
A Robust FPGA Router with Concurrent Intra-CLB Rerouting
Jiarui Wang1,2, Jing Mai1,2, Zhixiong Di3, Yibo Lin2,4∗
1School of Computer Science, Peking University, Beijing, China
2School of Integrated Circuits, Peking University, Bejing, China

3School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
4Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

{jiaruiwang, jingmai}@pku.edu.cn, dizhixiong2@126.com, yibolin@pku.edu.cn

ABSTRACT
Routing is the most time-consuming step in the FPGA design flow
with increasingly complicated FPGA architectures and design
scales. The growing complexity of connections between logic
pins inside CLBs of FPGAs challenges the efficiency and quality
of FPGA routers. Existing negotiation-based rip-up and reroute
schemes will result in a large number of iterations when generat-
ing paths inside CLBs. In this work, we propose a robust routing
framework for FPGAs with complex connections between logic
elements and switch boxes. We propose a concurrent intra-CLB
rerouting algorithm that can effectively resolve routing conges-
tion inside a CLB tile. Experimental results on modified ISPD 2016
benchmarks demonstrate that our framework can achieve 100%
routability in less wirelength and runtime, while the state-of-the-
art VTR 8.0 routing algorithm fails at 4 of 12 benchmarks.

1 INTRODUCTION
Routing is the most time-consuming stage in the design flow
for Field Programmable Gate Arrays (FPGAs). As shown in Fig-
ure 1(b), An FPGA device consists of configurable logic blocks
(CLBs) connected by global switch boxes (GSBs). A typical CLB
has a function unit (FU) inside, which can be further divided into
basic logic elements (BLEs) containing logic elements like look-
up tables (LUTs) and flip-flops (FFs). A typical FPGA device like
Xilinx Ultrascale series [1, 2], e.g., UltraScale VU095, con-
tains millions of logic elements, resulting in a huge searching
space, and meanwhile, FPGA designs nowadays can be highly
congested with high-fanout nets. A router needs to find legal
embeddings of nets in pre-fabricated routing resources with con-
figurable switch boxes on an FPGA device. As the sizes of both
FPGA devices and designs grow rapidly, routing is becoming the
bottleneck for FPGA design closure, i.e., taking 41-86% runtime in
both commercial and academic flows [3]. Therefore, it is important
for FPGA routers to be efficient and high-quality.

Existing FPGA routing algorithmsmostly follow the negotiation-
congestion based algorithm [4], where nets are sorted in a specific
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Figure 1: (a) An Island architecture commonly used in aca-
demic routers [6] where each logic pin inside a CLB is logic
equivalent. (b) An FPGA architecture where each logic pin
inside a CLB is not logic equivalent.

order, and each net is routed with a PathFinder kernel. The rout-
ing congestion in the negotiation-congestion based algorithm is
resolved by iterative rip-up and reroute schemes. The literature
has explored how to improve the performance of PathFinder [4].
Lemieux et al. [5] also propose to divide the routing into global
routing and detailed routing to improve efficiency. VTR 8.0 [6]
proposes a lazy method to improve routing scalability for large
designs and high-fanout nets. Many works [6–8] have proved
only rip-up and reroute congested sink pins of congested nets
rather than rip-up the whole congested nets is helpful to reduce
runtime. There is also a line of studies exploring parallelizing the
routing algorithms for better efficiency [9–13], which can reduce
the runtime at certain costs of the solution quality.

Academic routers like VTR 8.0 router [6] assume that each
logic pin inside a CLB is logic equivalent. As shown in Figure 1(a),
each logic pin inside a CLB can connect to any I/O pin of that
CLB. Signals pass through I/O pins of a CLB will be connected to
routing tracks and be switched to other tracks by switch boxes
(SBs). However, the increasing scale and complexity of modern
FPGAs have made connections inside a CLB more complex. As
shown in Figure 1(b), logic pins inside a CLB shall go through local
switch box (LSB) to connect to GSB and can only connect to some
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certain GSB routing tracks, which cause more routing congestion
at the logic pins inside the CLBs. Such large solution space and
high design complexity challenge the routing algorithm, as an
FPGA router needs to find paths at both the CLB level and the
logic element level without conflicts between nets.

In this work, we propose a logic element level router for large-
scale FPGA designs. Our router aims to generate a routing solution
on both inter-CLB and intra-CLB levels. To resolve the large
number of rip-up and reroute iterations, our router abstracts
routing inside a CLB as an Integer Linear Programming (ILP)
formulation to resolve congestion inside CLBs. This work also
unveils the limitations of existing routing strategies under such a
large and fine-grain routing task. The major contributions of this
work are summarized as follows.

• We propose a robust FPGA router with concurrent intra-
CLB rerouting to generate routing solutions at the logic
element level.

• We propose a concurrent tile assignment algorithm to do
intra-CLB rerouting, which can significantly reduce the
routing congestion inside CLB tiles.

• We propose a stencil-based parallelization technique to
resolve the inter-tile data dependency while doing concur-
rent tile assignment.

Compared with the VTR 8.0 algorithm [6, 14], our router can
generate a legal routing solution for all 12 benchmarks, while
VTR fails at 4 of 12 benchmarks and ends up with more runtime
(8.87× slower) and worse quality (19.4% larger wirelength) on
the modified ISPD 2016 benchmarks for the logic element level
routing.

The rest of the paper is organized as follows. Section 2 describes
the FPGA architecture and problem formulation; Section 3 ex-
plains the overall flow of our algorithms; Section 4 demonstrates
our ILP-Based concurrent tile assignment. Section 5 validates the
routing algorithm with experimental results; Section 6 concludes
the paper.

2 PRELIMINARIES
In this section, we introduce our routing architecture and the
problem formulation of the routing problem.

2.1 FPGA Routing Module
In modern FPGAs, logic pins inside CLBs are not logic equivalent,
which is different from the asummption of many academic routers
likeVTR [14]. Figure 1(b) shows a simplified version of our routing
architecture. Some tracks will be unreachable for a certain logic
pin. Meanwhile, congestion will appear at both GSB channels and
inside CLBs.

To route a placed netlist, the most commonly used idea is
to abstract the FPGA architecture as a routing resource graph
(RRG). An RRG is a directed graph 𝐺 (𝑉 , 𝐸). Each vertex 𝑣 ∈ 𝑉
represents a logic pin or a cluster of logic pins due to pin merging
and swapping technique (Section 3.3). and has a finite capacity
for nets to share. Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 represents a
logic connection between two routing resources, where signal is
sent from vertex 𝑢 to vertex 𝑣 .

2.2 Negotiation-Congestion Based Routing
Most academic routers use Pathfinder [4] as the basic routing
strategy to route an FPGA design. Its basic idea is to iteratively rip-
up congested nets and reroute them using a path search algorithm.

PathFinder [4] determines the cost 𝑐 (𝑛) of an RRG vertex 𝑛
using the following function when searching for a routing path
to a sink:

𝑐 (𝑛) = (𝑏 (𝑛) + ℎ(𝑛)) ∗ 𝑝 (𝑛) (1)
The base cost 𝑏 (𝑛) is determined at the initial of the routing phase.
History cost ℎ(𝑛) is related to history congestion on vertex 𝑛 in
the previous iterations. Present cost 𝑝 (𝑛) is related to the number
of other nets using RRG vertex 𝑛. Readers are referred to [4] for
calculation method of them.

The kernel algorithm of academic FPGA routers like VTR 8.0
router [6] is similar to PathFinder while they use A* search to find
a routing path from a source pin to a sink pin. They add congestion
cost each iteration to resolve routing congestion. However, their
router has fewer effects when considering CLBs whose pins are
not logic equivalent. To deal with such circumstances, we need a
router to concentrate more on resolving routing congestion while
focusing on reducing the wirelength of the design.

2.3 FPGA Routing Constraints
A legal routing solution shall satisfy the following constraints.
For any net, there must exist a connection path from the source
pin of the net to each pin of the net. This means that we will
generate a routing tree for each net. For each routing tree, its root
is the source of the net, and each leaf of the routing tree is a sink
of the net. Furthermore, for any routing resource in the routing
architecture, it shall not be used by nets more than its capacity.

In this work, our router focuses on finding a legal routing
result of each net while optimizing the wirelength of the routing
solution.

3 ROUTING FRAMEWORK
In this section, we introduce our routing framework.

3.1 Overview of the routing flow
The overall flow of our router is shown in Figure 2. Our router
takes placement result and FPGA routing architecture as input and
generates a routing solution for the given netlist. The routing flow
consists of 2 phases: (1) global routing and (2) detailed routing.
As Figure 3 shows, we know each logic element locates after
placement. We generate an inter-CLB level routing solution in the
global routing phase and generate a logic element level routing
solution in the detailed routing phase.

The kernel algorithm of our global router and detailed router
is based on PathFinder [4], which is commonly used in academic
FPGA routers. As shown in previous section, the kernal idea is to
route the given netlist iteratively by rip-up and reroute congest
nets at each iteration. During rip-up and reroute phase, we only
reroute those congested sinks to save route time.

After the first few iterations of detailed routing, most nets will
have a routing result with no routing congestion. Most congestion
is located in logic pins inside CLBs and solving them will cost
many rip-up and reroute iterations. Our router will use an ILP-
based concurrent metric after the first few iterations to resolve
most of those congestion inside CLBs and iteratively rip-up and
reroute other congestion.
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Figure 2: Our proposed routing flow.
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Figure 3: An overview of two stages of our router: (a) inter-
CLB level global routing (b) logic element level detailed
routing.

3.2 Global Routing
The goal of global routing is to generate a coarse routing re-
sult at inter-CLB level. The result of global routing can guide
detailed router’s behavior when routing nets connecting different
CLBs. Most existing FPGA routers [6, 12] do not have a global
routing stage. They directly try detailed routing by applying
PathFinder [4] algorithm. However, we find that directly solving
detailed routing is impractical when handling large-scale designs.

In this work, we propose a global routing algorithm that con-
siders the potential routability issues in detailed routing. In other
words, we try to avoid congested routing regions and leave enough
resources for detailed routing. Using the global routing result to
guide the detailed router will help reduce the search space and
the number of iterations.

The global router abstracts the FPGA layout as a grid graph by
regarding each CLB as a vertex. If two CLBs are connected, we
add one capacity to the directed edges connecting two vertices

representing two logic grids. We define the weight of a certain
edge as the Manhattan distance between two CLBs.

After constructing the grid graph, we call pathfinder to route all
nets and use the following function to evaluate the cost of a vertex
𝑣 when adding grid vertex 𝑣 into the priority queue expanding
from grid vertex 𝑢:

𝑐𝑜𝑠𝑡 (𝑣) = 𝑝𝑟𝑒𝑣 (𝑢) +𝑤𝑒𝑖𝑔ℎ𝑡 (𝑢, 𝑣) + 𝑝𝑟𝑒𝑑 (𝑣). (2)
The previous cost 𝑝𝑟𝑒𝑣 (𝑢) is the sum of edge weight connecting
to grid vertex𝑢. We use Manhattan distance to estimate the future
cost to route to sink grid vertex 𝑠 . So the prediction cost 𝑝𝑟𝑒𝑑 (𝑣) is
defined as the Manhattan distance from the current grid vertex 𝑣
to sink grid vertex 𝑠 .𝑤𝑒𝑖𝑔ℎ𝑡 (𝑢, 𝑣) is initially defined as Manhattan
distance between two grid vertex 𝑢 and 𝑣 . The weight of a cer-
tain edge will increase linearly increase as its remaining capacity
drops to a certain threshold. This helps to achieve sparse routing
solutions and improve detailed routability.

3.3 Detailed Routing
The goal of detailed routing is to generate the logic element level
routing result of each net with the guidance of global routing
results. Different from global routing working on a coarse-grained
graph, detailed routing needs to finish all the routing on a fine-
grained graph considering both inter- and intra- CLB tiles. Our
detailed routing follows a similar negotiation-congestion based
routing scheme to global routing. And we use following metrics
to enhance our detailed routing algorithm.

Pin merging and swapping. Since each logic pin inside a
CLB is not logical equivalent, for those nets with multiple sinks,
different sinks may be connected to different global switch box
tracks. Thus, route those nets may have to cover multi-tracks of
global switch boxes. Using multiple global switch box tracks to
route a single net leads to an increase of the wirelength and lack
of routing resources. For example, the most used logic element
in an FPGA design is LUT. A Single LUT has multiple inputs. If
we reorder the input order of a LUT, we can recalculate the truth
table of this LUT to guarantee the correctness of its result. Using
this feature, our router can resolve the issue above by merging
vertices representing inputs of a LUT into a single vertex whose
capacity is the number of inputs of the LUT.

Search space reduction and expansion. When searching for
routing paths, our router only searches those RRG vertices covered
by global routing result to reduce runtime. For a net, routing
congestion may be caused by not enough routing resources inside
its routing guide. So when ripping-up congestion vertices, we
expand the nearby grids of the congested vertex located into the
routing guide of the congested net every few iterations to slowly
expand the search space.

Net ordering. In each iteration, our router first sorts all nets in
the netlist considering their size and reroute times to determine
the importance of each net. When ripping up congestion nets at
each routing iteration, our detailed router does not rip-up the
top-𝐾 important nets congested at a vertex to reduce runtime. 𝐾
is the capacity of the congested vertex.

Concurrent tile assignment. Most routing congestion at
vertices representing logic pins of GSBs will be resolved in the first
few rip-up and reroute iterations by using the global routing result.
However, as there exist complex connections between switch
boxes and functional units, resolving congestion inside a CLB will
costmuchmore rip-up and reroute iterations. Therefore, we assign
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the routing result of all nets inside a CLB where congestion exists
concurrently after the first few iterations, which will decrease the
number of nets to be rerouted in future iterations, and also may
decrease the number of rip-up and reroute iterations. The detail
of concurrent tile assignment is explained in Section 4.

4 CONCURRENT TILE ASSIGNMENT
In this section, we consider each CLB as a logic tile, and describe
our ILP concurrent tile assignment metric. Section 4.1 introduces
how we apply ILP-based concurrent tile assignment to resolve
congestion intra tiles, and Section 4.2 explains howwe resolve data
dependency between neighbor tiles by using the stencil-based
parallelism strategy.

4.1 ILP-Based Concurrent Tile Assignment
ILP-based mapping metrics have been successfully used in Coarse-
Grained Reconfigurable Architecture (CGRA) mapping problem
[15], which equals place and route in the FPGA design flow. ILP
mapper concurrently generates P&R results by formulating map-
ping as an ILP problem, which inspires us to generate routing
results using ILP concurrently. As the scale of an FPGA is much
larger than a CGRA, it is difficult to use ILP mapping to solve
the whole routing problem. However, as there are only limited
routing resources inside a logic tile, we can use ILP to assign the
routing paths of all nets inside a logic tile concurrently. Therefore,
after the first few iterations of detailed routing, our router will use
ILP-based tile assignment to resolve congestion inside CLB for
those tiles with congestion inside, which will make the number
of nets to reroute in future rip-up and reroute iterations less.

Table 1: List of symbols.

Symbol Description
V Routing vertices in the RRG.
E Directed edges in the RRG.
N Nets inside the logic tile.
𝑅𝑒,𝑗 Binary variable representing whether edge 𝑒 is

used to route net 𝑗 .
𝑆𝑒,𝑗,𝑘 Binary variable representing whether edge 𝑒 is

used to route sink 𝑘 of net 𝑗 .
cap(𝑣) routing capacity of vertex 𝑣 .
FI(𝑣) Fan-in edges of vertex 𝑣 .
FO(𝑣) Fan-out edges of vertex 𝑣 .
COST(𝑒) Routing cost of edge 𝑒 in the RRG.
SOURCE( 𝑗) Routing source vertex of net 𝑗 .
SINK( 𝑗) Routing sink vertices of net 𝑗 .
SINK( 𝑗, 𝑘) Routing sink vertex 𝑘 of net 𝑗 .

We list all the symbols and their descriptions in Table 1. The
target of our ILP router is to find paths to route each net inside a
logic tile with no congestion. Also, the total routing cost shall be
minimized. We list all the ILP constraints as follow:

Capacity Constraint. For any vertex of RRG, it cannot be
used to route nets more than its capacity.∑

𝑒,𝑗 𝑅𝑒,𝑗 ≤ cap(𝑣),
∀𝑣 ∈ V, 𝑗 ∈ N, 𝑒 ∈ FI(𝑣). (3)

ImpliedRouting. For any edge 𝑒 of RRG, if it is used to transfer
signal for a certain net 𝑗 , then it must transfer the signal to at
least a certain sink 𝑘 of net 𝑗 .

𝑆𝑒,𝑗,𝑘 ≤ 𝑅𝑒,𝑗 ,

∀𝑒 ∈ E, 𝑗 ∈ N, 𝑘 ∈ SINK(j). (4)

Net Source Constraint. If vertex 𝑣 in the RRG represents the
routing source of a certain net 𝑗 , then for any sink 𝑘 of net 𝑗 , there
must be a fan-out edge 𝑒 of 𝑣 used for transferring signal to 𝑘 .∑

𝑒 𝑆𝑒,𝑗,𝑘 = 1,
∀𝑒 ∈ FO(𝑣), 𝑣 = SOURCE(j),∀𝑘 ∈ SINK(j) . (5)

Net SinkConstraint. For any vertex 𝑣 in the RRG representing
a certain sink 𝑘 of net 𝑗 , there must be a fan-in edge of 𝑣 used to
transfer signal to 𝑣 . ∑

𝑒 𝑆𝑒,𝑗,𝑘 = 1,
∀𝑒 ∈ FI(𝑣), 𝑣 = SINK(j, k) . (6)

Path progression. For vertex 𝑣 and net 𝑗 , if 𝑣 is neither source
of 𝑗 nor sink 𝑘 of 𝑗 , then the number of input signal shall equal
the number of output signal. This means if there is a fan-in edge
of 𝑣 used to transfer signal to sink 𝑘 of net 𝑗 , there must be a
fan-out edge of 𝑣 used to transfer signal to sink 𝑘 of net 𝑗 .∑

𝑒𝑖𝑛 𝑆𝑒𝑖𝑛, 𝑗,𝑘 =
∑
𝑒𝑜𝑢𝑡 𝑆𝑒𝑜𝑢𝑡 , 𝑗,𝑘 ,

∀𝑗 ∈ N, 𝑘 ∈ SINK(j), 𝑣 ≠ SOURCE(j)&𝑣 ≠ SINK(j, k),
𝑒𝑖𝑛 ∈ FI(𝑣), 𝑒𝑜𝑢𝑡 ∈ FO(𝑣).

(7)

ILP Objective. The ILP constraints above have ensured there
exists a routing path for any sink of any net. Therefore, we only
need to minimize the routing cost.∑

𝑒,𝑗 COST(𝑒)𝑅𝑒,𝑗 ,
∀𝑒 ∈ E, 𝑗 ∈ N.

(8)

Note that in our routing resource graph, vertices representing
source pin and sink pins of a net don’t have input edges or output
edges. Therefore, our ILP formulation ensures a legal resolution
if there exists.

Routing nets connecting different logic tiles will also impact
the routing result inside a CLB. Therefore, when routing a certain
logic tile, our concurrent tile assignment will also consider its
neighbor logic tile. As shown in Algorithm 1, for each logic tile,
we dump a local copy of RRG only containing those vertices
in the tile and its neighbor tile first. Then, we use nets whose
source vertex is located in that tile as the local netlist N. After
that, we call the solver to solve the ILP problem above. If we find
an optimal solution to the ILP problem, then we will update the
ILP routing result to the routing solution. For those tiles whose
result is infeasible, which is caused by nets connecting logic tiles
which are not nearby, we use rip-up and reroute scheme to resolve
routing congestion.

Algorithm 1: ILP-Based Concurrent Tile Assignment
Input: A logic tile with routing congestion
Output: Tile assignment result

1 Dump local copy of RRG consisting of vertices in input tile
and its neighbor tiles. ⊲ Section 4.2

2 Collect Nets start from input tile.
3 solve_ILP() ⊲ Section 4.1
4 if ILP optimal result found then
5 Update Route Result ⊲ Section 4.2
6 end
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(a) (b) (c)

Figure 4: (a), (b) and (c) are three stencil shapes for a struc-
tured tile grid with radius 1, 2, and 3 respectively. The blue
tile is the center tile and the red tiles are the data-dependent
neighboring tiles.

4.2 Stencil-Based Parallelism for Inter-Tile
Dependency

4.2.1 Stencil-like Read-Write Dependency. The local routing graph
construction for a tile to update to read the tile itself and its data-
dependent neighboring tiles. Meanwhile, after solving the local
ILP-based tile assignment problem, we also need to write back
results to the tile to update the neighboring tiles. This read-write
dependency on the structured tile grids forms a inter-tile stencil
computation pattern.

The stencil is characterized by a regular shape consisting of a
center tile and its data-dependent neighboring tiles. Figure 4(a)-
4(c) show three different stencil shapes on a 2D structured grid.
Because the routing tracks are either horizontal or vertical, we
define the radius of a stencil as the largest Manhattan distance
between the tile to update and its neighboring dependent tiles.
The larger the radius, the more accurate the perception of local
routing congestion will be, but also result in a more complex local
ILP problem and poorer condition for parallel execution, and vice
versa. Our router chooses the stencil scheme with radius as one
to fully exploit the parallelism.

4.2.2 Synchronization-free Stencil Scheduling. Due to the read-
write conflict, two stencil computations can not be performed in
parallel if their stencil shapes overlap with each other, as illus-
trated in Figure 5(a). This conflicting relation can be equivalently
transformed onto the center tiles, i.e., if the Manhattan distance
between two center tiles is less than or equal to two, they can
not perform the ILP-based tile assignment in parallel, which is
unfriendly to parallel execution scheduling. Meanwhile, the tiles’
local ILP problem workload and execution time vary. This is also
unfriendly to partitioning-based scheduling for parallel computa-
tion, because the synchronization is bounded by waiting for the
slowest workload, which significantly ruins the CPU utilization.
Therefore, we propose a synchronization-free stencil scheduling
method to remedy the aforementioned issues.

Figure 5(c) shows our proposed running dependency graph
on the 2D structured grid. Immediate predecessors for a tile (the
purple one) are the one above it, the one to the left of it, the one
on the top-left corner of it, and the one on the bottom-left corner
of it (the four cyan ones). A tile can perform stencil computation
if all of the immediate predecessors are already finished. This
method has the feasible guarantee that any parallelism schedule
correspondingwith this dependency graph can ensure no two tiles
withManhattan distance less than or equal to two perform stencil
computation simultaneously. Besides, our proposed method is
synchronization-free over the partitioning-based parallel method,

(a) (b) (c)

Figure 5: (a) shows the scenario that two stencil shapes with
radius one overlapping with each other, in which case the
two stencils are conflict and can not be scheduled in paral-
lel. (b) illustrates another non-conflicting scenario for two
stencil shapes with radius one. The conflicting condition
can be equivalently transformed into two stencil shapes
conflict with each other if theManhattan distance between
their center tiles (the blue ones) is less than or equal to two.
(c) Our proposed running dependency graph on a simpli-
fied 4 × 4 grid. The running dependency graph is a directed
acyclic graph, where the nodes are the tiles and the edges
are the running dependency between the tiles.

and have a dynamically-adjusted schedule according to the actual
runtime of each tile.

5 EXPERIMENTAL RESULTS
We implemented our algorithm in C++ and conducted experi-
ments on a Linux machine equipped with an Intel Xeon Gold 6230
CPU (2.10 GHz) and 512 GB RAM. We call Gurobi [16] optimizer
to solve ILP problem, and we use Taskflow [17], an open-source
parallel computing tool, to implement our stencil-based sched-
uling when doing tile assignment. We tested our work on the
modified ISPD 2016 FPGA Contest Benchmark [18].

We take the ISPD 2016 FPGA placement contest benchmarks
and incorporate the industrial FPGA routing architecture similar
to Xilinx Ultrascale VU095. Control signals and clock
signals are excluded due to lack of clock routing architecture. We
also obtain the placement solutions from the previous contest win-
ner [19]. We adapt the state-of-the-art VTR routing algorithm [6]
(abbreviated as Adapted VTR) to support the industrial routing
architecture.

Table 2 shows the comparison of our algorithm with the VTR
algorithm on modified ISPD 2016 benchmark. Our logic element
level router successfully generate a legal result on all designs, but
the VTR algorithm cannot generate a legal solution on 4 of 12
benchmarks within 24 hours. On modified ISPD2016 benchmarks,
our router is 8.87× faster than VTR, and wirelength of routing
results generated by VTR algorithm are 19.4% more than ours.

In practice, we do tile assignment after the first 21 iterations of
detailed routing. Using design FPGA08 as example, we show how
our tile assignment impacts the routing scheme in Figure 6(a).
Before doing tile assignment, there are 48 congested vertices to be
resolved. After doing tile assignment, most of congested vertices
are resolved and only need 3 more iterations to resolve other
congested vertices while routing without tile assignment takes
4 more iterations to resolve the congested vertices and need to
reroute more nets in each iteration.

Figure 6(b) shows the runtime breakdown of our router on de-
sign FPGA08. The process of detailed routing is the major portion
of runtime, taking 90.71% of the total runtime. Doing tile assign-
ment and global routing only takes 4.68% and 1.42% runtime of the

5



Table 2: Routing status, routed wirelength (×105) and runtime comparison on modified ISPD 2016 contest benchmarks [18]

Design #Nets(K) #Nodes(K)
Adapted VTR [6] Ours.

Routed Rate WL RWL RT RRT Routed Rate WL RWL RT RRT
FPGA01 105 105 100.00% 4.147 1.038 76m 4.00 100.00% 3.997 1.000 19m 1.00
FPGA02 167 166 100.00% 8.232 1.096 5m 1.00 100.00% 7.507 1.000 5m 1.00
FPGA03 428 421 100.00% 39.529 1.254 88m 5.50 100.00% 31.528 1.000 16m 1.00
FPGA04 420 423 100.00% 74.776 1.169 614m 14.28 100.00% 63.973 1.000 43m 1.00
FPGA05 433 425 68.30% 146.502 1.112 >24H >7.54 100.00% 131.786 1.000 191m 1.00
FPGA06 713 704 100.00% 76.171 1.205 514m 10.71 100.00% 63.200 1.000 48m 1.00
FPGA07 716 707 96.41% 140.575 1.273 >24H >13.59 100.00% 110.457 1.000 106m 1.00
FPGA08 725 717 100.00% 134.834 1.301 365m 5.14 100.00% 103.487 1.000 71m 1.00
FPGA09 876 867 99.62% 166.927 1.215 >24H >11.61 100.00% 137.412 1.000 124m 1.00
FPGA10 961 952 100.00% 66.474 1.098 506m 12.34 100.00% 60.547 1.000 41m 1.00
FPGA11 851 845 89.30% 192.360 1.331 >24H >9.47 100.00% 144.572 1.000 152m 1.00
FPGA12 1111 1103 100.00% 93.146 1.236 697m 11.24 100.00% 75.371 1.000 62m 1.00
Norm. - - 96.14% - 1.194 - >8.87 100.00% - 1.000 - 1.00
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Figure 6: (a) Comparision of number of rip-up and reroute
iterations and number of congested vertices in each itera-
tion between routing with tile assignment and without tile
assignment on design FPGA08. (b) Runtime breakdown on
design FPGA08.

total flow, and they directly impact the efficiency and quality of
the routing result. The other part of runtime is the cost of reading
and writing files, which takes 3.29% runtime of total flow.

6 CONCLUSION
In this paper, we propose an FPGA router at the logic element
level. By analyzing the routing challenges in FPGA, we propose an
ILP-based concurrrent tile assignment metric to resolve routing
congestion inside CLBs. We also propose routing enhancement
techniques to pin merging and swapping, search space reduction
and expansion, and routing ordering strategy that are effective to
reduce rip-up and re-route iterations in a negotiation-congestion
based routing algorithm. Experimental results on modified ISPD
2016 benchmarks demonstrate that our router can achieve 100%
routability while the state-of-the-art VTR algorithm fails at 4 of
12 benchmarks and ends up with more than 8.87× runtime and
19.4% larger wirelength.
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