
Stronger Mixed-Size Placement Backbone
Considering Second-Order Information

Yifan Chen1, Zaiwen Wen2, Yun Liang1,3,4, Yibo Lin1,3,4∗
1School of Integrated Circuits, Peking University, Beijing, China

2Beijing International Center for Mathematical Research, Peking University, Beijing, China
3Institute of Electronic Design Automation, Peking University, Wuxi, China

4Beijing Advanced Innovation Center for Integrated Circuits
Email: {chenyifan2019, wenzw, ericlyun, yibolin}@pku.edu.cn

Abstract—Macro placement is a critical step in modern very
large-scale Integration (VLSI) physical design. Placing macros
with varying sizes significantly impacts the eventual quality
of results. Many studies attempt to improve macro placement
solutions leveraging existing analytical placement algorithms as
the backbone. However, existing analytical placement algorithms
may fail to converge for mixed-size designs if the parameters are
not well-tuned. In this work, we propose a stronger mixed-size
placement backbone with robust global placement convergence
and macro legalization. Experimental results show that our
method outperforms state-of-the-art works with better solution
quality and fewer optimization iterations on various benchmarks
including MMS, ISPD2005, and TILOS.

I. INTRODUCTION

Macros are pre-designed and pre-verified building blocks
in VLSI circuits. As macros can range from small arithmetic
units to large memory blocks and even complex subsystems,
their locations in a chip layout are crucial to the eventual
design quality of results (QoR) [1]. Macro placement deter-
mines the locations of these macros in the layout. With the
increasing complexity of VLSI designs, placing macros with
heterogeneous sizes becomes more and more challenging due
to their diverse shapes and high impacts on the locations of
standard cells.

In the early years, macros are manually placed according
to designers’ experience. However, as designs get larger and
more intricate, creating high-quality macro placement with
manual efforts becomes unaffordable. The industry calls for
high-performance techniques to place macros.

As the locations of macros have high impacts on standard
cells, literature has explored mixed-size placement techniques
to simultaneously optimize the locations of macros and cells.
Typical mixed-size placement algorithms leverage mathemati-
cal optimization, such as mPL6 [2], NTUplace [3], ePlace-MS
[4]. Figure 1 (left) shows a two-stage mixed-size placement
flow adopted by the open-source TILOS project [1], where
mixed-size placement is first performed as prototyping to
determine the macro locations before standard cell placement.

Given the mixed-size placement as the initial prototyping,
another line of studies focuses on developing efficient data
structures to represent a macro placement, such as CG [5],

This work was supported in part by the National Science Foundation of
China (Grant No. T2293700 and T2293701) and the 111 Project (B18001).

∗Corresponding author

LEF, LIB, QRC
SDC, RTL

Placement

CTS

Routing

Logic Synthesis

Floorplan

AutoDMP Flow

Place-opt incremental

Mixed-Size Placement

Parameters

Candidates

Multi-objective Bayesian
optimizer

Metrics

Fix Macros
Keep Standard Cells

Power Plan/Route

TILOS Flow

Mixed-Size Placement

Fix Macros
Unplace Standard Cells

Power Plan/Route

Place-opt: Standard Cell
Placement + Pre-CTS Opt

Placed & Routed
DEF

Fig. 1: A typical VLSI design flow. The left is TILOS flow,
and the right one is AutoDMP flow. Both of them require a
strong mixed-size placement backbone.

MP-tree [6], CP-tree [7], and [8], [9]. With efficient represen-
tations, searching-based approaches can be adopted to legalize
and incrementally refine the locations of macros based on
heuristic objectives.

Recently, machine learning techniques and open-source
datasets [10] have been incorporated into VLSI CAD tasks,
including macro placement. Such as selection of macro place-
ment solutions based on routability prediction [11], [12],
graph learning based initialization for mixed-size placement
[13], and reinforcement learning for macro refinement [14],
[15], [16], [17]. A recent study from TILOS [1] has shown
that the mixed-size placement prototyping significantly im-
pacts the quality of solutions from reinforcement learning
approaches. Besides previous techniques, AutoDMP based on
multi-objective Bayesian optimization has achieved the state-
of-the-art macro placement results that are comparable to
commercial tools [18]. It essentially performs hyper-parameter
searching upon a mixed-size placement engine DREAMPlace
[19] to find the Pareto front of solutions considering conges-
tion and wirelength, as shown in Figure 1 (right).

It can be seen that all the above-mentioned methods rely on
mixed-size placement as their backbone, creating a growing
demand for a stronger mixed-size placement backbone that

Fig. 2: Diverged examples from DREAMPlace. The two
designs, I/O-freed bigblue2 (left) and newblue3 (right),
come from the ISPD2005 and MMS benchmarks.

is robust and efficient to generate high-quality prototypes.
However, macros with heterogeneous sizes pose challenges in
optimization convergence. An ill-tuned placer may be prone
to divergence and produce extremely low-quality solutions,
as shown in Figure 2. The main reason is that the macros’
motion will cause drastic changes in the gradient due to their
heterogeneous sizes. As most mixed-size placement algorithms
rely on first-order gradient information [2], [3], [4], [20],
drastic gradient changes are more likely to cause instability
and divergence. Therefore, we aim to address the convergence
issue by considering second-order information.

In this work, we propose a stronger mixed-size placement
backbone considering second-order information to enable
robust and high-quality placement optimization. The major
contributions of our work are summarized as follows:

• We propose a mixed-size placement backbone with
Barzilai-Borwein method enabled optimization. This
novel approach achieves robust convergence with fewer
placement iterations and better quality, while incurring
only minimal runtime overhead per iteration.

• We present a robust macro legalization algorithm combin-
ing multiple strategies that can achieve less displacement,
contributing to higher-quality macro placement.

• The experimental results demonstrate that our pro-
posed framework outperforms the widely-used mixed-
size placement backbone, DREAMPlace [20], offering
better solution quality and requiring fewer optimization
iterations across a wide range of benchmarks. That is,
6.5%, 29.6%, and 33.3% lower wirelength than the de-
fault DREAMPlace on MMS [21], ISPD2005 [22], and
TILOS [1] benchmarks. By integrating our backbone into
AutoDMP, we can also improve the Pareto front curves
on TILOS benchmarks.

The rest of the paper is organized as follows. Section II
introduces the basic background and problem formulation;
Section III explains the details of the proposed algorithm;
Section IV validates the algorithm with experimental results;
Section V concludes the paper.

II. PRELIMINARIES

In this section, we review the background and the motiva-
tion.

A. Analytical Mixed-Size Placement

Analytical placement usually consists of three stages: global
placement (GP), legalization (LG), and detailed placement
(DP). Global placement spreads out instances in the layout;
legalization removes the remaining overlaps between instances
and aligns instances to placement sites; detailed placement
performs incremental refinement to further improve the qual-
ity. Since the quality of the final placement solution largely
depends on the global placement and legalization stage, we
mainly focus on them in this work.

Global placement aims at minimizing the wirelength cost
subjecting to density constraints. The density constraints are
relaxed to a density penalty term computed as the potential
energy of an electrostatic system where cells are modeled as
charges in ePlace [23],

min
∑
e∈E

weWL(e;x, y) + λD(x, y) (1)

where E is the set of nets, (x, y) are the coordinates of
all the instances, we is the weight of net e. WL(·; ·) is a
differentiable wirelength cost function that takes net e and
returns the wirelength, and D(·) is the density penalty to
spread cells out in the layout. The density constraints can
be satisfied by gradually increasing the weight λ. From an
optimization point of view, the formulation can be extended
to mixed-size placement as well. Thus, analytical mixed-size
global placement is solving an unconstrained optimization
problem with differentiable objective function.

B. Macro Legalization

In the global placement stage, the density penalty cannot
ensure a non-overlapping solution. Therefore, we need to
perform legalization to remove the remaining overlaps be-
tween instances with minimum displacement. Since macros
are typically much larger than standard cells, the legalization
stage is usually divided into macro legalization and standard
cell legalization. In this work, we mainly focus on macro
legalization, as the displacement of macros would largely
affect standard cell placement. Towards minimizing absolute
displacement, macro legalization can be formulated as flowing,

min ‖x− x̂‖1 + ‖y − ŷ‖1
s.t. xi + wi ≤ xj ∨ xi − wj ≥ xj ∨ yi + hi ≤ yj ∨ yj − hj ≥ yj

Wl ≤ xi ≤Wh − wi
Hl ≤ yi ≤ Hh − hi

(2)
where (x̂, ŷ) are the coordinates before legalization, (wi, hi)
is the width and height of instance i, Wl,Wh are the left
and right boundaries of the layout, Hl, Hh are the bottom and
top boundaries of the layout. This constraint implies that the
instance i is either to the left of or to the right of or above or
below the instance j.

Sweep Lines

D

C

B
A

Placement Before Cutting
Based Overlap Removal

D

C

B
A

C

D

A
B

CBADABCD

Fig. 3: Sequence pair example. The left is the layout with
overlap, and we remove the overlap by cutting off the macros
[24]. The right is the sweep line algorithm for sequence pair
generation.

C. Sequence Pair

The sequence pair representation was introduced in [25],
and many works have focused on efficiently generating a legal
layout from a given sequence pair. A sequence pair S(S+, S−)
includes a pair of permutations of macros {1, 2, .., n}. Here is
a sequence pair of 4 macros as shown in Figure 3,

S+ = 〈C,B,A,D〉
S− = 〈A,B,C,D〉

(3)

Let a ≺x b denote a is to the left of b and a ≺y b denotes a is
below b, the position of macro a in S+ is S+(a), the position
of macro a in S− is S−(a). Then, the relative relation of
macros can be represented by sequence pair as following,
• a ≺x b ⇐⇒ S+(a) < S+(b) and S−(a) < S−(b).
• b ≺x a ⇐⇒ S+(a) > S+(b) and S−(a) > S−(b).
• a ≺y b ⇐⇒ S+(a) > S+(b) and S−(a) < S−(b).
• b ≺y a ⇐⇒ S+(a) < S+(b) and S−(a) > S−(b).

In macro legalization, converting a placement with overlaps to
a sequence pair can be done in O(n log n) time using cutting-
based overlap removal and sweep line algorithm [24]. Besides,
the longest common sub-sequence algorithm [26] can check
if a sequence pair is legal in O(n log log n) time.

III. ALGORITHM

In this section, we will further detail our algorithm. There
are two major parts: the Barzilai-Borwein method enabled
Nesterov algorithm in Section III-B and proposed macro
legalization algorithm in Section III-C.

A. Overview

Our mixed-size placement flow first uses Barzilai-Borwein
method enabled Nesterov algorithm to solve the mixed-size
analytical global placement problem. Then, we launch our
macro legalization algorithm to remove the overlaps between
macros towards minimum displacement. After the macros are
legalized, we fix them and scale down the density penalty
weight λ to restart global placement. In the restarted global
placement, only the cells are movable and they start their
motion from the current position instead of relaunching the
whole standard cell global placement. The overall flow of our
framework is shown in Figure 4.

Our Framework

BB Method Enabled
Mixed-Size Global

Placement

Macro Legalization

Fix Macros, Keep Cells
Scale Density Weight

Restart Global Placement
for Standard Cells

Placement Solution

Macro Legalization

Cutting-based
Overlap Removal

Initial
Sequence

Pair

N

Is Legal ?

Legal Macro
Placement

TCG-based Min-
cost Flow Y

ILP-based
Legalization

Y

N n N ?
Parallel

Tempering
Legalization

Fig. 4: The overall flow of our framework. It can be roughly
viewed as a two-stage flow, including 1) mixed-size global
placement and macro legalization, and 2) standard cell place-
ment.

B. Barzilai-Borwein Method Enabled Nesterov Algorithm
In global placement, we have an unconstrained differen-

tiable function f(·), and our target is to solve flowing opti-
mization problem,

min f(x) (4)

Let g(k) = ∇f(x(k)) and H(k) = ∇2f(x(k)). There are
two widely-used methods to solve such kind of problem, the
gradient method and the Newton’s method.

Gradient Method: x(k+1) = x(k) − αkg(k). The Gradient
Method is a first-order optimization method that uses the
gradient of the objective function to update the solution at each
iteration. It is relatively simple and computationally efficient,
but its convergence rate can be slow, particularly for non-
convex problems. It can be a good choice for large-scale
problems when the objective function is expensive to compute,
as it only requires the computation of the gradient. But it can
be sensitive to the choice of the step size.

Original DREAMPlace [20] uses the predicted Lipschitz
step size accelerated Nesterov method as ePlace [23],

α
(k)
lip =

‖x(k) − x(k−1)‖
‖g(k) − g(k−1)‖

∼ 1

L
. (5)

where L is the Lipschitz constant. The predicted Lipschiz step
size works well for standard cell placement, but it is still prone
to divergence for mixed-size placement, even if the line search
scheme is enabled, as shown in Figure 2. The main reason
is that when the macros are also free to move, the gradient
of the objective function will also change drastically as the
macros move, which indicates that first-order information of
the objective function is no longer enough for mixed-size
placement.

Newton’s Method: x(k+1) = x(k)−(H(k))−1g(k). Newton’s
Method is a second-order optimization method that uses the
gradient and the Hessian of the objective function to update the
solution at each iteration. It has a faster convergence rate than

the Gradient Method, particularly for convex problems. How-
ever, it requires the computation and storage of the Hessian
matrix, which can be computationally expensive and memory-
intensive for large-scale problems. Quasi-Newton methods
like Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) [27] improve Newton’s method by leveraging approx-
imated Hessian matrix to reduce computation and storage
overhead,

but they are still not suitable for mixed-size placement,
• The wirelength function (e.g. log-sum-exp or weighted-

average) is iteratively changed due to the dynamically
adjusted smoothing coefficient γ.

• The penalty factor λ on the energy (density) function
is iteratively changed for the runtime force balancing
between wirelength and density

Those issues lead to the need to recompute the gradients of
previous iterations which takes a lot of time.

Thus, we propose to approximate the inverse of the Hessian
matrix of the objective function based on Barzilai-Borwein
method [28], using the difference between two consecutive
gradients.

The Barzilai-Borwein method uses the following update rule
to find the next solution approximation:

x(k+1) = x(k) − α(k)
bb g

(k) = x(k) − ((α
(k)
bb)−1I)−1g(k). (6)

The step size α
(k)
bb is calculated using the Barzilai-Borwein

step, which approximates the inverse of the Hessian matrix
using the gradient information. That is (α

(k)
bb)−1I ∼ H(k).

Let s(k−1) = x(k) − x(k−1) and y(k−1) = g(k) − g(k−1).
Assuming x(k) is very close to x(k−1), the Hessian matrix
approximately satisfies

H(k)s(k−1) = y(k−1) (7)

Therefore, we choose step size α(k)
bb such that

(α
(k)
bb)−1Is(k−1) ∼ y(k−1) (8)

or alternatively
s(k−1) ∼ α(k)

bb Iy
(k−1) (9)

This leads to a least-squares problem

(α
(k)
bb)−1 = arg min

β
‖s(k−1)β − y(k−1)‖2

=⇒ α
(k)
bb1 =

(s(k−1))T s(k−1)

(s(k−1))T y(k−1)

(10)

or alternatively

α
(k)
bb = arg min

α
‖s(k−1) − y(k−1)α‖2

=⇒ α
(k)
bb2 =

(s(k−1))T y(k−1)

(y(k−1))T y(k−1)

(11)

The three kinds of step sizes have the following relation,

α
(k)
bb2 ≤ α

(k)
lip ≤ α

(k)
bb1 (12)

The convergence to the global optimal of BB method for
quadratic problems has been shown by [29]. But using BB
method alone cannot ensure convergence for the general case,

because BB method cannot ensure a monotone decrease in
the objective function. [30] has shown that pairing up BB
with a non-monotone line search [31] can achieve global
convergence.

Theorem 1: Assume that Ω0 = {x : f(x) ≤ f(x0)} is a
bounded set. Let f : Rn → R be continuously differentiable
in some neighborhood N of Ω0. Let {xk} be the sequence
generated by the BB method with non-monotone line search
algorithm. Then either g(xj) = 0 for some finite j, or the
following properties hold:
• limk→inf ‖gk‖ = 0.
• no limit point of {xk} is a local maximum of f .
• if the number of stationary points of f in Ω0 is finite, then

the sequence {xk} converges.
In our framework, we choose the short BB step since in non-

convex optimization the (s(k−1))T y(k−1) term can be zero and
pair it with Zhang-Hager’s line search [32]. Note that the short
Barzilai-Borwein step can be negative when f is non-convex,
which means the Hessian matrix is negative definite. Thus,
we start the non-monotone line search from the predicted
Lipschitz step size when the short Barzilai-Borwein step is
non-positive. The algorithm is shown in Algorithm 1.

Algorithm 1 Barzilai-Borwein Method Enabled Nesterov
Algorithm

Input: major solution u(k), reference solution v(k), optimiza-
tion parameter ak.
g(k−1) ← ∇f(v(k−1))
g(k) ← ∇f(v(k))
s(k−1) ← v(k) − v(k−1)
y(k−1) ← g(k) − g(k−1)

αbb = (s(k−1))T y(k−1)

(y(k−1))T y(k−1)

α0 = αbb if αbb > 0 else ‖s
(k−1)‖

‖y(k−1)‖
α = LineSearch(v(k), g(k), starts from α0)
u(k+1) = v(k) − αg(k)
ak+1 = (1 +

√
4a2k + 1)/2

v(k+1) = u(k) + ak+1−1
ak+1

(u(k+1) − u(k))
return u(k+1), v(k+1), ak + 1

C. Macro Legalization

The macro legalization flow is illustrated in Figure 4 (right),
which combines multiple strategies. We first use cutting based
overlap removal to build the initial sequence pair [24]. If the
initial sequence pair is feasible, we use transitive closure graph
based min-cost flow algorithm to obtain macro positions. If
the initial sequence pair is infeasible, we choose either ILP-
based macro legalization or parallel tempering based macro
legalization to find a feasible solution according to problem
sizes.

1) Dual Min-Cost Flow based Macro Legalization for Fea-
sible Initial Solutions: In the macro legalization stage, our
target is to remove overlaps towards minimum displacement.
A heuristic is to keep the order of macros, or the relative
relation of macros in other words, like what most standard

ILP-based Legalization

Move Edges From TCG to D

Solve ILP in Feasible Check
Mode

No

Is Feasible ?

Solve ILP

Yes

Convert Sequence Pair to
TCG

Parallel Tempering Legalization

Perturbating Sequence Pair

Inner
Loop

Evaluate Cost
Outer
Loop

Exchange Configurations
Between Workers

Update Sequence Pair

Feasible Sequence
Pair

Legal Macro
Placement

Fig. 5: Our ILP-based and parallel tempering macro legaliza-
tion algorithm.

A
B

D

C
B

A

C D

B

A

C D

Vertical Transitive
Closure Graph

Horizontal Transitive
Closure Graph Placement

D

C

B
A

DC

B

Fig. 6: An example of transitive closure graph of 4 macros.

cell legalization works do. Thus, we convert the placement
with overlaps to an initial sequence pair which represents the
relative relation between macros. Once the relative relation of
macros is determined, the original formulation Eq. (2) would
be reduced to a linear programming problem,

min ‖x− x̂‖1 + ‖y − ŷ‖1
s.t. xi + wi ≤ xj ,∀i ≺x j

xi − wj ≥ xj ,∀j ≺x i
yi + hi ≤ yj ,∀i ≺y j
yj − hj ≥ yj ,∀j ≺y i
Wl ≤ xi ≤Wh − wi
Hl ≤ yi ≤ Hh − hi

(13)

It can be noticed that every pair of (i, j) needs to satisfy one of
the four relative relations, which results in Θ(n2) constraints.
Solving such a problem by a general linear programming
solver would take too much time. There are many redundant
constraints. For example, if i ≺x j and j ≺x k, there is no
need to add a constraint for i ≺x k. Hence, we perform
transitive closure graph based constraints reduction. Some
previous works [33], [34] use transitive closure graph (TCG)
to represent the relation between macros without redundancy.
They keep two directed transitive closure graphs Gx and Gy ,
and let i ≺x j ⇐⇒ ∃ path from i to j ∈ Gx, so as Gy . By
the property of transitive closure graph, for every pair (i, j),
there exist paths either in Gx or Gy that connect them. An
example of 4 macros is shown in Figure 6.

Thus the number of final constraints can be reduced a lot.
The formulation is,

min ‖x− x̂‖1 + ‖y − ŷ‖1
s.t. xi + wi ≤ xj ,∀eij ∈ Gx

yi + hi ≤ yj ,∀eij ∈ Gy
Wl ≤ xi ≤Wh − wi
Hl ≤ yi ≤ Hh − hi

(14)

Then the problem is how to convert an initial sequence pair
to transitive closure graph Gx and Gy . Take Gx as an example,
the edge direction is always set from the macro on the left to
the macro on the right. Therefore, we can visit the macros
by the order in S+ and add edge eik to Gx for all i < k if
S−(i) < S−(k). To keep the Gx a transitive closure graph,
before adding eik to Gx we need to ensure that there is no
macro j such that eij ∈ Gx and j ≺x k. The process would
take only O(V (V + E)) time, where V,E are the number
of nodes and edges in Gx. By the way, obtaining transitive
closure graph directly from the layout needs to use a depth-
first search to check connectivity before adding an edge, which
results in a much larger time cost. The generated transitive
closure graph is equivalent to the original sequence pair, and if
the sequence pair is legal then the linear programming Eq. (14)
is feasible.

Since x, y are independent, they can be solved separately.
Here we solve x first then y. Notice that, we can easily use
dynamic programming to compute the possible range of a
macro. Let bxli , b

xh
i , byli , b

yh
i be the lower bound, upper bound

of macro i in the x-axis and the lower bound, upper bound of
macro i in the y-axis. We have the following equation,

bxhi = max{x̂i,max
j≺xi
{bxhj }}+ wi. (15)

Other bounds can be obtained similarly. If there is no overlap
between the possible range of two macros, we do not need
to consider the constraint between them. So, the formulation
when solving x is

min ‖x− x̂‖1
s.t. xi + wi ≤ xj ,∀eij ∈ Gx and [byli , b

yh
i] ∩ [bylj , b

yh
j] 6= ∅

Wl ≤ xi ≤Wh − wi
(16)

Besides, when x is fixed, the movement in y axes would not
cause new overlaps in x axes. Thus, when solving y, we can
only consider the constraints between macros overlapping in
x axes.

min ‖y − ŷ‖1
s.t. yi + hi ≤ yj ,∀eij ∈ Gy ∧ i and j overlap in x axes

Hl ≤ yi ≤ Hh − hi
(17)

The dual problem of Eq. (16) and Eq. (17) are associated
with the min-cost flow problem [35]. We solve the dual min-
cost flow problem by network simplex algorithm, which can
be much faster than general linear programming solvers like
Gurobi [36]. The transitive closure graph based ordered macro
legalization is very efficient and can legalize a design with
more than 20k macros within 1 second.

However, not every initial sequence pair is feasible. We use

ILP-baed legalization and parallel tempering legalization to
find a feasible sequence pair.

2) Integer linear programming (ILP) based Macro Legal-
ization for Infeasible Initial Solutions. : If the initial sequence
is not feasible, we need to change the relative relation between
some macros. Let D be the set of macro pairs of which the
relative relation needs to change. We remove the relations in
D from transitive closure graph and let the remaining relations
unchanged. Then, we get ‘or’ constraints as the original ‘or’
formulation Eq. (2) and ‘or’ constraints can be converted to
integer programming by introducing binary variables. Let G′x
and G′y be the remaining graph, Eq. (2) can be transformed
to an integer linear programming formulation,

min ‖x− x̂‖1 + ‖y − ŷ‖1
s.t. xi + wi ≤ xj +W (xij + yij),∀(i, j) ∈ D

xi − wj ≥ xj −W (1 + xij − yij),∀(i, j) ∈ D
yi + hi ≤ yj +H(1− xij + yij),∀(i, j) ∈ D
yj − hj ≥ yj −H(2− xij − yij),∀(i, j) ∈ D
xi + wi ≤ xj ,∀eij ∈ G′x
yi + hi ≤ yj ,∀eij ∈ G′y
Wl ≤ xi ≤Wh − wi, Hl ≤ yi ≤ Hh − hi
xij ∈ {0, 1}, yij ∈ {0, 1}

(18)

where W,H are two very large numbers such that only one of
the 4 constraints for pairs in D would be active. Let gapxi and
gapyi be the maximum movable range in x-axis and y-axis of
macro i defined in previous work [34]. To achieve a feasible
transitive closure graph, we need to ensure the gap is non-
negative for any macro. If a macro has a low gap, it would be
more likely to affect feasibility. Another heuristic is that there
is no need to change the relative relationship between macros
that are far away. Thus, we add the macro pairs that both have
gap ≤ κ and dist(i, j) ≤ l to D and increase κ, l until the ILP
is feasible. The flow of our ILP-based macro legalization is
shown in Figure 5 (left). The experiments show that ILP-based
legalization can handle mixed-size designs with hundreds of
macros using modern ILP solvers in a few seconds. In this
work, we choose the commercial solver Gurobi [36]. Any other
solver can be used as an alternative. If the number of macros
is too large to be solved by the ILP solver, we use parallel
tempering on sequence pair to search for a feasible solution.

3) Parallel Tempering Macro Legalization for Infeasible
Initial Solutions. : Parallel tempering is a population-based
algorithm that employs multiple replicas or ‘temperatures’
in parallel. Each replica is associated with a different tem-
perature, where higher temperatures correspond to a flatter
distribution of states. In parallel tempering, replicas perform
independent searches but periodically exchange configurations
between adjacent temperatures. This exchange mechanism
facilitates the escape from local minima and improving con-
vergence towards the global minimum. The flow of our parallel
tempering macro legalization is shown in Figure 5 (right).

We adopt the following operations to perturb a sequence
pair

• Swap+: swap two macros in S+.
• Swap−: swap two macros in S−.
• Swap: swap two macros in both S+ and S−.

• Move+: move one macro to the previous position of
another macro in S+.

• Move−: move one macro to the previous position of
another macro in S−.

• Move: move one macro to the previous position of
another macro in both S+ and S−.

For infeasible sequence pairs, we cannot calculate exactly
displacement. Thus, we remove the right/top boundaries of the
layout and greedily place each macro in topological order in
the transitive closure graph (generated by sequence pair) at the
position with minimal displacement. Let ‘GreedyDisp’ denote
the obtained displacement via the greedy method, ‘TNG’
denotes the sum of the absolute value of the negative gap of
all macros mentioned in Section III-C2, and ‘Disp’ denote the
exact displacement by solving min-cost flow, the cost function
is defined as

Cost =

{
αTNG + βGreedyDisp, if TNG > 0

αTNG + γDisp, if TNG ≤ 0
(19)

where α, β, γ are three constants such that α is large enough
to dominate the cost function and β, γ are chosen to narrow
the gap between GreedyDisplacement and Displacement. In
this work, we set α = n(W +H), β = γ = 1 and where n is
the number of macros and (W,H) is the size of the placeable
area.

IV. EXPERIMENTAL RESULTS

In this section, we present the details of the experiments
and the analysis of the results.

A. Implementation and Benchmarks

We implement the framework on top of DREAMPlace,
using PyTorch for the BB method enabled Nesterov optimizer
and C++ for the macro legalizer.

To demonstrate the robustness and effectiveness of our
approach to modern mixed-size designs, we use three bench-
marks, MMS [21], ISPD2005 [37], and TILOS [1]. The MMS
benchmark frees all the macros in ISPD2005/ISPD2006 and
set the sizes of all I/O objects to zero. To construct more com-
plex mixed-size designs, we modify the ISPD2005 benchmark
such that all macros and I/O objects are freed to movable
without changing their shape [13]. Besides, the I/O objects in
ISPD2005 are treated as macros and are not allowed to overlap
with other instances. Note that these designs with freed I/O
are quite challenging due to their large number and variable
shape. The TILOS benchmark [1] includes Ariane (a single-
core RISC-V CPU), the MemPool group and BlackParrot
designs (many-core RISC-V CPUs with large amounts of on-
chip SRAMs), and an NVDLA partition. TILOS repository pro-
vides the netlist of Ariane133 (ASAP7 [38]), Ariane136
(ASAP7), MemPool (ASAP7), and NVDLA (NanGate45 [39]),
so we just use them. But for BlackParrot we synthesize it
by yosys [40] using open-source process design kit NanGate
45nm [39] since the netlist is not provided in TILOS repository
recently.

TABLE I: Results on MMS Benchmarks.
Default DREAMPlace (Single-stage Flow) Ours w/o BB Method (Two-stage Flow) Ours w/ BB Method (Two-stage Flow)

Design #Macros Status Iterations HPWL Runtime Status Iterations HPWL Runtime Status Iterations HPWL Runtime
adaptec1 63 Success 607 65.30 17.79 Success 832 65.24 29.58 Success 745 64.63 26.09
adaptec2 127 Success 569 79.29 28.45 Success 751 76.07 174.88 Success 762 74.71 43.88
adaptec3 58 Success 659 158.06 44.58 Success 946 155.44 83.01 Success 834 155.58 79.11
adaptec4 69 Success 735 141.71 46.77 Success 895 142.72 102.79 Success 783 142.48 85.94
adaptec5 76 Success 1053 326.30 63.84 Success 1424 307.35 103.63 Success 1300 306.84 92.71
bigblue1 32 Success 646 85.38 21.26 Success 877 85.16 39.29 Success 808 85.32 32.57
bigblue2 959 Success 638 125.35 41.97 Success 826 125.33 187.13 Success 775 125.33 164.33
bigblue3 2549 Success 911 279.33 112.49 Success 1205 270.87 181.51 Success 1095 273.84 194.47
bigblue4 199 Success 1189 648.84 172.40 Success 1606 643.55 233.31 Success 1513 642.88 282.51
newblue1 64 Success 574 62.82 22.46 Success 825 58.61 32.62 Success 743 59.33 34.45
newblue2 3748 Success 730 155.53 34.82 Success 948 151.51 83.24 Success 848 152.87 80.42
newblue3 51 Diverge, LG Failed∗ 1318 597.32 55.71 Diverge 1160 448.59 118.01 Success 834 270.08 92.84
newblue4 81 Success 1009 246.24 52.61 Success 1244 223.40 54.21 Success 1148 223.24 59.69
newblue5 91 Success 1254 444.20 99.37 Success 1444 387.90 132.79 Success 1344 388.98 160.38
newblue6 74 Success 929 410.61 96.13 Success 1234 406.33 148.31 Success 1145 406.82 168.85
newblue7 161 Success 1077 903.59 184.07 Success 1540 879.37 281.74 Success 1489 881.64 304.60

Ratio 1.000 1.000 1.000 1.298 0.953 2.135 1.186 0.935 1.784

* Default DREAMPlace fails to legalize the macros, so we make the macros fixed with overlapping and only perform cell legalization to evaluate the
HPWL.

TABLE II: Results on I/O-freed ISPD2005 Benchmarks.

Default DREAMPlace (Single-stage Flow) Ours w/o BB Method (Two-stage Flow) Ours w/ BB Method (Two-stage Flow)
Design #Macros Status Iterations HPWL Runtime Status Iterations HPWL Runtime Status Iterations HPWL Runtime

adaptec1 543 Success 600 101.27 26.33 Success 859 67.91 122.99 Success 749 65.92 127.88
adaptec2 566 LG Failed∗ 588 137.52 40.63 Success 824 79.74 145.01 Success 753 77.65 143.08
adaptec3 723 Success 765 179.51 54.08 Success 990 153.51 162.94 Success 898 151.31 173.44
adaptec4 1329 Success 876 153.27 48.91 Success 1200 213.86 86.86 Success 873 141.45 94.16
bigblue1 560 Success 699 86.18 23.45 Success 946 83.60 137.89 Success 810 82.55 132.94
bigblue2 23084 Diverge 1267 2426.69 679.43 Diverge 1314 273.28 151.88 Success 918 99.92 149.06
bigblue3 3778 Success 1207 330.15 115.36 Success 1432 301.70 161.26 Success 1302 296.79 197.04
bigblue4 8170 Success 1581 820.07 239.64 Success 2043 658.75 285.61 Success 1961 620.00 314.12

Ratio 1.000 1.000 1.000 1.295 0.787 2.715 1.112 0.704 2.802

* Default DREAMPlace fails to legalize the macros, so we make the macros fixed with overlapping and only perform cell legalization to evaluate the
HPWL.

TABLE III: Results on TILOS Benchmarks.

Default DREAMPlace (Single-stage Flow) Ours w/o BB Method (Two-stage Flow) Ours w/ BB Method (Two-stage Flow)
Design #Macros Status Iterations HPWL Runtime Status Iterations HPWL Runtime Status Iterations HPWL Runtime

Ariane133 133 Success 573 10.03 11.26 Success 790 9.76 28.90 Success 716 9.36 91.12
Ariane136 136 Success 569 13.80 12.18 Success 771 12.81 25.51 Success 700 12.94 28.29
MemPool 20 Success 611 10.92 11.36 Success 829 10.67 23.44 Success 779 10.68 26.36

BlackParrot 220 Success 829 342.59 91.34 Success 1092 129.19 123.82 Success 953 130.60 133.47
NVDLA 128 Diverge 490 326.83 22.52 Diverge 822 54.64 137.05 Success 742 34.61 60.25
Ratio 1.000 1.000 1.000 1.417 0.684 2.8331 1.283 0.667 3.3746

Fig. 7: The converged result of I/O freed bigblue2 in
ISPD2005 and newblue3 in MMS.

B. Performance and Comparison

1) Comparison on MMS, ISPD2005 and TILOS: The
experiment results of default DREAMPlace, ours w/o BB
method, and ours w/ BB method tested on MMS, ISPD2005,
and TILOS benchmarks are shown in Table I, Table II and
Table III. We run experiments on a Linux machine with 1
NVIDIA GeForce RTX 2080, one 10 cores Intel(R) Xeon(R)
Silver 4210R CPU @ 2.40GHz, and 62 GB of memory. In
the tables, ‘Diverge’ refers to the situations where density
overflow cannot be reduced, even if the placement iterations
have reached stopping criteria. In such cases, the resulting
HPWL is exceptionally poor.

In a comprehensive comparison between default DREAM-
Place and our framework using the BB method, our method
achieves a reduction in HPWL of 6.5%, 29.6%, and 33.3%.
Besides, our framework effectively addresses legalization and

6.25 6.50 6.75 7.00 7.25
rsmt 1e8

0.40

0.42

0.44

0.46

co
ng

es
tio

n
default AutoDMP
AutoDMP + Ours

(a) Ariane133

7 8 9
rsmt 1e8

0.325

0.350

0.375

0.400

0.425

co
ng

es
tio

n

default AutoDMP
AutoDMP + Ours

(b) Ariane136

6 7 8
rsmt 1e8

0.45

0.50

0.55

0.60

co
ng

es
tio

n

default AutoDMP
AutoDMP + Ours

(c) MemPool

4.0 4.2 4.4
rsmt 1e10

0.44

0.46

0.48

0.50

co
ng

es
tio

n

default AutoDMP
AutoDMP + Ours

(d) BlackParrot

1.575 1.600 1.625 1.650 1.675
rsmt 1e10

0.35

0.36

0.37

0.38

co
ng

es
tio

n

default AutoDMP
AutoDMP + Ours

(e) NVDLA
Fig. 8: Congestion-RSMT Pareto fronts from default AutoDMP and AutoDMP + Ours.

divergence issues, while default DREAMPlace diverges on
newblue3 in Table I, bigblue2 in Table II, and NVDLA in
Table III. A comparison between diverged and converged re-
sults of bigblue2 in I/O freed ISPD2005 and newblue3 in
MMS can be seen in Figure 2 and Figure 7. This demonstrates
the effectiveness of our framework in improving the solution
quality of mixed-size placement. Default DREAMPlace has
fewer iterations because it adopts the single-stage flow, while
our method adopts a two-stage flow. The second stage of
our framework brings only a small iteration overhead. Ad-
ditionally, it is worth noting that our framework successfully
legalizes all cases regardless of whether BB method is enabled
or not, which indicates that our legalization algorithm is
reliable.

Comparing our framework w/o and w/ BB method, we find
that the BB method effectively improves the algorithm’s con-
vergence. There is no divergence observed in any of the three
sets of benchmarks, while our framework w/o BB method
diverges on the same designs as default DREAMPlace. Fur-
thermore, compared with the framework w/o the BB method,
the framework w/ BB method reduces HPWL by 2.4%, 14.1%,
and 7.7%, respectively. It also decreases the iteration count
by 9.0%, 14.4%, and 9.4%, respectively, indicating that the
BB method, which considers second-order information, not
only enhances convergence stability but also accelerates the
convergence rate. Additionally, the time overhead incurred by
using the BB method is only 5.5% and 38.0% in ISPD2005
and TILOS, for the MMS benchmark the BB method decreases
the runtime by 5.3%. It is worth mentioning that the majority
of this time difference arises from macro legalization, while
the time cost of the BB method itself used in global place-
ment is similar to the original Nesterov optimizer in default
DREAMPlace.

2) Integration into AutoDMP: To further demonstrate the
stability of our framework, we integrate it into AutoDMP.
Default AutoDMP has the option to choose between Adam
optimizer and Nesterov optimizer at runtime. We replace the
Nesterov optimizer with our BB method enabled Nesterov. We
run AutoDMP on a Linux machine with 4 NVIDIA GeForce
RTX 2080Ti, two 20 cores Intel(R) Xeon(R) Gold 6230 CPU
@ 2.10GHz, and 500 GB of memory. Running AutoDMP
for 400 iterations, we focus on three optimization objectives:
RSMT, Congestion, and Density. The results are presented in
the form of the final generated Congestion-RSMT Pareto front,
illustrated in Figure 8.

Analyzing the Pareto curves, we observe significant
improvements in three designs, namely Ariane133,
BlackParrot, and NVDLA. Meanwhile, two designs
Ariane136 and MemPool have similar Pareto curves to
default AutoDMP. Table IV, where a ‘Bad Run’ means that the
optimizer diverges and the objective of the last iteration is INF,
highlights the robustness of our BB method enabled Nesterov
optimizer, as it consistently avoids producing unfavorable runs
with the infinity objective. It is noteworthy that for design
BlackParrot, the number of Nesterov increased a lot after
BB method is enabled, which means that BB method makes
Nesterov perform better than Adam on this design.

TABLE IV: The number of ‘Bad Runs’ of AutoDMP on
TILOS benchmark. Here a ‘Bad Run’ means that the optimizer
diverges and the objective of the last iteration is INF.

Default AutoDMP AutoDMP + Ours

Design
#Nesterov

Runs
#Nesterov
Bad Runs Runtime

#Nesterov
Runs

#Nesterov
Bad Runs Runtime

Ariane133 354 22 1714 354 0 2102
Ariane136 360 40 1587 365 0 1788
MemPool 356 27 1130 353 0 1721

BlackParrot 51 29 4108 357 0 5035
NVDLA 56 29 2356 44 0 2892

V. CONCLUSION

In this work, we propose a stronger mixed-size placement
backbone that considers second-order information, enabling
robust macro placement. In the global placement stage, we
propose Barzilai-Borwein method considering second-order
information to achieve robust convergence with fewer itera-
tions, resulting in improved efficiency while incurring only
minimal runtime overhead per iteration. Besides, a robust
macro legalization algorithm is introduced, addressing macro
legalization issues with fewer displacements and resulting in
higher-quality macro placement solutions. Extensive experi-
mental results demonstrate the superiority of the proposed
framework over the default DREAMPlace tool. Specifically,
the proposed framework achieves HPWL reductions of 6.5%,
29.6%, and 33.3% compared to the default DREAMPlace on
MMS, ISPD2005, and TILOS benchmarks, respectively.

REFERENCES

[1] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang, and Z. Wang,
“Assessment of reinforcement learning for macro placement,” in
Proceedings of the 2023 International Symposium on Physical
Design, ser. ISPD ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 158–166. [Online]. Available:
https://doi.org/10.1145/3569052.3578926

[2] T. F. Chan, K. Sze, J. R. Shinnerl, and M. Xie, “Mpl6: Enhanced
multilevel mixed-size placement with congestion control,” in Modern
Circuit Placement. Springer, 2007.

[3] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen,
and Y.-W. Chang, “NTUplace4h: A novel routability-driven placement
algorithm for hierarchical mixed-size circuit designs,” IEEE TCAD,
vol. 33, no. 12, pp. 1914–1927, 2014.

[4] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha,
D. Huang, Y. Luo, C.-C. Teng et al., “ePlace-MS: Electrostatics-based
placement for mixed-size circuits,” IEEE TCAD, vol. 34, no. 5, pp. 685–
698, 2015.

[5] J. Cong and M. Xie, “A robust detailed placement for mixed-size ic
designs,” in Asia and South Pacific Conference on Design Automation,
2006., 2006, pp. 7 pp.–.

[6] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang, and T.-Y. Liu,
“Mp-trees: A packing-based macro placement algorithm for modern
mixed-size designs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 9, pp. 1621–1634, 2008.

[7] Y.-F. Chen, C.-C. Huang, C.-H. Chiou, Y.-W. Chang, and C.-J. Wang,
“Routability-driven blockage-aware macro placement,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1–6.

[8] M. Moffitt, A. Ng, I. Markov, and M. Pollack, “Constraint-driven floor-
plan repair,” in 2006 43rd ACM/IEEE Design Automation Conference,
2006, pp. 1103–1108.

[9] C.-H. Chiou, C.-H. Chang, S.-T. Chen, and Y.-W. Chang, “Circular-
contour-based obstacle-aware macro placement,” in ASP-DAC. IEEE,
2016, pp. 172–177.

[10] Z. Chai, Y. Zhao, Y. Lin, W. Liu, R. Wang, and R. Huang, “Circuitnet:
An open-source dataset for machine learning applications in electronic
design automation (eda),” SCIENCE CHINA Information Sciences,
vol. 65, no. 12, pp. 227 401–, 2022.

[11] Y.-H. Huang, Z. Xie, G.-Q. Fang, T.-C. Yu, H. Ren, S.-Y. Fang, Y. Chen,
and J. Hu, “Routability-driven macro placement with embedded cnn-
based prediction model,” in DATE. IEEE, 2019, pp. 180–185.

[12] Y. Chen, J. Mai, X. Gao, M. Zhang, and Y. Lin, “Macrorank: Rank-
ing macro placement solutions leveraging translation equivariancy,” in
Proc. ASPDAC, 2023, pp. 258–263.

[13] Y. Liu, Z. Ju, Z. Li, M. Dong, H. Zhou, J. Wang, F. Yang, X. Zeng, and
L. Shang, “Graphplanner: Floorplanning with graph neural network,”
ACM Trans. Des. Autom. Electron. Syst., vol. 28, no. 2, dec 2022.
[Online]. Available: https://doi.org/10.1145/3555804

[14] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi et al., “A graph placement
methodology for fast chip design,” Nature, vol. 594, no. 7862, pp. 207–
212, 2021.

[15] R. Cheng and J. Yan, “On joint learning for solving placement and
routing in chip design,” CoRR, vol. abs/2111.00234, 2021. [Online].
Available: https://arxiv.org/abs/2111.00234

[16] Y. Lai, Y. Mu, and P. Luo, “Maskplace: Fast chip placement via
reinforced visual representation learning,” 2022.

[17] Q. Xu, H. Geng, S. Chen, B. Yuan, C. Zhuo, Y. Kang, and
X. Wen, “Goodfloorplan: Graph convolutional network and reinforce-
ment learning-based floorplanning,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 10, pp.
3492–3502, 2022.

[18] A. Agnesina, P. Rajvanshi, T. Yang, G. Pradipta, A. Jiao, B. Keller,
B. Khailany, and H. Ren, “Autodmp: Automated dreamplace-based
macro placement,” in Proceedings of the 2023 International Symposium
on Physical Design, ser. ISPD ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 149–157. [Online]. Available:
https://doi.org/10.1145/3569052.3578923

[19] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Pan, “DREAM-
Place: Deep learning toolkit-enabled gpu acceleration for modern vlsi
placement,” in Proc. DAC, 2019.

[20] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “Dream-
place: Deep learning toolkit-enabled gpu acceleration for modern vlsi
placement,” in DAC, 2019, pp. 1–6.

[21] J. Z. Yan, N. Viswanathan, and C. Chu, “Handling complexities in
modern large-scale mixed-size placement,” in 2009 46th ACM/IEEE
Design Automation Conference, 2009, pp. 436–441.

[22] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The
ispd2005 placement contest and benchmark suite,” in Proceedings of
the 2005 International Symposium on Physical Design, ser. ISPD ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p.
216–220. [Online]. Available: https://doi.org/10.1145/1055137.1055182

[23] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and
C.-K. Cheng, “eplace: Electrostatics-based placement using fast fourier
transform and nesterov’s method,” ACM TODAES, vol. 20, no. 2, p. 17,
2015.

[24] J. Egeblad, “Placement techniques for vlsi layout using sequence-pair
legalization,” Master of Science Thesis, Department of Computer Science
University of Copenhagen, 2003.

[25] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Vlsi module
placement based on rectangle-packing by the sequence-pair,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 12, pp. 1518–1524, 1996.

[26] X. Tang, R. Tian, and D. Wong, “Fast evaluation of sequence pair in
block placement by longest common subsequence computation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 12, pp. 1406–1413, 2001.

[27] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[28] J. BARZILAI and J. M. BORWEIN, “Two-Point Step
Size Gradient Methods,” IMA Journal of Numerical Analysis,
vol. 8, no. 1, pp. 141–148, 01 1988. [Online]. Available:
https://doi.org/10.1093/imanum/8.1.141

[29] M. Raydan, “On the Barzilai and Borwein choice of steplength
for the gradient method,” IMA Journal of Numerical Analysis,
vol. 13, no. 3, pp. 321–326, 07 1993. [Online]. Available:
https://doi.org/10.1093/imanum/13.3.321

[30] ——, “The barzilai and borwein gradient method for the large scale
unconstrained minimization problem,” SIAM Journal on Optimization,
vol. 7, 02 1997.

[31] L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone line
search technique for newton’s method,” SIAM Journal on Numerical
Analysis, vol. 23, no. 4, pp. 707–716, 1986. [Online]. Available:
http://www.jstor.org/stable/2157617

[32] H. Zhang and W. W. Hager, “A nonmonotone line search technique
and its application to unconstrained optimization,” SIAM Journal on
Optimization, vol. 14, no. 4, pp. 1043–1056, 2004. [Online]. Available:
https://doi.org/10.1137/S1052623403428208

[33] J.-M. Lin and Y.-W. Chang, “Tcg: a transitive closure graph-based
representation for non-slicing floorplans,” in Proceedings of the 38th
Design Automation Conference (IEEE Cat. No.01CH37232), 2001, pp.
764–769.

[34] H.-C. Chen, Y.-L. Chuang, Y.-W. Chang, and Y.-C. Chang, “Constraint
graph-based macro placement for modern mixed-size circuit designs,” in
2008 IEEE/ACM International Conference on Computer-Aided Design,
2008, pp. 218–223.

[35] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li,
C. J. Alpert, and D. Z. Pan, “Mrdp: Multiple-row detailed placement
of heterogeneous-sized cells for advanced nodes,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 6, pp. 1237–1250, 2018.

[36] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[37] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz,
“The ispd2005 placement contest and benchmark suite,” in Proc. ISPD.
ACM, 2005, pp. 216–220.

[38] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha,
B. Cline, C. Ramamurthy, and G. Yeric, “Asap7: A 7-
nm finfet predictive process design kit,” Microelectronics
Journal, vol. 53, pp. 105–115, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002626921630026X

[39] J. Knudsen, “Nangate 45nm open cell library,” CDNLive, EMEA, 2008.
[40] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.

