× speedup with GPU
over the state-of-the-art sequential detailed placer. ABCDPlace finishes the
detailed placement of a 10-million-cell industrial design in one minute.

I. INTRODUCTION

Placement is a critical stage in the VLSI design flow. It determines
the physical locations of logic gates (cells) in the circuit layout and
its solution has a huge impact on the subsequent routing and post-
routing closure. Placement usually consists of three stages: global
placement, legalization, and detailed placement. Global placement
provides rough locations of standard cells. Legalization then removes
overlaps and design rule violations based on the global placement
solution. In the end, detailed placement incrementally improves the
solution quality. In the VLSI design iterations, detailed placement
may be invoked many times to recover the solution quality from
post-placement perturbations, such as buffer insertion, routability and
timing optimization. Therefore, the efficiency and quality of detailed
placement play an important role in speeding up the design iterations.

Detailed placement widely involves combinatorial optimization,
graph algorithms, and greedy heuristics. Various effective algorithms
have been proposed with the strategy of extracting a subset of cells
and exploring the corresponding solution space iteratively [1]–[11],
including independent set matching, global swap, local reordering,
and row-based refinement, etc. These algorithms are usually designed
for sequential execution on single-threaded machines. They are very
difficult to be parallelized.

With the increasing design scale and complexity, sequential algo-
rithms are encountering challenges in efficiency due to tight time-
to-market budgets. They are becoming bottlenecks that hinder the
turn-around time. As most of the recent research efforts for detailed
placement have been switched to incorporating new objectives and
constraints, such as routability, mixed-cell-height designs, manufac-
turing constraints [12]–[17], there is little progress on the core detailed

Y. Lin is with the Center for Energy-Efficient Computing and Applications,
School of Electronics Engineering and Computer Science, Peking University,
Beijing, China.

W. Li is with Xilinx Inc., CA, USA.
J. Gu and D. Z. Pan are with The Department of Electrical and Computer

Engineering, The University of Texas at Austin, TX, USA.
H. Ren and B. Khailany are with NVIDIA Corporation, Austin, TX, USA.
This work was supported in part by NVIDIA.

placement problem for wirelength minimization. Figure 1 roughly
sketches the runtime scaling trends for recent placers. While the
comparison may not be fair due to different objectives and constraints
during optimization, it still shows the runtime of placement engines
has not been improved even with more and more powerful CPUs.
NTUplace3 [6] proposed in 2008 is still competitive in efficiency for
wirelength optimization, especially that it is widely used in the most
recent placement researches [18]–[21].

With modern computing platforms like multi-core processors and
graphic processing units (GPUs), massively parallel computing has the
potential to accelerate the placement optimization. So far, a majority
of the literature has been exploring global placement acceleration
or simulated annealing-based approaches [22]–[27]. The recent study
from DREAMPlace [28] demonstrated that after accelerating global
placement, detailed placement becomes the runtime bottleneck by tak-
ing more than 75% of the entire placement time for a benchmark with
2M cells. Thus, accelerated detailed placement engines are urgently
desired to further speedup the flow. However, the greedy and iterative
nature of existing detailed placement techniques raise the bar of
effective parallelization. There is limited prior work investigating the
potential of massive parallelization for detailed placement techniques.
Only recently, Dhar et al [29] have explored multithreading and
GPU acceleration for a row-based interleaving algorithm in FPGA
placement. This is far from enough, as effective detailed placement
engines usually consist of multiple techniques and typically involve
graph algorithms and greedy heuristics.

With increasingly powerful multi-core processors and GPUs, par-
allel computing has demonstrated its efficiency in solving large graph
problems [30]–[32]. As detailed placement heavily involves graph
traversal and analytics, there is a high potential to accelerate detailed
placement algorithms with massive parallelization as well. Therefore,
in this work, we present ABCDPlace, an open-source GPU-accelerated
detailed placement engine leveraging batch-based concurrency. We re-
design the widely-adopted detailed placement techniques and propose
parallel versions for multi-threaded CPUs and GPUs. The main
contributions of the paper are summarized as follows.
• We propose an open-source batch-based concurrent detailed

placement framework, ABCDPlace, with multithreading and
GPU acceleration.

• We propose parallel detailed placement algorithms for widely-
adopted sequential techniques, such as independent set matching,
global swap, and local reordering, leveraging batch execution.

• Experimental results demonstrate that, compared with a highly
efficient sequential detailed placer NTUplace3 [6], ABCDPlace
is able to achieve over 10× and 16× speedup with GPUs on
ISPD 2005 contest benchmarks and industrial benchmarks, re-
spectively, without quality degradation. The multi-threaded CPU
version also achieves around 2×−5× speedup. Experiments on
ISPD 2015 contest benchmarks also indicate that our placer does
not degrade the global routing congestion.

ABCDPlace has been integrated into DREAMPlace 2.0 as the default

0 500 1000 1500 2000
#Cells (K)

0

100

200

300

400

500

600

700
Ru

nt
im

e
(s

)
NTUplace3,TCAD08@2.1GHz
Chow+,ISPD14@3.4GHz
Gang+,TCAD15@2.4GHz
MrDP,TCAD17@3.4GHz
Chen+,ICCAD18@3.4GHz

Fig. 1: Rough runtime scaling for the recent development of detailed
placement engines [6], [12], [13], [17], [33]. The runtime values are
collected from the papers with the CPU frequencies shown in the
legend, except for NTUplace3 [6] where we ran the experiments with
the binary release.

detailed placement engine released on Github 1. Each algorithm is
implemented as an operator that can be invoked with the Python API
in DREAMPlace. The rest of the paper is organized as follows. Sec-
tion II introduces the background of detailed placement algorithms and
the problem formulation. Section III explains the parallel algorithms in
details. Section VI validates the algorithms with experimental results.
Section VII concludes the paper.

II. PRELIMINARIES

Detailed placement typically assumes a legal initial placement is
given and performs incremental refinement. The main objective is
usually half-perimeter wirelength (HPWL), which is computed as the
bounding box of each net as follows,

HPWL =
∑
e∈E

(
max
i,j∈e

|xi − xj |+max
i,j∈e

|yi − yj |
)
, (1)

where e represents a net (hyperedge) in a set of nets E and i, j
represent any of two cells connected in e. The output of detailed
placement is a legal placement solution with optimized wirelength. In
general, a detailed placer often runs several key strategies to explore
different solution spaces iteratively. For example, FastPlace serializes
iterations of global swap and local reordering until no significant
wirelength improvements occur [2], [11], [34]. NTUplace serializes
iterations of local reordering (branch-and-bound cell swap [6]) and
independent set matching [6], [35]. Each of these strategies extract a
small set of cells and perturb them to find a better solution. In this
work, we focus on the parallelization of the following three strategies:
(1) independent set matching; (2) global swap; (3) local reordering.

A. Independent Set Matching

The previous two strategies only consider perturbations among
very few cells, e.g., 2-4. Independent set matching explores another
solution space that involves more cells [6]. Figure 2 shows an
example, where cells not connected to each other within a window
are extracted. As these cells form an independent set, movement
of one cell will not affect the wirelength of other cells in the set.
We can independently pre-compute the incident wirelength change
caused by assigning one cell to the location of another cell in the
set and find the optimal assignment by solving a maximum weighted

1https://github.com/limbo018/DREAMPlace

1

2

4 5

3

(a)

1
2
3

1’
2’
3’

4 4’
5 5’

(b)

Fig. 2: Independent set matching. (a) A set of independent cells
within a window. (b) Construction of a bipartite graph to find the
best assignment.

1 2 3 4

(a)

4 2 1 3

(b)

Fig. 3: Example of local reordering with sliding window. (a) Sliding
window at one step; (b) next step.

bipartite matching problem. Sometimes one cell cannot be assigned
to the location of another cell due to lack of space. In this case, no
edge will be added between that cell and location in the bipartite
graph. The independent set is created by searching for unconnected
cells greedily in a window. Due to the connectivity between cells,
sequential implementation is again a natural choice.

B. Global Swap

A general description of global swap is to repeat the following
process: pick a cell i; find another cell or space j in a search region
that maximally improves the wirelength after swap; then swap the
two cells. There are various heuristics to determine the search region
for a cell. It can be the bin in which the cell is located or the optimal
region of the cell [2]. Considering that a subsequent cell movement is
dependent to the previous cell movements due to the connectivity and
potential overlap issue, this process is usually performed sequentially.

C. Local Reordering

Local reordering shuffles a sequence of consecutive cells for the
best permutation [2], [6], as shown in Figure 3. It is a window-based
strategy that works on k cells at each step and repeats by sliding
the window from left to right. As the number of permutation for a
sequence of k is k!, it is only affordable to use a small value of k, e.g.,
3 or 4. When k goes down to 2, this local reordering step becomes a
special case of global swap. As the sliding windows have to overlap
for large enough solution space and cells are connected, most of the
existing implementations are sequential.

D. Problem Formulation

In this work, we aim at accelerating the detailed placement tech-
niques: global swap, local reordering, and independent set matching,
with massive parallelization on multi-threaded CPUs and GPUs. Our
framework, ABCDPlace, takes a netlist with a legal placement solution
as input, performs incremental wirelength optimization, and outputs
an optimized legal solution. The placer runs on both CPUs and GPUs,
and leverages parallel computing techniques to speed up the sequential
algorithms. Our main technique to improve the parallelizability is to
explore batch execution from the original sequential procedures. The
details will be covered in Section III.

2

DRAM

Control

Cache

DRAM

ALU

CPU

GPU
(a)

Global Memory

Shared Memory

Thread
(0, 0)

Thread
(1, 0)

Local
Memory

Local
Memory

Block (0, 0)

Grid

Shared Memory

Thread
(0, 0)

Thread
(1, 0)

Local
Memory

Local
Memory

Block (1, 0)

(b)

Fig. 4: (a) Comparison between CPU and GPU architectures. (b)
Computation units and memory hierarchy on GPU.

E. GPU Architecture and Programming

GPU programming is quite different from CPU due to the discrep-
ancy in architectures and programming models. Figure 4 compares the
architectures for CPU and GPU. A CPU is roughly composed of a
control unit, computation units (ALU), cache, and memory (DRAM).
A GPU also has such components, but with very different scale and
performance. It consists of a grid of computation units with simple
control units and small cache, which indicates that a GPU prefers
parallel execution of small tasks with simple control flows. Each
computation unit on a GPU may not be as powerful as that on CPU,
but due to massive parallelization, it can potentially be faster.

Unlike relatively mature programming models on CPU, GPU
programming still requires careful design of both algorithms and
implementations. The performance is likely to be much slower than
CPU even for a fully parallelizable task due to poor implementations.
The reason mainly comes from the flexible configurations to the
computation units at runtime. The computation units on a GPU can
be viewed as a grid of blocks. Each block consists of many threads
(at most 1024 for most GPUs). A block can be assigned with a piece
of shared memory that can be accessed by its threads more efficiently
than the global memory. However, there is an upper limit to the total
amount of the shared memory for all blocks, e.g,. 48∼96KB according
to GPU devices. Moreover, thread synchronization within a block
is much cheaper than the device-level synchronization. To perform
computation on a GPU, a program on the host CPU needs to launch
a kernel function call with the configurations of blocks, threads, and
shared memory. Such a function call has an overhead around several
micro seconds. In other words, frequent kernel calls are not preferred
in GPU programming.

With all these differences in the hardware architectures and pro-
gramming models, straightforward parallelization schemes on CPUs
often do not work on GPUs. In other words, GPUs require specially
designed algorithms and threading schemes to demonstrate the power
of massive parallelization.

III. THE ABCDPLACE ALGORITHMS

This section explains the details on concurrent versions of indepen-
dent set matching, global swap, and local reordering.

Algorithm 1 Sequential Independent Set Matching

Require: A circuit netlist G = (V,E), locations of cells, and maximum
size of an independent set L;

Ensure: Minimize wirelength by independent set matching;
1: for each cell v ∈ V do
2: Search independent cells with the same sizes as v in the neigh-

borhood and form an independent set I, s.t., |I| ≤ L;
3: Compute costs of permuting cell locations in I;
4: Solve the LAP with the weights;
5: Apply the assignment solution;

A. Concurrent Independent Set Matching

Algorithm 1 sketches a rough procedure for independent set
matching according to [6]. The word independent describes cells not
connected to each other. Thus, the movement cost for a cell in an
independent set can be computed without considering the locations
of other cells in the set. With an independent set, we can construct
a bipartite graph and solve the linear assignment problem (LAP) for
the best locations of cells in the set. The algorithm follows four steps
iteratively: 1) extract an independent set; 2) compute permutation
costs, which means the cost of moving one cell to the location of
another one in the independent set I; 3) solve the LAP; 4) move
the cells according to the solution of LAP. The algorithm is very
difficult to parallelize following the same procedure, because the
maximum size of independent set L is usually limited to around 100.
Even though the cost computation step for an L × L matrix can be
parallelized, the bulk runtime actually comes from independent set
extraction and LAP solving, which are typically sequential.

To improve the parallelization, we design a concurrent independent
set matching algorithm. Although the algorithm still runs in iterations,
it converges much faster than iterating through all cells like Algo-
rithm 1. The major advantage lies in the fully parallelizable internal
steps. Figure 5 provides an intuitive explanation of the steps. We first
extract a maximal independent set 2 with given seeds, which are likely
to contain tens of thousands of cells. The set is then partitioned into
many small subsets such that physically close cells with the same
sizes are in the same subsets. Next, we can solve the LAP instances
for all the subsets in the batch independently after computing the costs
of cell permutation. In the end, the solutions are applied in parallel
as well. The rest of the section will cover the non-trivial parallel
implementation of these steps, including parallel maximal independent
set extraction, parallel partitioning, and batch LAP solving.

1) Parallel Maximal Independent Set Extraction: A sequential
maximal independent set algorithm follows the procedure:
• For each node in the graph:
• If not in the set yet:
• Add to the set and remove all its neighbors in the graph.

This algorithm has a time complexity of O(|V |) if |E| is of the same
magnitude as |V |, as it needs to traverse the entire graph once. The
algorithm becomes slow with large graph sizes. There exist parallel
maximal independent set algorithms that can achieve O(log2 |V |)
time complexity, e.g., Blelloch’s Algorithm [37].

Algorithm 2 describes a parallel maximal independent set algo-
rithm based on the Blelloch’s algorithm [37] that is suitable for our
application. The algorithm is general enough to handle hypergraphs as
well. Lines 4 to line 7 ensure that only the vertex v with lowest order
R(v) among its neighbors joins I . As the vertex with the globally
smallest R value will always join I , the algorithm guarantees to

2A maximal independent set is different from a maximum independent set.
The former can be found greedily, while the latter is NP-complete [36].

3

4

65

3

1

2

(a)

4

65

3

1

2

(b)

1

2

3

1’

2’

3’

Graph 1 Graph 2
4

5

6

4’

5’

6’

Weight Matrix Weight Matrix
40 50 60" #

4 a440 a450 a460

5 a540 a550 a560

6 a640 a650 a660
<latexit sha1_base64="Utl2oCBXVn0JmqvuGw+dx90Tres=">AAAEOnicfVJNj9MwEE03fCzhqwtHLiMitpyqpF9wXMQBjotEd1eKo8px3dSq4wTbWaiy+Wf8EcSNG+LKD8BJ06rtLjtSoqeZ9/zGM44yzpT2vB+tA/vO3Xv3Dx84Dx89fvK0ffTsTKW5JHRMUp7KiwgrypmgY800pxeZpDiJOD2PFu+r+vkllYql4rNeZjRMcCzYjBGsTWrS/okCB0U0ZqKIeEoWWEq8LAtionSOYdCBYxhWv1EHAKEdrqEFhheWDsDAUPCkGAw6ZYOGGzQyqBYDDFep4YY23NCGW7TRKjXa0EYb2mhDQ1RMm0a28OoCDqDQmbRdr+vVAdeB3wDXauJ0cnTwAU1TkidUaMKxUoHvZTossNSMcGpsckUzbExiGhgocEJVWNRbKOGVyUxhlkrzCQ11dltR4ESpZRIZZoL1XO3XquRNtSDXs7dhwUSWayrIymiWc9ApVCuFKZOUaL40ABPJTK9A5lhios3id1wivp6P4yBBv5I0SbCZHIokLgM/LMwcVS5p1UOBOJ1pxLGIOXV9JFk811dluStcUH2z8GotQbI+YV9oHEkt7t3mCugym2Oh06Rwe2XTA9ScLri97bJf3upnDpfsG+Vl0P+/Iew5uv0S1qaVW30xcPs7vqYx2Lc2T8/ff2jXwVmv6/e73qeeewLNIzy0XlgvrdeWb72xTqyP1qk1tkjrXStuZa0v9nf7l/3b/rOiHrQazXNrJ+y//wCgTFwa</latexit>

10 20 30" #
1 a110 a120 a130

2 a210 a220 a230

3 a310 a320 a330
<latexit sha1_base64="BMD1NNxVQ9d26Elgzv1BKDy/7kE=">AAAEOnicfVJNj9MwEHU2fCzhqwtHLiMitpyqfBzguIgDHBeJ7q4UR5XjuqlVxwmOs1Bl88/4I4gbN8SVH4CbplHbXXakRE8z7/mNZ5wUgpfa835YB/adu/fuHz5wHj56/OTp4OjZWZlXirIxzUWuLhJSMsElG2uuBbsoFCNZIth5sni/qp9fMlXyXH7Wy4LFGUkln3FKtElNBj9x5OCEpVzWicjpgihFlk1NTTTOMfhDOIZg9QuHABjvcA0tMry4cQB8QyGT2veHTYeCHoUGtWKAYJ0KelrQ04ItWrhOhT0t7GlhT8NMTrtGtvD6Ag7g2JkMXG/ktQHXgd8BF3VxOjk6+ICnOa0yJjUVpCwj3yt0XBOlORXM2FQlK4gxSVlkoCQZK+O63UIDr0xmCrNcmU9qaLPbippkZbnMEsPMiJ6X+7VV8qZaVOnZ27jmsqg0k3RtNKsE6BxWK4UpV4xqsTSAUMVNr0DnRBGqzeJ3XBKxmY/jYMm+0jzLiJkcThRpIj+uzRzLSrFVDzUWbKaxIDIVzPWx4ulcXzXNrnDB9M3Cq40Eq/aEfaFxpK04uM0V8GUxJ1LnWe0GTdcDtJwRuMF22W9u9TOHK/6NiSYK/28Ie45u2MDGdOXWXgzccMfXNAb71ubp+fsP7To4C0Z+OPI+Be4JdI/wEL1AL9Fr5KM36AR9RKdojKj1zkqtwvpif7d/2b/tP2vqgdVpnqOdsP/+A6ybW9I=</latexit>

(c)

Fig. 5: Steps for batch-based concurrent independent set matching. (a)
Maximal independent set extraction. (b) Independent set partitioning.
(c) Linear assignment solving for a batch of bipartite graphs.

Algorithm 2 Parallel Maximal Independent Set Algorithm

Require: A graph G = (V,E), a random order R, s.t., |R| = |V |;
Ensure: A maximal independent set I contains vargminR ∈ V ;

1: I ← ∅;
2: while V is not empty do
3: for each v ∈ V do . Parallel kernel
4: if R(v) < R(w), ∀(v, w) ∈ E then
5: I ← I

⋃
{v}; . Add to I

6: G← G \ v; . Remove v from G

7: G← G \ w,∀(v, w) ∈ E; . Remove v’s neighbors

make progress in each round (line 3 to line 7). It will take at most
O(log2 |V |) rounds. Meanwhile, the task within each round is fully
parallelizable, as each vertex can be processed independently within
the for loop. In practice, early exit is possible if enough vertices are
collected for solving LAP. The random order sequence R can also be
generated efficiently with a parallel random shuffling of the sequence
0, 1, . . . , |V |.

2) Parallel Partitioning with Balanced K-Means Clustering: The
maximal independent set is too large for LAP algorithms. Observing
that most of the cell movement happens locally, it is good to
partition the independent set into a batch of small subsets such
that cells in the same subset are physically close to each other. A
sequential implementation might be distributing the cells into bins
and performing spiral walk to greedily add nearby cells to subsets.
This is not runtime-efficient for GPU because of its sequential nature
and irregular memory access patterns in spiral search, while on CPU,
the runtime is acceptable and not the bottleneck. Therefore, we adopt
K-Means clustering for GPU in this step, leveraging parallel reduction
to find the closest centroids for clusters. The conventional objective
for K-Means clustering is to find K centers,

min

K∑
i=1

∑
x∈Si

‖x− µi‖2 , (2)

where µ denotes the centers. However, such an objective may result
in imbalanced clusters. This is not preferred for parallel solving of
LAP instances, especially for GPU acceleration. To achieve balanced
clustering results, we consider a weighted objective,

min
K∑
i=1

∑
x∈Si

wi ‖(x− µi)‖2 , (3)

0 200 400 600 800 1000

Batch Size

0

500

1000

R
u

n
ti

m
e

(m
s)

Hungarian 20T

Network Simplex 20T

Auction 20T

Fig. 6: Runtime comparison of batch solving for LAPs on CPU.
“20T” stands for 20 threads on CPU.

where the weight wi for each cluster is adjusted in each iteration
to penalize large clusters. Given a target cluster size st, weights are
initialized to 1 and empirically updated at the kth iteration as follows,

wk+1
i ← wk

i × (1 + 0.5 · log(max{1, |Si|/st})). (4)

Intuitively, the weight of a cluster increases if its size goes beyond
st. This is an empirically determined function. Other functions with
similar trends may also work. In the experiment, the number of clus-
ters K is computed as the ratio of the number of nodes in a maximal
independent set over the expected cluster size st, where st = 128. We
observe that 2 iterations of K-Means have already achieved reasonable
partitioning results with rather balanced distribution of subsets.

3) Batch Solving for Linear Assignment Problems: LAP can be
solved with many algorithms, such as Hungarian algorithm, network
flow algorithms, auction algorithm, etc. The mathematical formulation
can be written as,

max
∑
i,j

aijxij ,

s.t.
N∑
i=1

xij = 1, j = 1, 2, . . . , N,

N∑
j=1

xij = 1, i = 1, 2, . . . , N,

xij ≥ 0, i, j = 1, 2, . . . , N,

(5)

where xij = 1 indicates assigning i to j, and aij is the weight of such
an assignment. The Hungarian and network flow algorithms are widely
adopted as sequential solvers [6], [33], while auction algorithms [38]
are generally the choice for distributed computing platforms due to
its easy-to-parallelize nature [32], [39].

Figure 6 shows a comparison on solving a batch of LAP instances
with different algorithms on a multi-threaded CPU. Hungarian adopts
the implementation from [40] and network simplex (a highly efficient
network flow algorithm in practice [33]) uses the solver from Lemon
[41]. The auction algorithm adopts our own implementation described
in Algorithm 3. Each LAP instance is solved with a single thread.
We can see that network simplex is much faster than the Hungarian
algorithm, and our auction algorithm can achieve further 2× speedup
over network simplex. While the solvers are mostly treated as black
boxes in placement algorithms, it is sometimes necessary to study the
details for acceleration targeting specific hardware platforms.

Auction algorithms consider the problem in which N persons (cells
in this work) bid for N items (locations in this work) with a weight of
aij (negative wirelength cost of assigning a cell to a location as the al-
gorithm maximizes the objective). A typical auction algorithm repeats
a bidding phase and an assignment phase that are fully parallelizable,

4

as shown in Algorithm 3. In the bidding phase from line 5 to 9, each
person finds the item j∗ with the largest aij − pricej value recorded
in the temporary variable vij∗ and the second largest aij − pricej
value recorded in the temporary variable wij∗ , respectively. Then the
price increment for bidding is computed as bidij∗ and item j∗ is
marked in sbidj∗ . In the assignment phase from line 10 to 16, each bid
item looks for bidder i∗ with the highest bidding price increment bi∗ ,
assigns itself to person i∗, and raises its price by bi∗ . Looping between
these two phases will lead to an optimal assignment solution with the
maximum objective. The auction epsilon ε, which indicates the price
augmentation step, controls the numerical precision of convergence
to the optimal solution. Parallelization of Algorithm 3 can be realized
by parallelizing the bidding and assignment phases. For example, one
thread can be allocated to work on each person independently in the
bidding phase (line 5 to line 9); we can also have one thread work
on each item independently in the assignment phase as well.

Efforts have been spent on accelerating LAP algorithms with
large N (> 1000). However, in this problem, cells only need local
movements, so each LAP instance is small with N around 100. There
are many such small instances [6]. Our simple experiment on an LAP
with N = 128 shows that the GPU implementation requires around
5ms, while a single-threaded CPU implementation takes around 17ms,
2ms, 1ms using Hungarian algorithm [40], network simplex [41], and
auction algorithm (equivalent to the results of batch size 1 in Figure 6),
respectively, making GPU unable to compete with CPUs.

Therefore, a batch-based auction algorithm is required to solve
multiple LAP instances with the same problem size simultaneously
with massive parallelization on GPUs. A naive way for batch exe-
cution is to adopt CUDA’s multi-stream scheme by assigning each
LAP to one CUDA stream. Unfortunately, multi-stream is usually
inefficient for thousand of streams due to crowded kernel launches
and we even observe longer runtime with that. Hence, we propose a
GPU implementation specifically optimized for batch solving of small
LAP instances, as shown in Figure 7 and Algorithm 4. To mitigate
the expensive communication and synchronization overhead between
CPUs and GPUs, the batch-based auction algorithm integrates the
entire while loop into a CUDA kernel and assigns each LAP instance
to one thread block. By doing so, expensive device-wide synchro-
nization is minimized and the number of kernel launches is reduced
from O(BK), empirically around 1 million, down to one, where B is
the batch size and K is the largest number of iterations for one LAP
instance in the batch, usually larger than 1000. This implementation is
specifically designed for small LAP instances because the maximum
number of threads in one block is typically limited to 1024, which is
a constraint from GPUs. Although device-wise synchronization is no
longer required, block-wise synchronization is still needed, as shown
in line 8 and line 10 of Algorithm 4, which can be invoked within
a kernel. Threads within a thread block need to wait for all their
tasks finished before moving forward. Furthermore, we introduce an
annealing scheme for ε to speed up the convergence by solving the
LAP instance from a large εmax to small εmin and use the prices
of previous solving as the starting point for the next, as described
in line 5 and line 13 of Algorithm 4. In the experiment, we set
εmax = 10, εmin = 1, γ = 0.1. We can improve the runtime on
GPU by more than 100× over the multi-stream implementation for
typical batch size of 1024 and N = 128.

B. Concurrent Global Swap

Global swap is another widely-adopted placement technique [2],
[4]. Without loss of generality, a typical procedure of global swap is
shown in Algorithm 5. It consists of five major steps and iteratively

Algorithm 3 Auction Algorithm for One LAP Instance

Require: An N ×N weight matrix A for LAP and auction ε;
Ensure: Find the assignment solution with maximum objective;

1: Define price as a length-N array, initialized to 0;
2: Define bid as an N ×N matrix, sbid as a length-N array;
3: while not all items assigned do
4: bidij ← 0, ∀i, j; sbidj ← 0, ∀j;
5: for each person i do . Parallel bidding kernel
6: vij∗ ← maxj(aij − pricej); . Largest
7: wij∗ ← maxj 6=j∗ (aij − pricej); . Second largest
8: bidij∗ ← vij∗ − wij∗ + ε;
9: sbidj∗

atomic←−−−−− 1;
10: for each item j do . Parallel assignment kernel
11: if sbidj then
12: bi∗ ← maxi bidij ;
13: if item j has been assigned then
14: Unassign j;
15: pricej ← pricej + bi∗ ;
16: Assign item j to person i∗;

0

Block
0

1
…

N-1

Threads Bidding Assignment

Person 0
Person 1

…
Person N-1

Item 0
Item 1

…
Item N-1

C
on
ve
rg
e?

While Loop

Te
rm
in
at
e

Sy
nc

 T
hr

ea
ds

Sy
nc

 T
hr

ea
ds

Fig. 7: Parallelization scheme for batch-based auction algorithm. One
thread block is used to solve one LAP with the while loop within the
kernel.

runs for each cell. There are various heuristics to compute the search
region, such as directly using the bin in which a cell is located or its
optimal region [2]. Moreover, during the sequential search for best
swap candidates, we can start from potentially good regions to bad
regions, such that early exit is possible if a candidate has been found.

Figure 8a shows the runtime breakdown of a sequential imple-
mentation of Algorithm 5 running on CPUs. The runtime portion
for ApplyCand is not shown as it is too small. The plot indicates
that CalcSwapCosts takes the majority of the runtime. Naive
parallelization of CalcSwapCosts does not lead to much speedup
as for each cell, we do not look for a large enough number of candidate

Algorithm 4 Batch-based Auction Algorithm for LAP instances

Require: A B ×N ×N weight tensor, εmax, εmin, γ;
Ensure: Find B ×N assignment matrix with maximum objectives;

1: Define price as a B ×N matrix, initialized to 0;
2: Define bid as a B ×N ×N tensor, sbid as a B ×N matrix;
3: ε← εmax; . Parallel kernel begins
4: bid← blockIdx, tid← threadIdx;
5: while ε ≥ εmin do
6: while not all items assigned for LAP instance bid do
7: Initialize bid and sbid;
8: Synchronize threads;
9: Bidding phase for person tid with ε;

10: Synchronize threads;
11: Assignment phase for item tid;
12: Synchronize threads;
13: ε← γε; . Parallel kernel ends

5

0.5

85.3

2.0
12.3

CalcSearchBox

CalcSwapCosts

FindBestCand

CollectCands

(a)

1.0

1.2

1.4

1.6

1.8

S
p

ee
d

u
p

1T

2T

4T

8T

10T

(b)

Fig. 8: (a) Runtime breakdown of sequential global swap implemen-
tation on CPU for bigblue4 with 2M cells. (b) CalcSwapCosts
speedup with naive multithreading. “T” stands for threads on CPU.

Algorithm 5 Sequential Global Swap Algorithm

Require: A circuit netlist G = (V,E) and locations of cells;
Ensure: Minimize wirelength by swapping cells;

1: for each cell v ∈ V do
2: Compute search region R for v; . CalcSearchBox
3: Collect swap candidates C in region R; . CollectCands
4: Compute swap costs for candidates; . CalcSwapCosts
5: Find candidate c∗ with minimum cost; . FindBestCand
6: Apply the swap with the candidate c∗; . ApplyCand

cells for swapping and the threading overhead is not affordable. As
shown in Figure 8b, our experiments on bigblue4 actually show the
speedup to CalcSwapCosts quickly saturates to 1.4× even with
10 threads enabled, when we use OpenMP to parallelize the for loop
for swap cost computation. Especially when considering that GPUs
have low single-threaded performance, but with thousands of threads
available, creating enough parallel tasks for CalcSwapCosts to
hide latency is essential to good speedups with GPU acceleration.

To apply task decomposition, we develop a batch-based concurrent
global swap to improve the performance of parallelization. Figure 9
explains the intuition. Instead of processing one cell each time as in
Algorithm 5, processing a batch of cells explores more parallelism
for CalcSwapCosts and thus is potentially beneficial. The overall
algorithm of the concurrent global swap is presented in Algorithm 6.
We precompute the search regions for all cells in parallel in line 1
and line 2. From lines 3-7, we fetch one batch of cells every time
and perform concurrent global swapping. Suppose that there are B
cells in a batch and on average we check 100 swap candidates for
each cell, there will be 100 × B concurrent tasks, which is enough
for relatively high occupancy of GPU resources. This batch-based
concurrency applies to both CollectCands and CalcSwapCost.
We will discuss the aforementioned functions one-by-one in the rest
of the section.

Figure 10 shows the parallel implementation of CollectCands
conceptually. We allocate a fixed number of thread blocks for each
cell in the batch. Each thread will collect one candidate cell for the
candidate array. The candidate array is pre-allocated with a fixed

Algorithm 6 Concurrent Global Swap Algorithm

Require: A circuit netlist G = (V,E), locations of cells, batch size B;
Ensure: Minimize wirelength by swapping cells;

1: for each cell v ∈ V do . Parallel
2: R(v)← CalcSearchBox(v);
3: for each batch of cells Bv ∈ V do
4: BC ← CollectCands(Bv , R); . Parallel
5: CalcSwapCosts(BC); . Parallel
6: Bc∗ ← FindBestCand(BC); . Parallel Reduction
7: ApplyCand(Bc∗); . Sequential

4

3

1

2

Fig. 9: Batch-based concurrent global swap. Cells in the batch and
regions to search for candidates are highlighted.

1 2

0
1

255
…

Cells in
Region

… …

Threads

0
1
2
3
4
5
…

511

Candidates

0
1

255
…

Block
0

Block
1

0
1

255
…

Cells in
RegionThreads

0
1
2
3
4
5
…

511

Candidates

0
1

255
…

Block
3

Block
4

Fig. 10: Parallelization scheme for CollectCands.

maximum number of candidates. The runtime of this step can be
significantly improved since the memory access pattern is rather
regular. Besides, the cost computation for all candidates can be done
in parallel as well. Due to the large number of candidates, i.e., batch
size × maximum number of candidates per cell, the workload can be
distributed to many threads for speedup. The details on batch sizes
and maximum number of candidates per cell are discussed in the
following paragraph.

After parallelizing the candidate collection and cost computation,
the swap costs are stored in a B×K matrix-like structure with B as
batch size and K as maximum number of candidates for each cell.
Best candidates with minimum costs can be selected by using parallel
reduction operations [42]. Given P threads, the time complexity is
O(BK

P
+ logK) [43], where B is around 32 to 256, K is around

512 to 1024 in the experiments, and P is in thousands for GPUs.

The last step is to apply swapping to the best candidates, shown
as function ApplyCand. As the cells and candidates in the previous
steps may have dependency to each other, this is the step we resolve
such dependency issues. For a given batch, there are at most B
candidates that need to be applied. There might be conflicts between
candidates. For example, two cells in the batch may tend to swap
with the same cell, which will result in incorrect costs if both swaps
applied. To resolve such a data race, sequential execution is adopted.
We give up candidates whose cells to swap with have been moved or
other cells connected to these two cells have been moved in this batch.
Note that this step is not the runtime bottleneck even with sequential
execution.

In the experiment, the search region for one cell is set to one bin,
whose width and height are around 3-row height. We can control the
batch size for the efficiency and resource usage. With larger batch
sizes, the efficiency may improve, but require more GPU memories,
as all the storage needs to be pre-allocated. We observe the speedup
starts to saturate when the batch size is around 256, so we adopt this
value.

6

1 32 4 5 76 8 9 1110 12

1 32 4 5 76 8 9 1110 12

Window 1 Window 2 Window 3

Step 1

Step 2

(a)

Row 1

Row 2

Row 3

Row 4

(b)

Fig. 11: Explore parallelization in local reordering. (a) Parallel sliding
windows within a row. (b) Groups of independent rows ({row 1,
row4}, {row 2}, {row 3}).

C. Concurrent Local Reordering

Different from global swap in which a cell may search for candi-
dates quite far away from its own location, local reordering works on
a very small sliding window with k cells in a row. The parameter k is
small due to the k! number of possible permutations for enumeration.

1) Parallel Enumeration: One straightforward multithreading
scheme is parallel enumeration of the k! permutations. There are
two issues for this scheme: i) for multi-threaded CPU, the task of
enumerating one permutation is too small to compensate the threading
overhead; ii) for GPU acceleration, the number of permutations like
3! = 6 and 4! = 24 are not enough to fill thousands of GPU threads.
Therefore, parallel enumeration itself is not enough to boost the
efficiency. We need to find more parallel tasks by exploring multiple
dimensions of parallelism.

2) Parallel Sliding Windows: The original sequential algorithm
slides a window from left to right and solves one window at a time.
We consider the potential of solving multiple windows at the same
time, as shown in Figure 11a, where window 1, 2, 3 can be solved in
parallel. However, one may argue the connectivity of cells between
windows is likely to cause suboptimality, e.g., cell 6 connects to cell
2 and their locations are undecided during the solving. Actually, this
will not affect the optimality for each permutation problem within
a window, because the relative ordering of cells between different
windows is fixed. More specifically, cell 6 knows cell 2 is always at
its left side, and so as cell 2. To this end, when computing the HPWL
of the net incident to both cell 2 and 6, cell 6 can assume cell 2 is
located at the left boundary of cell 6’s window. Similarly, cell 2 can
assume cell 6 is located at the right boundary of cell 2’s window. This
trick is widely-used in ordered row placement [2] and the optimality
within each window still holds.

Solving parallel sliding windows once cannot cover enough solution
space as explored by sequential sliding. The parallel solving needs to
be conducted multiple times, as shown in Figure 11a. After step 1,
step 2 shifts all the parallel windows with an offset and performs
another round of solving. We can control the step size for the offset
for a reasonable number of rounds. In the experiment, we set the step
size as k

2
.

0 200

Row Group

0

100

#
R

ow
s

(a)

0 200

Window Group

0

5000

#
W

in
d

ow
s

(b)

Fig. 12: (a) Group sizes of independent rows; (b) group sizes of
independent windows on bigblue4.

3) Independent Rows: We further investigate possible parallel tasks
by extracting independent rows, as shown in Figure 11b. Independent
rows refer to a group of rows that do not have any two cells share a
common net. In the figure, we can find three such groups of {row 1,
row4}, {row 2}, {row 3}. This approach is valid under the assumption
that most connections are local in the detailed placement problem.

With the aforementioned three dimensions of parallelism, a signif-
icant number of parallel tasks can be performed. Figure 12 shows
the distribution of group sizes at row group level and window group
level on bigblue4. Row group refers to the grouping of independent
rows. Window group refers to the incorporation of independent rows
and parallel sliding windows. All the instances within a group can
be solved in parallel. Hence, we can see the effectiveness in finding
independent tasks.

IV. SUMMARY OF PARALLEL CPU AND GPU IMPLEMENTATIONS

To achieve high efficiency on both multi-threaded CPU and GPU,
we optimize the implementations separately with slightly different
threading strategies for the three algorithms. We summarize the major
differences in Table I and in this section.

1) Concurrent Independent Set Matching: Both multi-threaded
CPU and GPU versions implement the same parallel maximal inde-
pendent set algorithm, but the single-threaded CPU adopts the greedy
sequential algorithm mentioned at the beginning of Section III-A1,
because the sequential algorithm can finish the extraction in one
iteration, while the parallel algorithm requires multiple iterations.

Another main difference lies in the partitioning step, where the
CPU version adopts sequential spiral search and the GPU version
adopts the K-Means clustering, as spiral search is too expensive on
GPUs and K-Means clustering is too expensive on CPUs. In the LAP
solving step, each CPU thread solves one LAP instance, while the
GPU version adopts the batch implementation discussed in Section
III-A3. When applying the solutions, we use each CPU thread for
one independent set, while each GPU thread only works on one cell
in an independent set.

2) Concurrent Global Swap: For the CPU version, we allocate
each thread for one cell during the batch execution of candidate
collection, cost computation, and best candidate finding. As the typical
batch size is 256 or larger, there are enough tasks for each CPU
thread. For the GPU version, we allocate threads in a finer granularity.
In candidate collection, each thread collects one candidate for a
cell, as mentioned in Figure 10; in cost computation, each thread
computes costs for one candidate; in finding the best candidates,
parallel reduction is used.

3) Concurrent Local Reordering: For the CPU version, the par-
allelization is implemented at the level of independent rows. That
is, within a group of independent rows, each thread will solve the
enumeration problems sequentially by sliding windows in one row.

7

For the GPU version, we allocate each thread for each independent
window with one permutation. Then parallel reduction is performed
to find the best permutation for each window.

V. POSSIBLE EXTENSIONS

ABCDPlace aims at accelerating the fundamental wirelength op-
timization techniques in detailed placement. In modern design flow,
detailed placement sometimes also needs to consider other objectives
such as routability and timing. The parallelization strategies developed
in this work can be extended to handle these objectives.

For routability optimization, a typical way for extension is to add
overflow penalty to the objective along with the wirelength cost.
One example is the NTUplace4 series [5], [44]. As the routing or
density overflow map can be precomputed, the overflow penalty for
the movement of an individual cell can be calculated incrementally.
Then, a weighted sum of overflow penalty and wirelength cost can
guide the detailed placement engine to optimize routing congestion.
For timing optimization, typical techniques include net weighting and
incorporation of extra timing cost into the objective [45], [46]. An
external timing analysis engine can help achieve this goal.

Therefore, extensions of these detailed placement techniques for
routability and timing optimization in general involve in integrating
other penalty terms into the wirelength cost, while the skeletons of
the algorithms remain similar. This work can provide practical insights
in developing algorithms for routability and timing optimization. We
leave the incorporation of these objectives in the future.

Meanwhile, multiple-row height cells become common in mod-
ern designs. Our current implementations only work on single-row
height cells and fix the multiple-row height ones. For independent
set matching and global swap, we extend to handle multiple-row
height cells if we work on cells with the same sizes. We plan to
incorporate this feature in the future. For local reordering, it may not
be straightforward, as we have to work on both multiple-row height
cells and single-row height cells together, making the enumeration of
all permutations complicated.

VI. EXPERIMENTAL RESULTS

ABCDPlace was implemented with C++/CUDA for GPU and
C++/OpenMP for multi-threaded CPU, respectively. The framework
was validated under ISPD 2005 and 2015 contest benchmarks [47],
[48] and a set of benchmarks from industry. We adopt sequential
detailed placement engines in NTUplace3 [6] and NTUplace4dr [44]
for comparison. The runtime environments for the three sets of
benchmarks are slightly different, which are shown at the bottom of
Table II, Table III, and Table IV, respectively. While the proposed
parallel placement algorithms can be arbitrarily combined according
to the real applications, we fixed the detailed placement flow in the
experiment as the following sequence: local reordering, independent
set matching, global swap, and local reordering to search for different
solution spaces. All the runtime values reported in this section are
wall-time for detailed placement excluding the file IO time, as in
practice, all the data is already in the memory if running in the entire
backend flow.

A. HPWL and Runtime Evaluation

We compare our parallel algorithms on both CPU and GPU with
NTUplace3 [6] in terms of HPWL and runtime. The legalized global
placement solutions are generated by an open-source placer DREAM-
Place [28]. As Figure 1 indicates, NTUplace3 is very competitive
in its efficiency. In Table II and Table III, we show the HPWL

and runtime for single-threaded, 10-thread, 20-thread, and GPU for
ISPD 2005 contest benchmarks and industrial benchmarks. The file
IO time is shown in separate columns for reference. As the file
IO of ABCDPlace has a sequential implementation, we only show
the time for single thread to save space. Multithreading has similar
values. The GPU version has longer file IO time than the CPU
versions, as we need to first read data from disk to CPU memory
and then copy to GPU global memory. If we run a full placement
flow, including global placement, legalization, and detailed placement,
we can initialize all data in the GPU global memory. Thus, this
is not a mandatory overhead. As mentioned in Section IV, we
choose different algorithms for the maximal independent set and
the partitioning steps in independent set matching to maximize the
efficiency, so the wirelength results are slightly different, but they are
almost the same on average.

On ISPD 2005 benchmarks, with a single thread, ABCDPlace
demonstrates competitive runtime compared with NTUplace3, while
ABCDPlace can achieve more than 2× speedup with 20 threads, and
more than 10× speedup with GPU. On large industrial benchmarks,
the speedup from multithreading is more than 4× and that from
GPU is more than 16× on average. The difference in the speedup
mainly comes from discrepant experimental environment for the two
benchmarks and design sizes. Figure 13 plots the speedup over our
single thread implementation versus the design sizes from 200K to
10M. Generally speaking, the speedup increases with the design sizes
and saturates at 1M to 2M, especially on GPU. For million-size
designs, the speedup values stay above 15× for GPU, while the CPU
speedup varies between 2×−5×.

Another observation from the tables is that the speedup values are
close between 10 and 20 threads, i.e., much less than the number of
threads, indicating that the benefits from CPU parallelization saturate.
With current implementations in the experiments, GPU acceleration
provides more speedup than CPU multithreading, while the CPU
parallelization may be further improved in the future.

B. Routability Evaluation

Although ABCDPlace does not explicitly consider routability so far,
we perform experiments on ISPD 2015 contest benchmarks [48] to see
whether it leads to significant overhead in congestion. The original
objective of the contest is detailed-routability-driven placement and
NTUplace4dr was the winner [44]. We obtained the binary from
the NTUplace4dr team and conducted experiments with the legalized
global placement solutions dumped by NTUplace4dr as the input. The
results are shown in Table IV. As the original industrial evaluation
platform for detailed routability is no longer available, we report the
“top5 overflow”, i.e., the average of the global routing overflow in the
top 5% congested routing grids, evaluated from the NCTUgr global
router [49] integrated in NTUplace4dr. It can be seen that besides
improving the HPWL, ABCDPlace even slightly reduces the global
routing overflow by 2.9%, which is even better than NTUplace4dr.
This indicates that our algorithms do not harm the routability too
much in these benchmarks. However, it also needs to be noted that
although our global routing overflow is less than NTUplace4dr, it does
not mean we can achieve better detailed routability. As NTUplace4dr
spends a lot of efforts to optimize the detailed routing congestion
issues, e.g., DRC errors, we expect ABCDPlace to have more DRC
errors if detailed routing is performed.

For runtime comparison, we report the detailed placement runtime
along with the file IO time for reference. As NTUplace4dr can run the
entire placement flow and report the runtime in each stage, the file
IO time is not retrieved and only the core detailed placement time

8

TABLE I: Summary of Major Differences in CPU and GPU Implementations

Algorithm Multi-threaded CPU GPU

Concurrent Independent Set Matching Partitioning Sequential spiral search Parallel K-Means clustering
Batch LAP One thread for each LAP instance One thread block for each LAP instance

Concurrent Global Swap
CollectCands

One thread for candidate collection
of one cell

One thread block for candidate collection of one
cell at one bin

CalcSwapCosts One thread for swap candidates of
one cell

One thread for each swap candidate

FindBestCand
2D parallel reduction for a matrix of candidates
(batch size × max candidates per cell)

Concurrent Local Reordering Parallelization
granularity

One thread for each row in each
independent row group

One thread for one permutation of one sliding
window in a row in each independent row group

is reported. Meanwhile, due to the detailed-routability optimization
in NTUplace4dr, it is slower than ABCDPlace even with a single
thread. It is not very meaningful to compare placers with different
objectives. We focus on the speedup over single-threaded CPU from
multithreading and GPU. The average speedup is around 5× with
20 threads and 6.8× with GPU for all designs. However, for large
designs, e.g., the superblue series, the speedup from GPU over a
single thread can go to 25× and beyond. In Figure 13, the speedup
curve for GPU climbs up quickly with the increase of design sizes.

C. Runtime Breakdown

Figure 14 examines the runtime breakdown of NTUplace3 (rep-
resenting sequential implementation), ABCDPlace with 20 threads
and with GPU on ISPD 2005 benchmarks. NTUplace3 runs the
local reordering and independent set matching steps twice and the
runtime breakdown is around half and half. ABCDPlace also runs
four steps, i.e., local reordering twice, independent set matching and
global swap once. The runtime breakdown maps for CPU and GPU are
similar. On CPU, independent set matching takes the largest portion,
while on GPU, local reordering is most time-consuming. On ISPD
2015 benchmarks, the runtime distribution is different, as shown in
Figure 15, where independent set matching takes the largest portion
of the runtime for both CPU and GPU.

We also plot the speedup of each individual step from multi-
threaded and GPUs over single-threaded execution, as shown in
Figure 14d. Here we use the single-threaded version of the proposed
concurrent algorithms as the baseline for fair comparison. With 10 and
20 threads, we can achieve around 5× speedup for local reordering
and global swap, as well as 3× speedup for independent set matching.
With GPU, the speedup can reach over 32× for local reordering, 22×
for global swap, and 19× for independent set matching.

Figure 16, 17, and 18 draw the runtime breakdown of each internal
step for concurrent independent set matching, global swap, and local
reordering, respectively.
• Concurrent independent set matching. The breakdown maps

have different flavors between multi-threaded CPU and GPU
implementation. Most of the efforts are spent on partitioning
and maximal independent set for CPU, while for GPU, LAP and
partitioning take the largest portions.

• Concurrent global swap. The breakdown maps for both
multi-threaded CPU and GPU are similar. One may note that
ApplyCand takes quite some portion of the runtime, because
that is the only step that has to run sequentially.

• Concurrent local reordering. There are only two steps for this
algorithm: an initialization step to compute the independent rows
and an iterative enumeration step. The initialization step is done
sequentially on CPU, while the enumeration step runs for two
iterations in Figure 18. With multi-threaded CPU, enumeration
takes over 99% of the runtime, while GPU implementation

significantly accelerates this part such that the portion of ini-
tialization becomes not negligible.

These breakdown maps for the concurrent algorithms show the
effectiveness of our acceleration techniques to speedup the critical
portions of the computation and achieve more balanced runtime
distribution of each step.

D. Clarification to the Combination of Placement Techniques

In all the experiments, we apply the placement techniques in the fol-
lowing sequence: local reordering, independent set matching, global
swap, and local reordering. It needs to be clarified that this com-
bination is empirically determined according to the experiments and
these techniques can be arbitrarily combined. Users are encouraged to
customize the combination according to their benchmarks. Intuitively,
it is better to interleave different techniques, as they explore different
solution spaces. Thus, we go through local reordering, independent set
matching, and global swap each once. Then, we find the wirelength
improvement mostly saturates after applying another round of local
reordering, so we choose the current combination for the experiments.

VII. CONCLUSION

We present ABCDPlace, an open-source batch-based acceleration
of detailed placement on multi-threaded CPUs and GPUs. We propose
efficient parallel algorithms for classic sequential detailed placement
techniques based on batch execution. The placer can achieve over
10× and 16× speedup with GPUs on ISPD 2005 contest benchmarks
and industrial benchmarks, respectively, without quality degradation.
The multi-threaded CPU version also achieves around 2 × −5×
speedup. For a 10-million-cell design, our placer is able to finish
within one minute on GPU, while it takes almost half an hour for
a sequential implementation like NTUplace3. Experiments on ISPD
2015 benchmarks also show that the placer has minimal overhead in
global routing congestion, even though routability is not explicitly
considered. We believe the parallelization strategies can shed lights
to accelerating other sequential design automation algorithms for fast
design closure.

In the future, there are many perspectives to further improve
ABCDPlace.
• Incorporate holistic optimization objectives such as routability,

timing, and multiple-row height cells.
• Better parallelization. Current speedup for CPU is still limited

and there is room to improve. We also consider to explore other
parallelization strategies such as diagonal partitioning.

• Incorporate more detailed placement techniques such as row-
based placement algorithms.

As an open-source project, ABCDPlace can provide an initial devel-
opment platform for efficient and effective placement engines.

9

TABLE II: Comparison of runtime (in seconds) and HPWL with NTUplace3 [6] on ISPD 2005 contest benchmarks. “1T”, “10T”, and “20T”
denote single, 10, and 20 threads, respectively. “RT” denotes the core detailed placement runtime and “IO” denotes the file IO time.

Design #cells #nets Initial
HPWL

NTUplace3 ABCDPlace
Single thread 1T 10T 20T GPU

HPWL RT IO HPWL RT IO HPWL RT HPWL RT HPWL RT IO
adaptec1 211K 221K 74.35 73.28 25 3 73.23 38 6 73.21 11 73.21 10 73.21 3 13
adaptec2 254K 266K 83.22 82.14 32 4 82.03 44 7 82.03 15 82.03 18 82.05 4 14
adaptec3 451K 467K 199.01 193.98 59 7 193.32 96 12 193.21 24 193.21 22 193.47 7 21
adaptec4 495K 516K 178.28 174.40 68 7 174.41 94 13 174.41 25 174.41 25 174.49 6 23
bigblue1 278K 284K 90.18 89.44 35 4 89.46 47 8 89.45 15 89.45 14 89.43 4 15
bigblue2 535K 577K 139.46 136.76 95 8 136.92 97 15 136.92 24 136.92 23 137.00 6 25
bigblue3 1093K 1123K 310.91 303.98 148 15 304.14 196 28 304.17 59 304.17 57 304.46 10 43
bigblue4 2169K 2230K 751.08 743.75 354 34 744.46 369 61 744.42 91 744.42 80 744.35 16 88

ratio 1.017 1.000 1.000 1.000 1.330 1.000 0.380 1.000 0.369 1.000 0.091

The CPU results for the ISPD 2005 benchmarks were collected from a Linux server with a 20-core Intel Xeon E5-2650 v3 @ 2.3GHz. The GPU results
were collected from a Linux server with a 15-core Intel Xeon Silver 4110 CPU @ 2.1GHz CPU and an NVIDIA Tesla V100 GPU.

TABLE III: Comparison of runtime (in seconds) and HPWL with NTUplace3 [6] on industrial benchmarks. “RT” denotes the core detailed
placement runtime and “IO” denotes the file IO time.

Initial
HPWL

NTUplace3 ABCDPlace
Design #cells #nets Single thread 1T 10T 20T GPU

HPWL RT IO HPWL RT IO HPWL RT HPWL RT HPWL RT IO
design1 1329K 1389K 346.23 340.96 194 35 341.04 236 40 341.03 59 341.03 42 341.00 14 42
design2 1300K 1355K 281.45 275.79 203 33 275.63 232 41 275.64 56 275.64 41 275.56 13 43
design3 2246K 2276K 531.93 523.06 332 58 522.93 384 66 522.97 95 522.97 78 522.98 19 69
design4 1512K 1528K 459.49 454.14 233 41 453.97 292 47 453.99 65 453.99 51 453.91 15 49
design5 1306K 1364K 294.05 288.38 203 34 288.47 236 39 288.49 55 288.49 41 288.45 13 43
design6 10504K 10747K 2348.81 2346.33 1565 331 2348.64 1391 331 2348.65 442 2348.65 349 2348.34 58 350

ratio 1.014 1.000 1.000 1.000 1.137 1.000 0.283 1.000 0.215 1.000 0.059

The results for the industrial benchmarks were collected from a Linux server with a 20-core Intel E5-2698 v4 CPU @ 2.2GHz CPU and an NVIDIA Tesla V100 GPU.

TABLE IV: Comparison of runtime (in seconds), HPWL, and congestion with NTUplace4dr [44] on ISPD 2015 contest benchmarks. “1T”and
“20T” denote single and 20 threads, respectively. “RT” denotes the core detailed placement runtime and “IO” denotes the file IO time.

#cells #nets Initial
HPWL

Initial
Top5

Overflow

NTUplace4dr ABCDPlace 1T ABCDPlace 20T ABCDPlace GPU

HPWL Top5
Overflow RT HPWL Top5

Overflow RT IO HPWL Top5
Overflow RT HPWL Top5

Overflow RT IO

mgc des perf 1 113K 113K 1.22 64.97 1.19 63.89 76 1.16 63.17 27 3 1.16 63.32 6 1.16 62.58 5 9
mgc des perf a 108K 115K 2.47 74.45 2.44 73.14 91 2.37 71.53 45 3 2.37 71.54 9 2.37 71.59 5 9
mgc des perf b 113K 113K 2.02 72.44 2.00 71.71 80 1.95 70.68 42 3 1.95 70.22 9 1.95 70.51 5 10
mgc edit dist a 127K 134K 5.03 93.71 4.91 92.95 80 4.60 92.12 61 3 4.60 91.97 12 4.62 92.13 6 10

mgc fft 1 32K 33K 0.46 61.59 0.46 61.87 22 0.44 59.08 3 1 0.44 59.39 1 0.44 59.36 2 8
mgc fft 2 32K 33K 0.48 55.20 0.48 55.10 28 0.48 54.76 2 1 0.48 55.00 1 0.48 54.78 1 6
mgc fft a 31K 32K 0.65 36.91 0.64 36.07 34 0.63 35.53 3 1 0.63 35.54 2 0.63 35.59 2 8
mgc fft b 31K 32K 0.86 53.84 0.85 53.19 26 0.84 52.87 3 1 0.84 52.80 1 0.84 52.86 1 7

mgc matrix mult 1 155K 159K 2.30 73.71 2.27 73.43 61 2.21 72.85 27 4 2.21 72.53 6 2.21 72.77 3 10
mgc matrix mult 2 155K 159K 2.28 73.87 2.25 73.44 65 2.21 72.66 26 4 2.21 72.24 7 2.21 72.37 3 10
mgc matrix mult a 150K 154K 3.37 49.04 3.33 48.62 87 3.32 48.49 24 4 3.32 48.48 5 3.32 48.51 3 11
mgc matrix mult b 146K 152K 3.67 49.80 3.63 49.29 69 3.61 48.81 30 4 3.61 48.79 7 3.61 48.88 5 11
mgc matrix mult c 146K 152K 3.51 48.84 3.47 48.22 69 3.46 48.09 27 4 3.46 48.03 6 3.46 48.11 5 11
mgc pci bridge32 a 30K 34K 0.47 41.74 0.47 41.52 25 0.47 40.49 5 1 0.47 40.75 2 0.46 40.28 4 7
mgc pci bridge32 b 29K 33K 0.70 35.90 0.69 35.38 23 0.67 34.40 7 1 0.67 34.48 3 0.68 34.49 5 7
mgc superblue11 a 926K 936K 39.67 58.69 38.99 57.64 4297 38.41 57.04 874 30 38.41 57.08 102 38.42 57.05 31 40
mgc superblue12 1287K 1293K 35.52 79.28 34.76 78.84 1805 34.09 78.08 700 41 34.10 78.12 90 34.10 78.08 24 46
mgc superblue14 612K 620K 25.41 70.31 24.85 67.76 751 24.19 66.30 933 20 24.20 66.52 115 24.22 66.53 35 26

mgc superblue16 a 680K 697K 31.24 97.45 30.34 94.24 746 29.17 90.24 831 22 29.16 90.20 86 29.25 90.55 30 27
mgc superblue19 506K 512K 17.45 65.08 17.13 64.55 967 16.97 63.80 287 16 16.97 63.88 41 16.99 64.01 14 22

ratio 1.015 1.013 1.000 1.000 1.000 0.979 0.984 0.412 0.979 0.985 0.084 0.979 0.984 0.061

The CPU results for the ISPD 2015 benchmarks were collected from a Linux server with a 20-core Intel Xeon E5-2650 v3 @ 2.3GHz. The GPU results were collected from a Linux server with a 14-core
Intel Xeon E5-2690 v4 @ 2.6GHz and an NVIDIA Tesla V100 GPU.

ACKNOWLEDGE

The authors would like to thank Dr. Chau-Chin Huang at Syn-
opsys and Prof. Yao-Wen Chang at National Taiwan University for
preparing the binary of NTUplace4dr [44], helpful comments on the
experimental setups, and verifying the results.

10

0 500 1000 1500 2000 2500 3000

#Cells (K)

0

5

10

15

20

25

30

S
p

ee
d

u
p

ov
er

1
T

10000 10250 10500 10750 11000

ISPD2005-20T

ISPD2005-GPU

Industrial-20T

Industrial-GPU

ISPD2015-20T

ISPD2015-GPU

Fig. 13: The trend of speedup over single thread with design sizes. “T” stands for threads on CPU.

ad
ap

te
c1

ad
ap

te
c2

ad
ap

te
c3

ad
ap

te
c4

bi
gb

lu
e1

bi
gb

lu
e2

bi
gb

lu
e3

bi
gb

lu
e4

0

100

200

300

R
u

n
ti

m
e

(s
)

K-Reorder

Matching

(a)

ad
ap

te
c1

ad
ap

te
c2

ad
ap

te
c3

ad
ap

te
c4

bi
gb

lu
e1

bi
gb

lu
e2

bi
gb

lu
e3

bi
gb

lu
e4

0

20

40

60

80
K-Reorder

Matching

Global Swap

(b)

ad
ap

te
c1

ad
ap

te
c2

ad
ap

te
c3

ad
ap

te
c4

bi
gb

lu
e1

bi
gb

lu
e2

bi
gb

lu
e3

bi
gb

lu
e4

0

5

10

15
K-Reorder

Matching

Global Swap

(c)

1T 10T 20T GPU
0

10

20

30

40

S
p

ee
d

u
p

K-Reorder

Matching

Global Swap

(d)

Fig. 14: Runtime breakdown of ISPD 2005 benchmarks for (a) single-threaded NTUplace3, (b) ABCDPlace with 20 threads and (c) with
GPU. (d) Speedup of each step with number of threads on bigblue4.

sb
19

sb
14

sb
16

a

sb
11

a
sb

12
0

50

100

150

200

K-Reorder

Matching

Global Swap

(a)

sb
19

sb
14

sb
16

a

sb
11

a
sb

12
0

20

40

60

K-Reorder

Matching

Global Swap

(b)

Fig. 15: Runtime breakdown of ISPD 2015 benchmarks for (a)
ABCDPlace with 20 threads and (b) with GPU. Only mgc superblue
series (abbreviated as “sb”) are plotted as the other benchmarks are
too small to be representative.

35.5

35.2 12.2

17.1
MaximalIndependentSet

Partitioning

CostMatrices

LAP

(a)

10.5

29.8

15.7

43.9

(b)

Fig. 16: Runtime breakdown for independent set matching on
bigblue4: (a) 20 threads; (b) GPU.

1.2

37.3 0.5
18.1

42.9CalcSearchBox

CalcSwapCosts

FindBestCand

CollectCands

ApplyCand

(a)

0.5

39.1
6.2

16.9

37.3

(b)

Fig. 17: Runtime breakdown for global swap on bigblue4: (a) 20
threads; (b) GPU.

0.2

99.8
IndependentRows

Enumeration

(a)

36.7

63.3

(b)

Fig. 18: Runtime breakdown for local reordering on bigblue4: (a)
20 threads; (b) GPU.

11

REFERENCES

[1] K. Shahookar and P. Mazumder, “Vlsi cell placement techniques,” ACM
Computing Surveys (CSUR), vol. 23, no. 2, pp. 143–220, 1991.

[2] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. ICCAD, 2005, pp. 48–55.

[3] Z.-W. Jiang, H.-C. Chen, T.-C. Chen, and Y.-W. Chang, “Challenges and
solutions in modern vlsi placement,” in 2007 International Symposium
on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2007, pp.
1–5.

[4] S. Popovych, H.-H. Lai, C.-M. Wang, Y.-L. Li, W.-H. Liu, and T.-C.
Wang, “Density-aware detailed placement with instant legalization,” in
Proc. DAC, 2014, pp. 122:1–122:6.

[5] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen,
and Y.-W. Chang, “NTUplace4h: A novel routability-driven placement
algorithm for hierarchical mixed-size circuit designs,” IEEE TCAD,
vol. 33, no. 12, pp. 1914–1927, 2014.

[6] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“Ntuplace3: An analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints,” IEEE TCAD, vol. 27, no. 7,
pp. 1228–1240, 2008.

[7] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell density-
driven detailed placement with displacement constraint,” in Proceedings
of the 2014 on International symposium on physical design. ACM,
2014, pp. 3–10.

[8] A. B. Kahng, I. L. Markov, and S. Reda, “On legalization of row-based
placements,” in Proc. GLSVLSI, 2004, pp. 214–219.

[9] J. Chen, P. Yang, X. Li, W. Zhu, and Y.-W. Chang, “Mixed-cell-
height placement with complex minimum-implant-area constraints,” in
Proceedings of the International Conference on Computer-Aided Design.
ACM, 2018, p. 66.

[10] I. L. Markov, J. Hu, and M. Kim, “Progress and challenges
in VLSI placement research,” Proceedings of the IEEE, vol.
103, no. 11, pp. 1985–2003, 2015. [Online]. Available: https:
//doi.org/10.1109/JPROC.2015.2478963

[11] N. Viswanathan and C.-N. Chu, “Fastplace: efficient analytical placement
using cell shifting, iterative local refinement, and a hybrid net model,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 5, pp. 722–733, 2005.

[12] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Y. Young, “Cell density-
driven detailed placement with displacement constraint,” in Proc. ISPD,
2014, pp. 3–10.

[13] G. Wu and C. Chu, “Detailed placement algorithm for VLSI design with
double-row height standard cells,” IEEE TCAD, vol. 35, no. 9, pp. 1569–
1573, 2016.

[14] K. Han, A. B. Kahng, and H. Lee, “Scalable detailed placement legal-
ization for complex sub-14nm constraints,” in Proc. ICCAD, 2015, pp.
867–873.

[15] T. Lin and C. Chu, “TPL-aware displacement-driven detailed placement
refinement with coloring constraints,” in Proc. ISPD, 2015, pp. 75–80.

[16] Y. Lin, B. Yu, B. Xu, and D. Z. Pan, “Triple patterning aware detailed
placement toward zero cross-row middle-of-line conflict,” IEEE TCAD,
vol. 36, no. 7, pp. 1140–1152, 2017.

[17] J. Chen, P. Yang, X. Li, W. Zhu, and Y.-W. Chang, “Mixed-cell-
height placement with complex minimum-implant-area constraints,” in
Proceedings of the International Conference on Computer-Aided Design.
ACM, 2018, p. 66.

[18] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing
solution quality and routability validation in global placement,” IEEE
TCAD, 2018.

[19] Z. Zhu, J. Chen, Z. Peng, W. Zhu, and Y.-W. Chang, “Generalized
augmented lagrangian and its applications to vlsi global placement,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 2018, pp. 1–6.

[20] W. Zhu, Z. Huang, J. Chen, and Y.-W. Chang, “Analytical solution
of poisson’s equation and its application to vlsi global placement,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1–8.

[21] F.-K. Sun and Y.-W. Chang, “Big: A bivariate gradient-based wirelength
model for analytical circuit placement,” in Proceedings of the 56th
Annual Design Automation Conference 2019. ACM, 2019, p. 118.

[22] J. A. Chandy and P. Banerjee, “Parallel simulated annealing strategies
for vlsi cell placement,” in Proceedings of 9th International Conference
on VLSI Design, Jan 1996, pp. 37–42.

[23] A. Choong, R. Beidas, and J. Zhu, “Parallelizing simulated annealing-
based placement using gpgpu,” in 2010 International Conference on Field
Programmable Logic and Applications. IEEE, 2010, pp. 31–34.

[24] C. Fobel, G. Grewal, and D. Stacey, “A scalable, serially-equivalent, high-
quality parallel placement methodology suitable for modern multicore
and gpu architectures,” in 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), Sep. 2014, pp. 1–8.

[25] J. Cong and Y. Zou, “Parallel multi-level analytical global placement on
graphics processing units,” in Proc. ICCAD. ACM, 2009, pp. 681–688.

[26] T. Lin, C. Chu, and G. Wu, “Polar 3.0: An ultrafast global placement
engine,” in Proc. ICCAD. IEEE, 2015, pp. 520–527.

[27] W. Li, M. Li, J. Wang, and D. Z. Pan, “UTPlaceF 3.0: A parallelization
framework for modern fpga global placement,” in Proc. ICCAD. IEEE,
2017, pp. 922–928.

[28] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Pan, “DREAM-
Place: Deep learning toolkit-enabled gpu acceleration for modern vlsi
placement,” in Proc. DAC, 2019.

[29] S. Dhar and D. Z. Pan, “GDP: GPU accelerated detailed placement,” in
Proc. HPEC, Sept 2018.

[30] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. Wong, “Cpp-taskflow: Fast
parallel programming with task dependency graphs,” Proc. IPDPS, 2019.

[31] Y.-S. Lu and K. Pingali, Can Parallel Programming Revolutionize EDA
Tools? Cham: Springer International Publishing, 2018, pp. 21–41.
[Online]. Available: https://doi.org/10.1007/978-3-319-67295-3 2

[32] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel et al., “Gunrock: Gpu graph analytics,”
ACM Transactions on Parallel Computing (TOPC), vol. 4, no. 1, p. 3,
2017.

[33] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li,
C. J. Alpert, and D. Z. Pan, “Mrdp: Multiple-row detailed placement
of heterogeneous-sized cells for advanced nodes,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 6,
pp. 1237–1250, 2017.

[34] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. ASPDAC, 2007, pp. 135–140.

[35] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace: a
ratio partitioning based placement algorithm for large-scale mixed-size
designs,” in Proc. ISPD, 2005, pp. 236–238.

[36] F. Gavril, “Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal
graph,” SIAM Journal on Computing (SICOMP), vol. 1, no. 2, pp. 180–
187, 1972.

[37] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal
independent set and matching are parallel on average,” CoRR, vol.
abs/1202.3205, 2012. [Online]. Available: http://arxiv.org/abs/1202.3205

[38] D. P. Bertsekas, “A new algorithm for the assignment problem,” Mathe-
matical Programming, vol. 21, no. 1, pp. 152–171, 1981.

[39] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” in 2008 47th IEEE Conference
on Decision and Control. IEEE, 2008, pp. 1212–1217.

[40] “Munkres-CPP,” https://github.com/saebyn/munkres-cpp.
[41] “LEMON,” http://lemon.cs.elte.hu/trac/lemon.
[42] V. Kumar, Introduction to parallel computing. Addison-Wesley Long-

man Publishing Co., Inc., 2002.
[43] J. Jaja, An introduction to parallel algorithms. Addison-Wesley Long-

man Publishing Co., Inc., 1992.
[44] C.-C. Huang, H.-Y. Lee, B.-Q. Lin, S.-W. Yang, C.-H. Chang, S.-T.

Chen, Y.-W. Chang, T.-C. Chen, and I. Bustany, “Ntuplace4dr: a detailed-
routing-driven placer for mixed-size circuit designs with technology and
region constraints,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 3, pp. 669–681, 2017.

[45] J. Jung, G.-J. Nam, L. N. Reddy, I. H.-R. Jiang, and Y. Shin, “Owaru:
Free space-aware timing-driven incremental placement with critical path
smoothing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 9, pp. 1825–1838, 2017.

[46] J. A. S. Jesuthasan, “Incremental timing-driven placement with displace-
ment constraint,” Master’s thesis, University of Waterloo, 2015.

[47] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The
ispd2005 placement contest and benchmark suite,” in Proc. ISPD. ACM,
2005, pp. 216–220.

[48] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proc. ISPD, 2015, pp. 157–164.

12

[49] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “NCTU-GR: efficient simulated
evolution-based rerouting and congestion-relaxed layer assignment on
3-D global routing,” IEEE TVLSI, vol. 20, no. 3, pp. 459–472, 2012.

Yibo Lin (S’16–M’19) received the B.S. degree in
microelectronics from Shanghai Jiaotong University
in 2013, and his Ph.D. degree from the Electrical
and Computer Engineering Department of the Uni-
versity of Texas at Austin in 2018. He is current an
assistant professor in the Computer Science Depart-
ment associated with the Center for Energy-Efficient
Computing and Applications at Peking University,
China. His research interests include physical design,
machine learning applications, GPU acceleration, and
hardware security. He has received 3 Best Paper

Awards at premier venues (DAC 2019, VLSI Integration 2018, and SPIE
2016). He has also served in the Technical Program Committees of many
major conferences, including ICCAD, ICCD, ISPD, and DAC.

Wuxi Li (S’18–M’19) received the B.S. degree in
microelectronics from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2013., the M.S. and Ph.D.
degrees in computer engineering from the University
of Texas at Austin, Austin, TX, in 2015 and 2019,
respectively. He is currently a Staff Software Engi-
neer in the Vivado Implementation Team at Xilinx,
San Jose, CA, where he is primarily working on the
physical synthesis field.

Dr. Li has received the Best Paper Award at DAC
2019, the Silver Medal in ACM Student Research

Contest at ICCAD 2018, and the 1st-place awards in the FPGA placement
contests of ISPD 2016 and 2017.

Jiaqi Gu received the B.E. degree in Microelectronic
Science and Engineering from Fudan University,
Shanghai, China in 2018. He is currently a post-
graduate student studying for his Ph.D. degree in
the Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin. His current
research interests include machine learning, optical
neuromorphic computing for AI acceleration, and
GPU acceleration for VLSI placement.

Haoxing Ren (M’00–SM’09) received his B.S/M.S.
degrees in Electrical Engineering from Shanghai
Jiao Tong University, his M.S. degree in Computer
Engineering from Rensselaer Polytechnic Institute,
and his PhD degree in Computer Engineering from
University of Texas at Austin. From 2000 to 2006, he
was a software engineer with IBM Microelectronics.
From 2007 to 2015, he was a Research Staff Member
with IBM T. J. Watson Research Center. From 2015
to 2016, he was a technical executive with SuZhou
PowerCore Technology. He is currently a Principal

Research Scientist at NVIDIA. His research interests are machine learning
applications in design automation and GPU accelerated EDA. He received
many IBM technical achievement rewards including the IBM Corporate Award
for his work on improving microprocessor design productivity. He holds over
twenty patents and co-authored more than 40 papers including several book
chapters in physical design and logic synthesis. He has received the Best Paper
Awards at ISPD’13 and DAC’19.

Brucek Khailany (M’00–SM’13) received the the
Ph.D. degree from Stanford University in Stanford,
CA in 2003 and the B.S.E. degree from the Uni-
versity of Michigan in Ann Arbor, MI in 1997, in
electrical engineering. He joined NVIDIA in 2009
and is currently the Director of the ASIC and VLSI
Research group. He leads research into innovative
design methodologies for integrated circuit (IC) de-
velopment, machine learning (ML) and GPU-assisted
electronic design automation (EDA) algorithms, and
energy-efficient ML accelerators. Over 10 years at

NVIDIA, he has contributed to many projects in research and product groups
spanning computer architecture and VLSI design. Previously, from 2004-2009,
he was a Co-Founder and Principal Architect at Stream Processors, Inc (SPI)
where he led research and development activities related to parallel processor
architectures.

David Z. Pan (S’97—M’00—SM’06—F’14) re-
ceived his B.S. degree from Peking University, and
his M.S. and Ph.D. degrees from University of Cal-
ifornia, Los Angeles (UCLA). From 2000 to 2003,
he was a Research Staff Member with IBM T. J.
Watson Research Center. He is currently Engineering
Foundation Professor at the Department of Electrical
and Computer Engineering, The University of Texas
at Austin, Austin, TX, USA. His research interests
include cross-layer nanometer IC design for man-
ufacturability, reliability, security, machine learning

and hardware acceleration, design/CAD for analog/mixed signal designs and
emerging technologies. He has published over 360 journal articles and refereed
conference papers, and is the holder of 8 U.S. patents.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems (TCAD), IEEE Transactions on Very Large Scale Integration Systems
(TVLSI), IEEE Transactions on Circuits and Systems PART I (TCAS-I), IEEE
Transactions on Circuits and Systems PART II (TCAS-II), IEEE Design &
Test, Science China Information Sciences, Journal of Computer Science and
Technology, IEEE CAS Society Newsletter, etc. He has served in the Executive
and Program Committees of many major conferences, including DAC, ICCAD,
ASPDAC, and ISPD. He is the ASPDAC 2017 Program Chair, ICCAD 2018
Program Chair, DAC 2014 Tutorial Chair, and ISPD 2008 General Chair

He has received a number of prestigious awards for his research contribu-
tions, including the SRC Technical Excellence Award in 2013, DAC Top 10
Author in Fifth Decade, DAC Prolific Author Award, ASP-DAC Frequently
Cited Author Award, 18 Best Paper Awards at premier venues (ASPDAC
2020, DAC 2019, GLSVLSI 2018, VLSI Integration 2018, HOST 2017, SPIE
2016, ISPD 2014, ICCAD 2013, ASPDAC 2012, ISPD 2011, IBM Research
2010 Pat Goldberg Memorial Best Paper Award, ASPDAC 2010, DATE
2009, ICICDT 2009, SRC Techcon in 1998, 2007, 2012 and 2015) and 15
additional Best Paper Award finalists, Communications of the ACM Research
Highlights (2014), UT Austin RAISE Faculty Excellence Award (2014), and
many international CAD contest awards, among others. He is a Fellow of IEEE
and SPIE.

13

