
GPU-Accelerated Rectilinear Steiner Tree Generation
Zizheng Guo1† , Feng Gu2† , Yibo Lin1,3∗

1School of Integrated Circuits, Peking University 2School of Computer Science, Peking University
3Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

{gzz, gu_feng, yibolin}@pku.edu.cn

ABSTRACT
Rectilinear Steiner minimum tree (RSMT) generation is a fundamental
component in the VLSI design automation flow. Due to its extensive
usage in circuit design iterations at early design stages like synthesis,
placement, and routing, the performance of RSMT generation is criti-
cal for a reasonable design turnaround time. State-of-the-art RSMT
generation algorithms, like fast look-up table estimation (FLUTE), are
constrained by CPU-based parallelism with limited runtime improve-
ments. The acceleration of RSMT on GPUs is an important yet difficult
task, due to the complex and non-trivial divide-and-conquer compu-
tation patterns with recursions. In this paper, we present the first
GPU-accelerated RSMT generation algorithm based on FLUTE. By
designing GPU-efficient data structures and levelized decomposition,
table look-up, and merging operations, we incorporate large-scale
data parallelism into the generation of Steiner trees. An up to 10.47×
runtime speed-up has been achieved compared with FLUTE running
on 40 CPU cores, filling in a critical missing component in today’s
GPU-accelerated design automation framework.

1 INTRODUCTION
The construction of rectilinear Steiner minimum tree (RSMT) is an
important problem in VLSI design automation. RSMT gives the small-
est tree with rectilinear wires that connect all given pins of a net
on the circuit layout. It provides insight into various critical circuit
design metrics, such as net routability, capacitive load, and timing.
As such, RSMT generation is frequently used in early circuit design
stages like synthesis, placement, and routing, where the circuit design
space is explored to optimize the chip quality. During these stages,
RSMT is evaluated within the inner loop of extensive optimization
iterations. Being executed thousands of times on large circuits with
millions of nets and pins, the speed of RSMT generation is critical for
a reasonable design turnaround time.

Due to the NP-completeness of RSMT generation [1], current re-
search generally works on the trade-off between runtime and solution
quality [2–10]. Better RSMT solution quality calls for better heuris-
tics, at the cost of longer runtime. Among them, the current most
efficient and widely-adopted heuristic is FLUTE [9], which stands for
fast look-up table estimation. FLUTE precomputes a look-up table
for nets with degree ≤ 9, for which the best solutions can be quickly
determined. For larger nets, FLUTE tries to break them down into
smaller nets which are solved recursively and merged back to the
solution of the original ones. Other similar directions work on the
†First two authors contributed equally. ∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’22, October 30-November 3, 2022, Gainesville, FL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549434

1177797 nets

37541 nets

279 ms

3615 ms

Small nets (deg≤9) Large nets (deg≥10)

In Total Net Count In Total Runtime

(a)

[2, 11] [12, 21] [22, 31] [32, 41] [42, 51]
0

5 · 105

1 · 106

Range of Net Degrees

N
et

Co
un

t

[2, 11] [12, 21] [22, 31] [32, 41] [42, 51]
0

200

400

Ru
nt
im

e
(𝜇
s)

(b)

Figure 1: (a) Statistics of high-degree and low-degree nets in
benchmark superblue1 and their portions in overall FLUTE
runtime. (b) Distribution of net degrees and the average FLUTE
runtime per net on CPU.

rectilinear tree with shortest-path, called rectilinear Steiner minimum
arborescence (RSMA) [11–15], or combining the objective of RSMT
and RSMA, called shallow-light tree (SLT) [16–21].

Despite all these efforts on improving the quality and speed of
RSMT generation, the performance demand increases even faster.
Current RSMT generation algorithms are all constrained with CPU-
based parallelism, which provides limited runtime improvements
given both more design iterations and larger design sizes. Although
most of the nets in a typical circuit design have only a small degree
(≤ 9), larger nets are exponentially harder to solve and, in fact, take
up most of the RSMT runtime, as shown in Figure 1.

To speed up the VLSI design flow, GPUs have been incorporated in
various design stages, such as logic simulation [22], placement [23],
timing analysis [24], and routing [25, 26]. However, GPU acceleration
is extremely challenging for the RSMT generation problem. Current
RSMT algorithms, such as FLUTE, are based on a divide-and-conquer
strategy with deep recursions, which are impossible to be executed
on GPU threads with very limited stack memory. The sizes of nets
in a circuit netlist are highly uneven, from 2-pin nets to nets with
40 pins or more, which leads to an extremely imbalanced workload
and harms the parallelism. The computation patterns and branching
behaviors are determined at runtime by the specific shapes of nets,
which makes it hard to allocate GPU memory and causes GPU thread
divergence.

Therefore, in this paper, we propose a GPU-accelerated RSMT
generation algorithm, which, to our best knowledge, is the first one
in literature. Our algorithm is built on top of FLUTE heuristics, with

https://doi.org/10.1145/3508352.3549434

highly-efficient GPU kernels offloading critical RSMT computations to
large-scale GPU parallelism. We summarize four major contributions
of this work as follows:
• We propose a levelized task decomposition strategy applicable
to all kinds of circuit net size distributions, which ensures a bal-
anced workload and enables high-performance data parallelism
for RSMT generation on GPUs.
• We eliminate the recursion patterns of FLUTE by careful algo-
rithmic transforms. We have solved the central computational
challenges for GPU-accelerated RSMT generation.
• We design GPU-efficient kernels for all RSMT generation op-
erations, including net decomposition, table look-up, and solu-
tion merging, which produce Steiner trees that are as good as
FLUTE, but at a much faster speed.
• By accelerating RSMT onGPUs, we fill in a critical missing com-
ponent in today’s GPU-accelerated design automation frame-
work. Both our algorithms and our methodology can bring
performance benefits to many different design stages.

We evaluate our algorithm on large-scale industrial designs from
ICCAD 2015 timing-driven placement contest [27]. Our algorithm
produces RSMT solutions that are identical to FLUTE, but much faster.
We have achieved an average 29.47× speed-up compared to FLUTE
running on a single CPU, and 10.47× compared to FLUTE on 40 CPUs.
We have also explored the effect of accuracy parameters on perfor-
mance and demonstrated the superior scalability of our algorithm.
Our GPU-accelerated algorithm can compute RSMT solutions with a
higher accuracy setting given the same runtime constraint. To the ex-
treme, our algorithmwith a low-accuracy setting can even outperform
the runtime of half-perimeter wirelength (HPWL) on CPU.

The rest of this paper is organized as follows. Section 2 introduces
the background of RSMT generation. Section 3 presents details of
our GPU-based RSMT generation algorithm based on FLUTE. Section
4 demonstrated the experimental results of our algorithm. Finally,
Section 5 concludes the paper.

2 RECTILINEAR STEINER MINIMUM TREE
RSMT generation is a central problem in VLSI design automation,
formulated as follows:Given a set of nets with pins on a two-dimensional
(2D) plane, construct horizontal and vertical (i.e. rectilinear) wires for
each net that connect all the pins and possible Steiner points, with
minimum total wirelength. The wirelength is minimized to reduce
routing resource usage, signal delay, as well as capacitive load of the
nets. The rectilinear constraint comes from the VLSI technologywhere
interconnects are set up on Manhattan grids. The RSMT solutions,
as well as the total wirelength in terms of Steiner trees, serve as an
important indicator of circuit performance and are widely used in the
VLSI design automation framework. For example, in timing-driven
cell placement stage [27], RSMT is used to generate rough routing
results and timing-related parasitics information during placement
iterations.

To better describe the RSMT generation problem, Hanan grids [28]
are introduced that discretize the search space of RSMTs by drawing
one horizontal line and one vertical line through each node, as shown
in Figure 2(b). A net with 𝑛 pins prior to RSMT generation is then
described as three arrays xs[0...𝑛−1], ys[0...𝑛−1], and s[0...𝑛−1]. The
first two arrays denote the discretized and sorted 𝑥 and 𝑦 coordinates
which form the grid of all possible horizontal and vertical wires. The
last array, s, locates all pins on this grid by providing a permutation
of {0, 1, ..., 𝑛 − 1}, as shown in Figure 2(c). Specifically, s[𝑖] gives the
rank of 𝑥-coordinate at the pin with the 𝑖-th smallest 𝑦-coordinate. It
was proven in [28] that this formulation, forcing all horizontal and

(d)

(a) (b)

(c)

x

y

xs0 xs1 xs2 xs3

ys0

ys1

ys2

ys3

Pin 0

Pin 1

Pin 2

Pin 3

s3 = 1

s2 = 3

s1 = 0

s0 = 2

x

y

xs0 xs1 xs2 xs3

ys0

ys1

ys2

ys3

Pin 0

Pin 1

Pin 2

Pin 3

s3 = 1

s2 = 3

s1 = 0

s0 = 2

Figure 2: The Hanan-grid model of a net with degree 4. (a) A
net of degree 4. (b) The Hanan-grid of the net. (c) The 𝑥𝑠, 𝑦𝑠 and
𝑠 of the net. (d) A possible Steiner tree of the net.

vertical wires to reside on the grid, retains the best RSMT solutions
with minimal wirelength. The RSMTs are equivalently constructed
on the Hanan grid of each net in the rest of this work.

2.1 Heuristics of RSMT Generation
There have long been research works on the trade-off between RSMT
generation runtime and solution quality, due to the NP-completeness
and intractable nature of exact RSMT generation [1]. Exact RSMT
solutions, such as GeoSteiner [2, 3], require up to exponential runtime
which is not feasible for VLSI applications. One line of research works
on a cheap alternative to RSMT, called rectilinear minimum spanning
tree (R-MST). R-MST does not insert any Steiner points and can be
efficiently constructed in𝑂 (𝑛 log𝑛) time for a net with 𝑛 pins [4], but
at the cost of up to 50% worse result than RSMT [5]. Kahng et al [8]
propose to iteratively improve on top of an initial R-MST solution by
contracting edges. A modest average of 11% improvement has been
obtained. Better RSMT solution quality calls for better heuristics, at
the cost of longer runtime [6, 7]. A recent work by Liu et al [10] applies
machine learning techniques, especially reinforcement learning (RL)
and attention mechanism, to RSMT generation.

Among these research works, the current most efficient and widely-
adopted heuristic is FLUTE [9], which stands for fast look-up table
estimation. FLUTE computes RSMT by breaking large nets into smaller
ones, whose solutions are recursively computed and merged back to
the RSMT of the original nets, as illustrated in Figure 3. For small
nets (with degree≤ 9), FLUTE solves them using a precomputed
look-up table that guarantees the best quality and fast speed. The
look-up table is organized as sets of possible RSMT solutions indexed
by the Hanan grid permutation array 𝑠 [0, ..., 𝑛 − 1], which has about
9! = 362880 different possibilities. For breaking large nets, FLUTE
tries to find the possible breaking pins using a weighted sum of a few
different heuristics and explores them under the control of an accuracy
parameter A. At merging, all pairs of subnets are back connected
by their breaking pins and evaluated to keep the solution with the
smallest wirelength.

Figure 4 shows the sequential FLUTE algorithm running on CPU.
Before calling FLUTE, the nets are transformed to Hanan grids as
described before. First, the entry point of FLUTE accepts the net data
consisting of Hanan grid arrays xs, ys, 𝑠 , and the required accuracy

2

net0

subnet00 subnet01

subnet000 subnet001subnet000 subnet001

Figure 3: Dataflow of recursive divide-and-conquer-based
RSMT generation, such as FLUTE. Blue arrows indicate recur-
sive algorithm calls on divided nets, and green dashed arrows
indicate returns at merging.

FLUTE

Input net

d <= 9

flutes_LD

Output RSMT

no yes

yes noOptimal
Condition

FLUTE FLUTE

Heuristic Net-
Breaking

Optimal Net-
Breaking

Figure 4: Flow chart of the sequential FLUTE algorithm, for
parallelism explanation purposes.

A. When the degree of input net falls under the range of look-up
tables, FLUTE matches the net against look-up tables for solutions
and computes the optimal RSMT directly (denoted as flutes_LD).
Otherwise, the control flow passes to large degree handling logics,
where the net breaking strategies are explored. Specifically, the net
is either broken into exactly two subnets when there is a provably
optimal net breaking pin separating the search space, or up to A dif-
ferent net breaking pins are tried subsequently leading to 2A subnets
in case no optimality is guaranteed.

2.2 GPU Architecture and Challenges
Heterogeneous computing systems consisting of CPUs and GPUs,
as shown in Figure 5, have brought huge performance benefits to
all kinds of scientific computing applications, thanks to the architec-
tural difference between CPUs and GPUs that caters their advantages
in different types of workloads. CPUs have a few large and power-
ful cores, with high performance single-thread computation as well
as branching prediction capability. This makes CPUs suitable for
general purpose computation tasks with complex control structures.
Multi-threading on CPUs is also promising provided with a limited
number of concurrent tasks. Given massively parallel tasks consist-
ing of possibly thousands to even millions of threads, CPUs incur
high multitasking and thread switching overhead, as well as low data
bandwidth and cache storage. On the contrary, GPU architecture is
designed from the ground to fit the need of massive parallelism. A
GPU has hundreds to thousands of small cores running in parallel.
These cores can switch between threads with almost no runtime cost,

RAM

Core Core

Core Core

Core Core

Core Core

CPU

Core Core

Core Core

CPU

HOST

VRAM

DEVICE

GPU
Core Core Core Core CoreCore Core Core Core Core

Core Core Core Core CoreCore Core Core Core Core

Core Core Core Core CoreCore Core Core Core Core

Core Core Core Core CoreCore Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

GPU
Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

Figure 5:Heterogeneous computing system. The double-headed
arrows indicate the bandwidth between two components.

thus effectively hiding memory latency when one group of threads is
waiting for a memory request to complete.

However, GPUs are not suitable for every computation tasks. Specif-
ically, GPU prefers large-scale parallelized simple tasks that have both
similar computational patterns and workload. While this is the case
for machine-learning (ML) tasks that are essentially matrix-vector
multiplications, RSMT generation works differently and challenges
arise as follows:

(1) Current RSMT algorithms, such as FLUTE, are based on a
divide-and-conquer strategy with deep recursions. This type
of program is impossible to be executed on GPU threads which
have very limited stack memory.

(2) The degrees of nets in a circuit netlist are highly uneven, from
2-pin nets to nets with 40 pins or more. Worse still, the amount
of computation increases exponentially with the increase of
degree. This leads to an extremely imbalanced workload and
harms the parallelism.

(3) The computation patterns and branching behaviors are deter-
mined at runtime by the specific shape of pin distributions
inside nets. This introduces GPU thread divergence and also
makes it hard to allocate and manage GPU memory spaces.

As a result, accelerating RSMT on GPU requires us to not only elimi-
nate the harmful recursive patterns inside current heuristics, but also
explore high-quality, massive parallelism beyond the nets.

3 ALGORITHM
In this section, we explain the details of our GPU-accelerated RSMT
generation algorithm. The overall task graph of our GPU-accelerated
algorithm is shown in Figure 6, where the arrows indicate the data
dependency between tasks. As shown in the figure, our algorithm
can be divided into three main stages: initialization, breaking, and
merging. We note that the break and merge stages work in an iterative
way rather than the recursive mode in FLUTE, as shown by arrows
pointing backward. There is no extensive data copy between CPU
and GPU during the inner algorithm loops which ensures minimal
overhead of CPU-GPU communication.

3.1 Parallelism Inside Subnets
In this section, we introduce the parallelism inside FLUTE recursions
which we use in later algorithms.

The divide-and-conquer FLUTE process as described in Section 2,
together with a deep dive into net breaking details, yields a new level
of parallelism and the solution to eliminate workload imbalance. We
draw an example net breaking step in Figure 7 which uses the same
example in Figure 2(c)1. We break the example net at two positions.
In each break, the breaking pin in the original net becomes a common

1In fact, this net is already a low-degree net. We break it just for explanation here.
3

CPU Tasks

GPU Tasks

Start

End

Low-degree
Net

Computation
Merge stage

Merge
Subnets

Write Back

Copy Look-up
Tables to GPU

Copy dataset
to GPU

Initialize the
first layer

Initialize stage

Next
Estimation

Break stage
Pump Next

Layer

Figure 6: Overall task flow of our GPU-accelerated RSMT gen-
eration algorithm.

position
0 1 2 3

position
0 1 2 3

Break in
postion 1

Break in
postion 2

Figure 7: An example that breaks a net into subnets.

pin in the subnets (highlighted in red), and it later serves as a bridge
to merge solutions of them. The common pin isolates the computation
of the two subnets, making them independent of each other. The up to
A of different breaking pins can also be determined in advance during
net breaking. As large nets typically go through multiple passes of
breaking and merging, a large number of intermediate subnets can be
processed in parallel. In parallel CPU-based FLUTE, there are only 1M
of original nets running concurrently. However, up to 100M interme-
diate subnets are generated during the breakings. Moreover, although
the workload varies by net degrees, the amount of computation for
breaking and merging steps remain constant, which is very helpful in
GPU acceleration.

3.2 The Levelized Representation
This section introduces the basic data structure in our algorithm. This
data structure arranges all intermediate subnets into layers indicating
the recursion relations. Instead of the depth-first search (DFS) process
in FLUTE, this data structure maintains a parallelized breadth-first
search (BFS), as illustrated in Figure 8.While the breaking andmerging
relations of nets and subnets remain unchanged from Figure 3, this
introduces a different order of execution and parallel strategy. The
initial layer is filled with Hanan grids of input nets. In the breaking
stage, nets in the same layer are broken in parallel to form the next

layer m subnet... subnet... subnet...layer m subnet... subnet... subnet...

subnet0110 subnet0111layer 3 subnet0110 subnet0111layer 3

subnet010 subnet011 subnet100 subnet101layer 2 subnet010 subnet011 subnet100 subnet101layer 2

subnet00 subnet01 subnet10 subnet11layer 1 subnet00 subnet01 subnet10 subnet11layer 1

net0 net1 net n......layer 0 net0 net1 net n......layer 0

......

Figure 8: The levelized representation with subnets in the same
layer running in parallel.

layer. In the merging stage, nets are merged or queried in look-up
tables in parallel from the last layer to the first layer.

3.3 GPU-Accelerated Net Breaking
In this section, we present the GPU-accelerated net breaking algo-
rithm. As shown in Algorithm 1, the central step is an iterative process
to break nets into smaller ones level by level, until all nets become
small enough to solve by FLUTE look-up tables.

Algorithm 1: GPU-Accelerated Breaking Stage
Input: 𝑁 as #nets, 𝐿 as #layers
Input: levels[0..𝐿] [0..𝑁], the buffer of each layer
Data: next_location[0..𝑁], the location of the first subnet
Output: the subnets of each net

1 for 𝑖 = 0→∞ do
2 𝑙𝑒𝑣𝑒𝑙 ← levels[𝑖];
3 estimate_next_location(𝑙𝑒𝑣𝑒𝑙 , 𝑛𝑒𝑥𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛);
4 prefix_sum(𝑛𝑒𝑥𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑒𝑥𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑁);
5 if all nets in this 𝑙𝑒𝑣𝑒𝑙 are low-degree nets then break;
6 𝑛𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 ← levels[𝑖 + 1];
7 break_kernel(𝑙𝑒𝑣𝑒𝑙 , 𝑛𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 , 𝑛𝑒𝑥𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛);
8 end

There are two important procedures in this algorithm, which are
called estimate_next_location and break_kernel. The
first procedure preallocates memory for all parent nets to store its
subnets in the next layer. There is one array to store subnet metadata,
and another array to store the pin information. Different nets emit
different numbers of subnets and pins, based on the net degree and
pin distribution. The numbers of subnets and pins are collected by
Algorithm 2 into two arrays, next_index and next_offset, on which
we launch parallel prefix sum operations, as shown in Figure 9. We
note that the prefix sum is efficient on GPU using Thrust library [29].
The prefix sum yields the total amount of memory to allocate, and
the offset to which the subnets should be stored.

After preparing for the memory offset, we break the nets using
Algorithm 3. The net breaking heuristics are the same as the sequential
version of FLUTE introduced in Section 3.1. The key difference is that
we do not wait for the subnets to complete RSMT computation or
merge them at this time. Instead, we leave these tasks later when we
stop at low-degree nets and merge back layer by layer.

3.4 GPU-Accelerated Net Merging
In the previous stage, we begin with the first layer and break the nets
iteratively until the last layer in which there are no high-degree nets.

4

Algorithm 2: Estimate Next Location
Input: 𝑁 as #nets
Input: 𝑑 , the degree of the net
Input: net_acc[0..𝑁], the accuracy of the nets
Output: next_index [0..𝑁], the index of the first subnet
Output: next_offset [0..𝑁], the offset of the first subnet
/* Process one net w/ blockDim.x threads

*/
1 netID = blockIdx.x * blockDim.x + threadIdx.x;
2 𝑎𝑐𝑐 ← net_acc[𝑛𝑒𝑡𝐼𝐷];
3 𝑛𝑒𝑤𝑎𝑐𝑐 ← update 𝑎𝑐𝑐 ;
4 if d ≤ 9 then
5 𝑛𝑥𝑛𝑠 = 0;
6 𝑛𝑥𝑝𝑛 = 0;
7 end
8 else if Optimal Net-Breaking then
9 𝑛𝑥𝑛𝑠 = 2;

10 𝑛𝑥𝑝𝑛 = 𝑑 + 2;
11 end
12 else
13 𝑛𝑥𝑛𝑠 = 𝑛𝑒𝑤𝑎𝑐𝑐 ∗ 2;
14 𝑛𝑥𝑝𝑛 = 𝑛𝑒𝑤𝑎𝑐𝑐 ∗ (𝑑 + 1);
15 end
16 next_index [𝑛𝑒𝑡𝐼𝐷 + 1] = 𝑛𝑥𝑛𝑠;
17 next_offset [𝑛𝑒𝑡𝐼𝐷 + 1] = 𝑛𝑥𝑝𝑛;
18 if 𝑛𝑒𝑡𝐼𝐷 == 0 then
19 next_index [0] = 0;
20 next_offset [0] = 0;
21 end

Algorithm 3: Break kernel
Input: 𝑁 as #nets, 𝑁𝑁 as #subnets
Input: 𝑑 as the degree, 𝑎𝑐𝑐 as the accuracy
Input: level [0..𝑁], the buffer of the current layer
Input: next_location[0..𝑁], the location of the first subnet
Output: next_level [0..𝑁𝑁], the buffer of the next layer
/* Process one net w/ blockDim.x threads

*/
1 netID = blockIdx.x * blockDim.x + threadIdx.x;
2 𝑛𝑒𝑡 ← level [𝑛𝑒𝑡𝐼𝐷];
3 𝑛𝑥𝑡𝑙 ← next_location[𝑛𝑒𝑡𝐼𝐷];
4 if d ≤ 9 then return;
5 else if Optimal Condition then
6 Break 𝑛𝑒𝑡 optimally into 𝑠𝑢𝑏𝑛𝑒𝑡0, 𝑠𝑢𝑏𝑛𝑒𝑡1;
7 next_level [𝑛𝑥𝑡𝑙] ← 𝑠𝑢𝑏𝑛𝑒𝑡0;
8 next_level [𝑛𝑥𝑡𝑙 + 1] ← 𝑠𝑢𝑏𝑛𝑒𝑡1;
9 end

10 else
11 for 𝑖 = 0→ acc − 1 do
12 Break 𝑛𝑒𝑡 heuristically into 𝑠𝑢𝑏𝑛𝑒𝑡0, 𝑠𝑢𝑏𝑛𝑒𝑡1;
13 next_level [𝑛𝑥𝑡𝑙 + 2 ∗ 𝑖] ← 𝑠𝑢𝑏𝑛𝑒𝑡0;
14 next_level [𝑛𝑥𝑡𝑙 + 2 ∗ 𝑖 + 1] ← 𝑠𝑢𝑏𝑛𝑒𝑡1;
15 end
16 end

0 1 2 3 4 5 6 7 8 9 10 110 1 2 3 4 5 6 7 8 9 10 11

array0
index = 0
offset = 0

array1
index = 1
offset = 3

array2
index = 2
offset = 8

array0
index = 0
offset = 0

array1
index = 1
offset = 3

array2
index = 2
offset = 8

Buffer

0 1 20 1 2

4 2 2

8 7 6

next_index

next_offset

4 2 2

8 7 6

next_index

next_offset

0 4 6

0 8 15

next_index

next_offset

0 4 6

0 8 15

next_index

next_offset

exclusive prefix-sum

0 1 4 5 6 ...2 30 1 4 5 6 ...2 3
index = 0
offset = 0

index = 4
offset = 8

index = 6
offset = 15

0 1 4 5 6 ...2 3
index = 0
offset = 0

index = 4
offset = 8

index = 6
offset = 15

(a)

(b)

Figure 9: (a) An example of the index and offset of 3 arrays in a
buffer. (b) Estimate the next location of arrays in (a). Array0
is broken heuristically into 4 subnets with a total degree of 8.
Array1 is broken optimally into 2 subnets with a total degree
of 7. The same happens to array2.

At this stage, what we need to do is an inverse process of the previous
stage. We begin with the last layer, and keep merging the subnets into
their parent nets and store them back in the previous layer. When we
come to the first layer, we will get the RSMT of the initial nets. We
show this process in Algorithm 4.

The workflow of Algorithm 4 is the same as the Algorithm 3. In
the break stage, when we meet a low-degree net, we just leave it there
and return with no subnets in the next layer. In this stage, we use
flutes_LD to construct the RSMT of the low-degree nets, which is
the same as the original CPU-based FLUTE.

Finally, we use a complete example to illustrate our algorithm in
Figure 10. The break stage uses two kernels. The first kernel breaks
net0 into four subnets, among which subnet03 is a low-degree net
and the others are high-degree nets. The second kernel breaks the
3 high-degree subnets into a total of 6 subnets. Now all the subnets
are low-degree nets; the break stage finishes. The merge stage uses
three kernels. The first kernel constructs RSMTs for all the subnets
in the last layer. The second kernel merges the six subnets into three
RSMTs corresponding to subnet00, subnet01, and subnet02. Note that
subnet03 bypasses layer2 and its RSMT is constructed in this kernel.
The third kernel merges the four subnets into RSMT0 which is the
RSMT of net0. In practice, millions of nets are computed in parallel
inside the same levelized data structure.

4 EXPERIMENTAL RESULTS
We implemented our GPU-accelerated RSMT generation algorithm
using C++ and CUDA and evaluated the results using ICCAD 2015
contest benchmarks [27]. The contest benchmarks contain 8 large
industrial circuits, with placed netlists. These benchmarks were origi-
nally used as test cases for timing-driven gate placement engines. As
a result, they provide realistic RSMT problem instances that an RSMT
generation algorithm inside the inner loop of a timing-driven place-
ment engine will encounter in practice. We compare our algorithm

5

Algorithm 4:Merge kernel
Input: 𝑁 as #nets, 𝑁𝑁 as #subnets
Input: 𝑑 as the degree, 𝑎𝑐𝑐 as the accuracy
Input: next_location[0..𝑁], the location of the first subnet
Input: level [0..𝑁], the buffer of the current layer
Input: next_rsmt [0..𝑁], the buffer of RSMT of the next layer
Output: rsmt [0..𝑁], the buffer of RSMT of the current layer
/* Process one net w/ blockDim.x threads

*/
1 netID = blockIdx.x * blockDim.x + threadIdx.x;
2 𝑛𝑥𝑡𝑙 ← next_location[𝑛𝑒𝑡𝐼𝐷];
3 if 𝑑 ≤ 9 then
4 rsmt [𝑛𝑒𝑡𝐼𝐷] ← flutes_LD(𝑑 , level [𝑛𝑒𝑡𝐼𝐷]);
5 end
6 else if Optimal Condition then
7 rsmt [𝑛𝑒𝑡𝐼𝐷] ← merge_tree(next_rsmt [𝑛𝑥𝑡𝑙],

next_rsmt [𝑛𝑥𝑡𝑙 + 1]);
8 end
9 else
10 for 𝑖 = 0→ acc − 1 do
11 𝑡1← nxt_rsmt_level [𝑛𝑥𝑡𝑙 + 2 ∗ 𝑖];
12 𝑡2← nxt_rsmt_level [𝑛𝑥𝑡𝑙 + 2 ∗ 𝑖 + 1];
13 Update 𝑏𝑒𝑠𝑡𝑡1 and 𝑏𝑒𝑠𝑡𝑡2 with 𝑡1 and 𝑡2;
14 end
15 rsmt [𝑛𝑒𝑡𝐼𝐷] ← merge_tree(𝑏𝑒𝑠𝑡𝑡1, 𝑏𝑒𝑠𝑡𝑡2);
16 end

Time

net1net0

...subnet03subnet02subnet01subnet00

subnet021subnet020subnet011subnet010subnet001subnet000

RSMT021RSMT020RSMT011RSMT010RSMT001RSMT000

...RSMT03RSMT02RSMT01RSMT00

RSMT1RSMT0

Break

Merge

Figure 10: A complete example of levelized RSMT computation
on GPU. The blue blocks indicate high-degree nets. The orange
blocks indicate low-degree nets. The red arrows are operations
in break kernel. The green arrows are operations in merge
kernel.

with the original CPU-based FLUTE [9]. We note that FLUTE was
also used as the golden standard in the ICCAD 2015 contest evalua-
tion scripts. As the original FLUTE does not support multi-threading,
we wrap it inside OpenMP threads to parallelize its computation on
CPUs. We compile the programs using GNU GCC-7.5.0 and NVCC

11.5 and run them on a Ubuntu Linux machine with 40 Intel Xeon
CPU cores at 2.10 GHz, 512GB memory, and 1 Nvidia A40 GPU with
48GB GPU memory and Nvidia Ampere architecture. All GPU kernels
are run with 128 threads in each CUDA thread block, and ⌈𝑛/128⌉
block to cover all 𝑛 individual computation tasks (e.g., nets in the cur-
rent level). Our algorithm is insensitive to thread allocation tweaks,
thanks to the large amount of parallelism and the dynamic block
dispatching mechanism inside the CUDA runtime. All runtime data
is an average of 5 runs. We do not include the overhead for copying
RSMT problem instances from CPU to GPU, and copying the resulting
Steiner trees back to CPU, because they are not needed in any fully
GPU-accelerated design automation framework [23, 30] where all
data of pins and nets reside on GPU during the entire design pro-
cess. We note that a CPU-based RSMT algorithm, e.g., FLUTE, will
instead need to pay for the CPU-GPU copying overhead to fit into
such frameworks [30].

4.1 Overall Comparison
Table 1 lists the benchmark statistics and the performance comparison
between FLUTE [9] and our GPU-accelerated RSMT generation algo-
rithm. We measure the runtime for completing 1 iteration of RSMT
computation on all nets of the 8 ICCAD 2015 contest benchmarks,
each consisting of about 1M nets and 3–6M pins. We set the accuracy
parameter A to 8 (high accuracy) in both FLUTE and our algorithm,
which is the default setting for evaluation in ICCAD 2015 contest. We
do not show wirelength results in the table because our results are as
good as (i.e. identical to) FLUTE.

According to the experiments, we have achieved a significant speed-
up across all benchmarks. It takes FLUTE 3689.8 ms to compute RSMT
for the benchmark superblue1 on one CPU, which means 3.6
seconds multiplied by the number of design iterations. Even with 40
CPU cores, FLUTE still needs 1232.0 ms to finish the RSMT generation.
On the contrary, our algorithm needs only 116 ms to accomplish the
same task on 1GPU. This yields a 31.80× speed-up compared to FLUTE
on 1 CPU, and 10.62× compared to the parallel version of FLUTE on
40 CPUs. On average, we have achieved 29.47× speed-up compared
to FLUTE on 1 CPU, and 10.47× compared to FLUTE on 40 CPUs. The
largest speed-up ratio happens on superblue4, where over 15×
has been achieved compared to 40 CPUs. Remarkably, we are able to
finish RSMT generation for every benchmark within 300 ms, which
was an impossible task before this work. In a typical timing-driven
gate placement task with 600–1000 iterations and RSMT generation
in each iteration, we can save tens of minutes to even hours of design
flow runtime. These results clearly demonstrate the efficiency of our
GPU-accelerated RSMT algorithm.

4.2 Scalability Comparison
In this section, we compare our GPU-based algorithm with the scal-
ability of CPU-based FLUTE on different numbers of CPU threads.
Figure 11 shows the result on some representative benchmarks. The
CPU-based FLUTE becomes faster with an increasing number of CPU
threads from 1 to 16. The best speed-up compared to 1 CPU is around
3–4× with 16 CPU cores. However, no more performance benefit can
be obtained when the number of CPU threads increases beyond 16.
For some cases, FLUTE on 40 cores is even slightly slower than on
16 cores. These results point out the fundamental scalability limita-
tions of CPU-based multi-thread parallelism, which was also reported
on other different workloads [31–34]. On the other hand, our GPU-
accelerated algorithm obtains superior performance with just a single
GPU. There is a remarkable gap (about 10×) even compared with

6

Table 1: Performance comparison between FLUTE (running under both 1 CPU and 40 CPUs) and our GPU-accelerated algorithm
(1 GPU) completing the RSMT generation tasks on ICCAD 2015 contest benchmarks.

Benchmark
Statistics Runtime Speed-up

#Nets #Pins Max Deg Avg Deg Tree Sum 1 CPU [9] 40 CPUs [9] GPU (Ours) 1 CPU 40 CPUs
superblue1 1215338 3759909 51 3.094 5089142 3689.8 ms 1232.0 ms 116.0 ms 31.809× 10.621×
superblue3 1224360 3896306 51 3.182 5343892 4441.4 ms 1471.2 ms 138.6 ms 32.045× 10.615×
superblue4 802258 2488842 51 3.102 3373168 2771.4 ms 1381.4 ms 88.4 ms 31.351× 15.627×
superblue5 1097025 3237374 51 2.951 4280698 2881.0 ms 947.4 ms 91.2 ms 31.590× 10.388×
superblue7 1933378 6358017 51 3.289 8849278 8028.6 ms 2294.4 ms 275.4 ms 29.153× 8.331×
superblue10 1897768 5548092 51 2.923 7300648 5416.2 ms 1966.0 ms 203.4 ms 26.628× 9.666×
superblue16 999600 3005840 51 3.007 4012480 2833.4 ms 1213.8 ms 125.4 ms 22.595× 9.679×
superblue18 771244 2553668 51 3.311 3564848 3249.0 ms 939.4 ms 106.0 ms 30.651× 8.862×
Average - 4163.8 ms 1430.7 ms 143.1 ms 29.477× 10.473×

#Nets: number of nets #Pins: number of pins Max Deg: max degree (number of pins) among all nets Avg Deg: averge net degree
Tree Sum: The total number of pins in RSMT results, including Steiner points.

12 4 8 16 24 32 40
100

1,000

Number of CPUs

Ru
nt
im

e
(m

s)

superblue1

FLUTE (CPU)
Ours (GPU)

12 4 8 16 24 32 40

100

1,000

Number of CPUs

Ru
nt
im

e
(m

s)

superblue4

FLUTE (CPU)
Ours (GPU)

12 4 8 16 24 32 40

1,000

10,000

Number of CPUs

Ru
nt
im

e
(m

s)

superblue7

FLUTE (CPU)
Ours (GPU)

12 4 8 16 24 32 40
100

1,000

Number of CPUs

Ru
nt
im

e
(m

s)

superblue16

FLUTE (CPU)
Ours (GPU)

Figure 11: Runtime values at different numbers of threads.
Accuracy is set to A = 8.

the best CPU-based parallelism. Our work not only removes the ob-
stacles to GPU-accelerated RSMT generation problem itself but also
further justifies the effectiveness and necessity of parallelizing design
automation on GPUs.

4.3 Effect of Accuracy Parameter
In this section, we study the effect of different accuracy parametersA
on the performance of GPU acceleration. As introduced in Section 2,A
controls the trade-off between accuracy and speed. SmallerA reduces
the runtime at the cost of suboptimal results. FLUTE sets the default
value ofA as 3 which allows moderate error. The ICCAD 2015 contest
sets A to 8 which produces very accurate results for most nets. As a
result, we selectA to be 1, 3, 6, 8, and 12 and compare the performance.

Figure 12 shows a detailed comparison. Both FLUTE and our al-
gorithm incur larger runtime with larger accuracy, whereas our al-
gorithm provides a large speed-up on all the five accuracy settings.
Remarkably, our runtime to compute RSMT with A = 8 is even faster
than FLUTE withA = 1, with much better solution quality. Generally,
the speed-up ratio is larger for smaller accuracy settings. For example,

1 3 6 8 12
10

100

1,000

Accuracy (A)

Ru
nt
im

e
(m

s)

superblue1

FLUTE (CPU)
Ours (GPU)

1 3 6 8 12

10

100

1,000

Accuracy (A)

Ru
nt
im

e
(m

s)

superblue4

FLUTE (CPU)
Ours (GPU)

1 3 6 8 12

100

1,000

Accuracy (A)

Ru
nt
im

e
(m

s)

superblue7

FLUTE (CPU)
Ours (GPU)

1 3 6 8 12

10

100

1,000

Accuracy (A)

Ru
nt
im

e
(m

s)

superblue16

FLUTE (CPU)
Ours (GPU)

Figure 12: Runtime values at different accuracy parameters.
FLUTE is run with 40 CPU cores.

the average speed-up forA = 1 is 13.78× across all 8 benchmarks. This
ratio is only slightly degraded to 9.77× with A set to our maximum
value, 12. As a larger accuracy poses exponentially more demand on
the recursive divide-and-conquer process, these results demonstrate
the effectiveness of our levelized task decomposition strategy and
algorithmic transforms eliminating recursion patterns, both making
it possible to efficiently accelerate RSMT computation on GPUs.

4.4 Comparison with HPWL Runtime
In this section, we explore the speed and accuracy trade-off beyond
RSMT generation. In VLSI design flow, HPWL is widely used as a
fast approximation to net wirelength. HPWL tends to be overly opti-
mistic as it does not guarantee a solution to net interconnects. While
RSMT gives a more realistic wirelength approximation, HPWL is still
widely used because it could be computed much faster. With our
GPU-accelerated RSMT generation algorithm, however, the runtime
of RSMT generation is improved significantly, bringing it even on par
with HPWL. To show this, we run a detailed comparison between

7

HPWL, FLUTE, and our GPU-accelerated algorithm. The RSMT al-
gorithms are run with accuracy setting A = 1. Although this allows
aggressive error tolerance, it is argued in [9] that this is still a better
approximation than HPWL. We show the runtime results in Table 2.
We can confirm that the original FLUTE is much slower than HPWL.
Even when FLUTE is run on 40 CPUs, it costs 177.3 ms on average
with the lowest accuracy setting. On the other hand, HPWL needs
just 13.4 ms on a single CPU, and is even faster on 40 CPUs. With
our GPU-accelerated RSMT generation algorithm, we have reduced
the runtime of RSMT computation to an average of 13.1 ms, outper-
forming HPWL on a single CPU for the first time. The massive GPU
parallelism not only speeds up the existing RSMT algorithms but also
unlocks more scenarios for the applications of RSMT in the design
flow which may in turn benefit the quality of circuit design. We note
that our GPU-accelerated runtime is slower than HPWL running on
40 CPUs. In our future works, we hope to investigate further into
reducing the communication and GPU kernel launching overhead,
which constitute a large portion of our 13.1 ms runtime.

Table 2: The runtime of HPWL compared with RSMT genera-
tion algorithms, with accuracy set to A = 1.

Benchmark
HPWL FLUTE [9] Ours

1 CPU 40 CPUs 40 CPUs GPU
superblue1 13.4 ms 4.6 ms 157.6 ms 12.0 ms
superblue3 13.2 ms 4.4 ms 178.0 ms 14.6 ms
superblue4 8.2 ms 3.4 ms 146.2 ms 8.6 ms
superblue5 12.0 ms 4.4 ms 134.6 ms 10.4 ms
superblue7 21.4 ms 7.6 ms 280.6 ms 22.2 ms
superblue10 20.4 ms 6.6 ms 236.2 ms 15.8 ms
superblue16 10.8 ms 3.8 ms 149.4 ms 9.4 ms
superblue18 8.2 ms 3.2 ms 136.0 ms 11.8 ms
Average 13.4 ms 4.7 ms 177.3 ms 13.1 ms

4.5 Effect of Net Degree
In this section, we take a deep dive into the performance of GPU
acceleration under different ranges of net degrees. As we have shown
in Figure 1, compared to smaller nets, large nets have very different
RSMT computation patterns, due to their exponentially more complex
divide-and-conquer process. As a result, larger nets are more prone
to acceleration challenges. For each benchmark, we categorize all
nets into five groups by their degree ranges: [2, 11], [12, 21], [22,
31], [32, 41], and [42, 51]. For each degree range, we then sample
10000 different nets from its group. The nets are replicated in case a
group has an insufficient number of nets. Finally, we run our GPU-
accelerated algorithm on top of all sampled groups, and measure
the runtime against FLUTE with 40 CPUs. Our results are shown
in Figure 13. Both FLUTE and our GPU-accelerated algorithm incur
an exponential runtime increase with larger nets, which confirms
our summary in Figure 1. However, with GPU-accelerated RSMT
algorithm, we introduce performance benefits to all different degree
ranges. Generally, smaller nets are more efficiently accelerated with
>10× speed-up. Although the largest nets with degree≥42 are very
difficult to parallelize, we have about 1.5–2× speed-up for them as
well. While this experiment setting helps us isolate different degree
ranges to test their performance, we note that it gives artifically
balanced workload which is favorable to the original CPU-based
FLUTE. Thanks to our levelized net representation, our algorithm can
deal with imbalanced workload more effectively compared to FLUTE

[2, 11] [12, 21][22, 31][32, 41][42, 51]

0

100

200

300

Degree Ranges

Ru
nt
im

e
(m

s)

superblue1

FLUTE (CPU)
Ours (GPU)

[2, 11] [12, 21][22, 31][32, 41][42, 51]

0

100

200

300

Degree Ranges

Ru
nt
im

e
(m

s)

superblue4

FLUTE (CPU)
Ours (GPU)

[2, 11] [12, 21][22, 31][32, 41][42, 51]

0

100

200

300

400

Degree Ranges

Ru
nt
im

e
(m

s)

superblue7

FLUTE (CPU)
Ours (GPU)

[2, 11] [12, 21][22, 31][32, 41][42, 51]

0

100

200

300

Degree Ranges

Ru
nt
im

e
(m

s)

superblue16

FLUTE (CPU)
Ours (GPU)

Figure 13: Runtime for computing RSMT of 10000 nets in dif-
ferent degree ranges. FLUTE is run with 40 CPU cores.

in a real scenario where different net degrees are mixed together, as
shown in previous experiments where we can achieve > 10× speed-up
on such scenarios.

5 CONCLUSION
In this paper, we have proposed the first GPU-accelerated algorithm
for RSMT generation. Built on top of FLUTE heuristics, we design
highly-efficient GPU kernels offloading critical RSMT computations
to large-scale GPU parallelism. We rewrite the algorithm to elimi-
nate recursion patterns and propose a levelized task decomposition
strategy applicable to all kinds of circuit net size distributions, all
contributing to a balanced RSMT workload and high-performance
data-parallel RSMT computation on GPUs. Our algorithm produces
RSMT solutions that are as good as FLUTE, but much faster. An av-
erage of 29.47× speed-up has been achieved compared with FLUTE
on a single CPU core, and 10.47× compared with FLUTE on 40 CPU
cores. Given the same runtime constraint, we can also compute RSMT
solutions with a higher accuracy setting. To the extreme, our algo-
rithm with a low-accuracy setting can even outperform the runtime
of half-perimeter wirelength (HPWL) on a single CPU. Our algorithm
has filled in a critical missing component in today’s GPU-accelerated
VLSI design automation framework, with benefits to many different
design stages. We plan to further optimize our algorithm by intro-
ducing CUDA graphs and better CPU-GPU scheduling, and integrate
our algorithm into existing GPU-accelerated VLSI design automation
frameworks like [23, 30].

ACKNOWLEDGE
This project is supported in part by the National Key Research and
Development Program of China (No. 2021ZD0114702).

8

REFERENCES
[1] M. R. Garey and D. S. Johnson, “The rectilinear steiner tree problem is np-complete,”

SIAM Journal on Applied Mathematics, vol. 32, no. 4, pp. 826–834, 1977.
[2] D. M. Warme, P. Winter, and M. Zachariasen, “Exact algorithms for plane steiner

tree problems: A computational study,” in Advances in Steiner trees. Springer, 2000,
pp. 81–116.

[3] GeoSteiner, Inc., “Geosteiner: Software for computing steiner trees,” http://www.
geosteiner.com/, 2017.

[4] F. K. Hwang, “An o (n log n) algorithm for rectilinear minimal spanning trees,”
Journal of the ACM (JACM), vol. 26, no. 2, pp. 177–182, 1979.

[5] ——, “On steiner minimal trees with rectilinear distance,” SIAM journal on Applied
Mathematics, vol. 30, no. 1, pp. 104–114, 1976.

[6] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang, “Closing the gap: Near-optimal
steiner trees in polynomial time,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 13, no. 11, pp. 1351–1365, 1994.

[7] I. I. Mandoiu, V. V. Vazirani, and J. L. Ganley, “A new heuristic for rectilinear steiner
trees,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 10, pp. 1129–1139, 2000.

[8] A. B. Kahng, I. I. Măndoiu, and A. Z. Zelikovsky, “Highly scalable algorithms for
rectilinear and octilinear steiner trees,” in Proceedings of the 2003 Asia and South
Pacific Design Automation Conference, 2003, pp. 827–833.

[9] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear steiner minimal
tree algorithm for VLSI design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 27, no. 1, pp. 70–83, 2008.

[10] J. Liu, G. Chen, and E. F. Young, “Rest: Constructing rectilinear steiner minimum tree
via reinforcement learning,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 1135–1140.

[11] W. Shi and C. Su, “The rectilinear steiner arborescence problem is np-complete,”
SIAM Journal on Computing, vol. 35, no. 3, pp. 729–740, 2005.

[12] A. B. Kahng and G. Robins, “A new class of iterative steiner tree heuristics with good
performance,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 11, no. 7, pp. 893–902, 1992.

[13] J. Córdova and Y.-H. Lee, “A heuristic algorithm for the rectilinear steiner arbores-
cence problem,” in Engineering Optimization. Citeseer, 1994.

[14] J. Cong, K.-S. Leung, and D. Zhou, “Performance-driven interconnect design based
on distributed rc delay model,” in 30th ACM/IEEE Design Automation Conference.
IEEE, 1993, pp. 606–611.

[15] M. Pan, C. Chu, and P. Patra, “A novel performance-driven topology design algo-
rithm,” in 2007 Asia and South Pacific Design Automation Conference. IEEE, 2007,
pp. 244–249.

[16] G. Chen and E. F. Young, “Salt: provably good routing topology by a novel steiner
shallow-light tree algorithm,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 39, no. 6, pp. 1217–1230, 2019.

[17] B. Awerbuch, A. Baratz, and D. Peleg, Efficient broadcast and light-weight spanners.
Technical Report, 1992.

[18] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C.-K. Wong, “Provably good
performance-driven global routing,” IEEE transactions on computer-aided design of
integrated circuits and systems, vol. 11, no. 6, pp. 739–752, 1992.

[19] S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum spanning trees and
shortest-path trees,” Algorithmica, vol. 14, no. 4, pp. 305–321, 1995.

[20] C. J. Alpert, T. C. Hu, J.-H. Huang, A. B. Kahng, and D. Karger, “Prim-dijkstra
tradeoffs for improved performance-driven routing tree design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 7, pp.
890–896, 1995.

[21] C. J. Alpert, W.-K. Chow, K. Han, A. B. Kahng, Z. Li, D. Liu, and S. Venkatesh, “Prim-
dijkstra revisited: Achieving superior timing-driven routing trees,” in Proceedings of
the 2018 International Symposium on Physical Design, 2018, pp. 10–17.

[22] Y. Zhang, H. Ren, and B. Khailany, “Opportunities for rtl and gate level simulation
using gpus (invited talk),” in 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), 2020, pp. 1–5.

[23] Y. Lin, Z. Jiang, J. Gu,W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “DREAMPlace:
Deep learning toolkit-enabled gpu acceleration for modern vlsi placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2020.

[24] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing analysis,” in
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). ACM,
2020.

[25] S. Lin, J. Liu, and M. D. Wong, “Gamer: Gpu accelerated maze routing,” in 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2021, pp.
1–8.

[26] S. Liu, P. Liao, Z. Chen, W. Lv, Y. Lin, and B. Yu, “Fastgr: Global routing on cpu-
gpu with heterogeneous task graph scheduler,” in IEEE/ACM Proceedings Design,
Automation and Test in Eurpoe (DATE), Antwerp, Belgium, March 2022.

[27] M. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD contest in incremental
timing-driven placement and benchmark suite,” in IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2015, pp. 921–926.

[28] M. Hanan, “On steiner’s problem with rectilinear distance,” SIAM Journal on Applied
Mathematics (SIAP), vol. 14, no. 2, pp. 255–265, 1966.

[29] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for cuda,” in GPU
computing gems Jade edition. Elsevier, 2012, pp. 359–371.

[30] Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,” in ACM/IEEE
Design Automation Conference (DAC), 2022, pp. 1–6.

[31] W.-H. Liu,W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0: multithreaded collision-
aware global routing with bounded-length maze routing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 32, no. 5, pp.
709–722, 2013.

[32] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New Parallel
Incremental Timing Analysis Engine,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), pp. 1–1, 2021.

[33] Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically efficient algo-
rithm for common path pessimism removal in large designs,” in ACM/IEEE Design
Automation Conference (DAC). ACM, 2021.

[34] H. Yang, K. Fung, Y. Zhao, Y. Lin, and B. Yu, “Mixed-cell-height legalization on
cpu-gpu heterogeneous systems,” in IEEE/ACM Proceedings Design, Automation and
Test in Eurpoe (DATE), 2022.

9

http://www.geosteiner.com/
http://www.geosteiner.com/

