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ABSTRACT
Modern large-scale designs make extensive use of heterogeneous
macros, which can significantly affect routability. Predicting the
final routing quality in the early macro placement stage can filter
out poor solutions and speed up design closure. By observing that
routing is correlated with the relative positions between instances,
we propose MacroRank, a macro placement ranking framework
leveraging translation equivariance and a Learning to Rank tech-
nique. The framework is able to learn the relative order of macro
placement solutions and rank them based on routing quality metrics
like wirelength, number of vias, and number of shorts. The experi-
mental results show that compared with the most recent baseline,
our framework can improve the Kendall rank correlation coefficient
by 49.5% and the average performance of top-30 prediction by 8.1%,
2.3%, and 10.6% on wirelength, vias, and shorts, respectively.
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1 INTRODUCTION
Macro locations have a high impact on routing performance. Inte-
grated circuits (IC) nowadays can consist of millions of standard
cells and hundreds of macros. Macros are pre-designed heteroge-
neous blocks from memory modules or thirdparty IPs. As a macro
can be tens or hundreds of times larger than standard cells with
hundreds of pins for interconnection, its location can significantly
impact the placement quality, especially on routability. A typical
design flow, as shown in Figure 1, needs to iterate between macro
placement, standard cell placement, and routing for routability
optimization, slowing down the design iterations [1–7]. To speed
up design closure, early prediction of routing performance at the
macro placement stage is always in high demand.

Prior research for routability prediction is mainly performed at
the cell placement stage with the known locations of both macros
and cells. Most of these works adopt variations of convolutional
neural networks (CNNs) to capture the correlation between the
geometric distribution of the placement and routability metrics like
wirelength, routing demands, and design rule violations [8–10].
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Figure 1: The design flow from placement to routing. The
model aims to predict final routing performance in the early
macro placement stage.

Routing performance prediction at the macro placement stage
is much more difficult than that at cell placement, as only circuit
netlists and macro locations are known. Previous attempts [11]
unveil that only capturing the geometric distribution of macro
placement to construct a regression model with CNN is not enough
to learn the correlation to routing performance. To extract the in-
terconnected information from circuit netlists, Mirhoseini et al [12]
and Wang et al [13] integrate graph neural networks (GNNs) into
reinforcement learning (RL) frameworks to optimize the locations
of macros. As their models do not consider the domain-specific
characteristics of macro placement, such as pin offset and sparsity
of location information in the netlist, their frameworks need to in-
voke cell placement and routing hundreds of times to find solutions
with acceptable quality, taking hours or even days.

To achieve accurate routing performance prediction at the macro
placement stage, in this work, we propose MacroRank, a macro
placement ranking framework, leveraging a translation equivariant
hypergraph neural network (EHNN) and a Learning to Rank (LTR)
technique. The EHNN can capture both interconnect and geometric
information of macro placement, and the LTR technique takes into
account the relative relationship of solution quality. Our model
considers the domain-specific properties of macro placement such
as pin offset and sparsity of location information in the netlist. The
major contributions are summarized as follows.

• We propose MacroRank leveraging translation equivariance
and a Learning to Rank technique that can rank macro place-
ment solutions based on their routing quality.

• We propose a translation equivariant neural network, EHNN,
which can well adapt to the task of extracting netlist and
macro location information at the macro placement stage.

• We propose a Learning to Rank technique to learn the rela-
tive order of macro placement solutions, so as to accurately
predict the top-30 solutions of widely-used routing metrics
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such as wirelength, number of vias, and number of shorts
[14].

• The experimental results on ISPD2015 benchmark show that
compared with the most recent CNN-based model [11], our
framework can improve the Kendall rank correlation co-
efficient by 49.5% and the average performance of top-30
prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and
shorts, respectively.

The rest of the paper is organized as follows, Section 2 introduces
the basic background and problem formulation; Section 3 explains
the details of the proposed algorithm; Section 4 validates the algo-
rithm with experimental results; Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we review the background and the motivation.

2.1 Macro Placement and Routability Prediction
Macros differ from standard cells in that macros serve as large
routing obstacles and request more reserved routing space in the
periphery. Thus macro placement essentially affects the routability.
In practice, macros are usually pre-placed manually and then the
netlist with fixedmacro positions is fed into standard cell placement.
The target of macro placement is that, given a series of standard cells
and movable macros, optimize the position for macros to achieve
better routing results.

Thus, early estimation of routability has attractedmuch attention
in the research community. The routability prediction aims to guide
macro placement by predicting the routing performance of the
design based on information at themacro placement stage. Precisely,
the task is to find a model that is capable of estimating the routing
performance for large-scale VLSI designs. We adopt three routing
metrics from the ICCAD 2019 routing contest in this work [14], i.e.,
total wirelength of nets (wirelength for short), number of total vias
(vias for short), and number of nets causing design rule violations
(shorts for short).

2.2 Problem Formulation
In this work, we aim at ranking macro placement solutions based on
their routing metrics, instead of caring about the absolute values of
the metrics. Thus, the problem is defined to learn a ranking function
𝑓 (·) which takes a netlist 𝑁 and a macro placement solution 𝑥 as
inputs and generates a score 𝑠 as the output such that

𝑓 (𝑁, 𝑥𝑖 ) > 𝑓 (𝑁, 𝑥 𝑗 ) ⇐⇒ 𝑦𝑖 > 𝑦 𝑗 . (1)
Where 𝑥𝑖 , 𝑥 𝑗 are two different solutions, and 𝑦𝑖 , 𝑦 𝑗 are the real
routing performance metric like wirelength. In other words, our
task is to

max
∑︁
𝑖, 𝑗

sign
(
𝑓 (𝑁, 𝑥𝑖 ) − 𝑓 (𝑁, 𝑥 𝑗 )

)
sign(𝑦𝑖 − 𝑦 𝑗 ) . (2)

The accuracy can be evaluated by Kendall’s Rank Correlation Coef-
ficient defined as follows.

Definition 1 (Kendall’s Rank Correlation Coefficient (Kendall’s
𝜏)). Let 𝑥 and 𝑦 be the model predicted values and the ground
truth labels. (𝑖, 𝑗) is a concordant pair iff 𝑥𝑖 > 𝑥 𝑗 ∧ 𝑦𝑖 > 𝑦 𝑗 or
𝑥𝑖 < 𝑥 𝑗 ∧ 𝑦𝑖 < 𝑦 𝑗 ; otherwise it is discordant. Assume there are 𝑛
predicted values and 𝑛 ground truth labels, let 𝑛𝑝 be the number of
concordant pairs and 𝑛𝑖 be the number of discordant pairs. Then
Kendall’s 𝜏 is defined as

𝜏 =
𝑛𝑝 − 𝑛𝑖
1
2𝑛(𝑛 − 1)

(3)

The higher the 𝜏 is, the better the prediction performance.

(a) Origin (b) Translation (c) Rotation

Figure 2: The rigid body transformation (or the selection of
coordinate systems) of the whole layout will not affect the
optimal solutions of placement and routing.

2.3 Equivariance
Applying GNN on circuits differs from conventional graph learning
tasks in that placing on the 2D layout has strong spatial character-
istics that the final routing results significantly rely on the relative
spatial positions between standard cells and macros. As illustrated
in Figure 2, supposing the routing resource is homogeneous on the
layout, a rigid transformation like translation and rotation on the
whole layout (including the instances, wires, and boundaries) will
not affect the optimal solutions of placement and routing, which
can be characterized by E(2)-equivariance.

However, in practice, placement and routing algorithms can only
find suboptimal solutions due to the NP-hardness of the problems,
so the equivariancy may be lost. We investigate the translation and
rotation equivariancy on open-source placement and routing tools
(DREAMPlace [15] and CU.GR [16]) by translating the layout by
(0.5, 0)×, (0, 0.5)×, (0.5, 0.5)×, (1, 1)× die size, rotating by 180◦, and
flipping along the x-axis or the y-axis. We observe that translation
equivariancy can be well maintained, while rotation equivariancy
may not. Figure 3(a) indicates that the standard deviations of wire-
length, vias, and shorts caused by different translations are less than
0.5 %, 0.3%, and 3.7%, respectively, but rotation and flipping have a
very significant impact on the results, as shown in Figure 3(b).

Note that we do not really translate or rotate the layouts; neither
require the placement and routing algorithms to maintain rigid
equivariancy. The target is to improve the layout representations
learned by the GNN model by constraining the training under dif-
ferent coordinate systems for better generality. Considering the
above observation, we develop the EHNN to better capture the
transformation invariant knowledge and generalize our model to
translation equivariant inputs. It can be easily modified to sup-
port rotation/flipping equivariance if the placement and routing
algorithms maintain the rotation equivariancy as well.

2.4 Learning to Rank
In the macro placement stage, we want to pick up the macro place-
ment solution with the best routing performance among possible
candidates for each design. To select the best one, the relative rela-
tionship between them is noteworthy instead of the absolute value
of each candidate. Therefore, a ranking model, rather than a re-
gression model, is needed for this problem. Learning to Rank is
an application of machine learning aiming to construct a ranking
model to establish a binary relationship in a list of items. It was
originally proposed in information retrieval and used to find the
candidate closest to the query. In our task, each design is a query
and macro placement solutions are the candidates. A well-known
LTR method is called the pairwise method, which approximates
the ranking problem to a binary classification problem aiming to
distinguish which candidate is better in the chosen pair.

The pairwise method is often implemented with a scoring func-
tion 𝑓 (·) which takes a single candidate 𝑋𝑖 as input and outputs
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(a) Translation
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(b) Rotation and flipping

Figure 3: The final routing results of ISPD 2015 benchmarks
after applying different rigid transformations. Average val-
ues and standard deviations of each metric are normalized
to that of the original layouts without any transformation.

the predicted score 𝑠𝑖 = 𝑓 (𝑋𝑖 ). For example, a classical pairwise
method RankNet [17] adopts a probability model and defines the
estimated probability of the candidate 𝑋1 having higher quality
than 𝑋2 as

Prob(𝑋1 ≻ 𝑋2) =
1

1 + exp{𝑓 (𝑋2) − 𝑓 (𝑋1)}
. (4)

Then many loss functions designed for classification tasks like
cross-entropy can be used.

3 ALGORITHM
In this section, we will further detail our algorithm. There are three
major parts: the data preparation in Section 3.2-Section 3.3, the
proposed EHNN architecture in Section 3.4-Section 3.5 and the
pairwise LTR loss in Section 3.6.
3.1 Overview
In data preparation, we first cluster the cells in the netlist, then
convert it to a normal graph and extract initial node features. Our
EHNN architecture, described in Figure 4, consists of three bot-
tlenecks: (1) Hypergraph Convolutional Layers (HGCLs), (2) Equi-
variant Graph Convolutional Layers (EGCLs), and (3) Multi-layer
Perceptron (MLP). The input to the network is the transformed
netlist as the association matrix, the node features, the pin features
and the macro position as coordinate embedding. The HGCLs take
netlist, node feature, and pin feature as inputs, delivering the trans-
formed node feature and pin feature. After that, the EGCLs take
macro features and coordinate embedding as input and generates
transformed macro features and coordinate embedding. At last, the
macro feature generated by EGCLs is fed into the MLP to predict
the target result. To further improve prediction performance, we
propose a weighted pairwise LTR loss to train the EHNN. In the
following sections, we will dive into the details.

3.2 Netlist Clustering
In most designs, the number of macros is much less than that of
cells (see Table 1), which brings many difficulties in extracting
useful information. To make it easier for the GNN model to learn
macro-related information, and to reduce running time and mem-
ory usage, we cluster the cells in the netlist without changing
the macros. This can be achieved by setting the weights of the
macros to 0 in hMETIS [19] and applying the generated partition
to the cells. Assume the shapes of the cells in the same cluster
are (𝑤1, ℎ1), ..., (𝑤𝑛, ℎ𝑛) and the target cell density constraint is 𝛾
(given at placement), then the shape of the cluster is set to

(𝑤𝑐 , ℎ𝑐 ) =
©­«
∑𝑛
𝑖=1𝑤𝑖∑𝑛
𝑖=1 ℎ𝑖

√︄∑𝑛
𝑖=1𝑤𝑖ℎ𝑖

𝛾
,

∑𝑛
𝑖=1 ℎ𝑖∑𝑛
𝑖=1𝑤𝑖

√︄∑𝑛
𝑖=1𝑤𝑖ℎ𝑖

𝛾

ª®¬ . (5)

Since the cells, even after clustering, are much smaller than the
macros, the pin offset of cells is not as important as that of macros.
Thus, we simply set the pins located at the centers of clusters.

3.3 Initial Node Features
Before the graph learning process, we determine the initial fea-
ture vectors for each node 𝑣𝑖 ∈ V based on its routability-related
properties and the macros’ positions on the layout. The instance
sizes and the pin offsets are taken to estimate the routing resource
requirement, and the reason we take these features is that modern
placers usually consider these features in their routing congestion
estimators. Thus, the initial feature of instances is composed of
instance sizes and degrees, and the initial feature of pins is the
pin offset. Apart from the routing requirement properties, we take
the macro positions as features, and we also equip our network to
extract the rigid transformation invariance knowledge from the
spatial features (see Section 3.5). Meanwhile, we scale the die size
to (1, 1) to normalize different designs.

3.4 Netlist Representation Learning
As mentioned above, the VLSI netlist is originally represented as
a directed hypergraph with single-source multi-sink edges (nets).
Usually, we ignore the edges’ directivity in the placement stage, but
the simplified undirected hypergraph is still inapplicable to many
existing graph knowledge mining algorithms. Therefore, in recent
years, finding appropriate graph models to transform the netlist
from a hypergraph into a two-pin-edge graph has attracted much
attention in the research community [20].

In our task, the macros are much larger than the cells, pin offset
of macros attracts much more attention than that of cells. Therefore,
the instances (cells and macros), pins, and nets are all modeled as
nodes in the graph. Meanwhile, the relations between instances and
pins are modeled as directed edges from macros to pins. Similarly,
the relations between pins and nets are also modeled as directed
edges from pins to nets. The message passing process between
instances is composed of two stages, the forward stage and the
backward stage. The forward stage passes messages from instances
to pins and then to nets, and the backward stage does vice versa.
An example is shown in Figure 5.

It can be noticed that one pin can only be connected to one
instance and one net. Thus, when messages pass from instances
to pins, we just concatenate instance feature to pin feature. Then
a GATConv [21] is adopted to pass messages from pins to nets,
delivering the edge feature. Similarly, in the backward stage, we
concatenate the edge features to the pin features, use a linear layer
to get the new pin features, and finally aggregate the messages of
each instance by mean pooling. The whole process is implemented
in an HGCL, which is shown in Figure 4.
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Figure 4: The EHNN architecture. The HGCLs take netlist, instance size, and pin offset as inputs, delivering the node feature. The
EGCLs [18] treat the connection between macros as a complete graph and transforms macro features and macros’ coordinate
embedding. The last MLP takes the transformed macro feature generated by EGCLs as input to predict the target result.
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Figure 5: The transformation from the original netlist to the
normal graph. The instance, pins, and nets are all treated as
nodes in the graph.

3.5 Translation Equivariant Graph Embedding
A CNN-based model [11], taking three density maps of placed
instances as input, has been proposed to predict routing design
rule violations (DRVs). However, this way of modeling the position
loses a lot of netlist information. Two significantly different designs
can have the same density map as described above, resulting in
completely different routing results.

Therefore, we want to explicitly model the macro position rela-
tionships between macros and consider the netlist by hypergraph
neural network. But directly treating the location information as
input features in the hypergraph neural network is not a good way
because of the loss of cell location information and equivariance
(as mentioned in Section 2.3). Thus, we use HGCL to capture netlist
information and use EGCL [18] to capture location information.

The EGCL [18] has been proved to be E(n)-equivariant. It takes
node embedding𝒉𝑖 , coordinate embedding 𝒙𝑖 , and edge information
e𝑖 𝑗 as inputs and outputs a transformation on 𝒉𝑖 , 𝒙𝑖 . The equations
that define this layer have the following form,

𝒎𝑖 𝑗 = 𝜙𝑒

(
𝒉(𝑙)
𝑖

,𝒉(𝑙)
𝑗
, ∥𝒙 (𝑙)

𝑖
− 𝒙 (𝑙)

𝑗
∥
)

(6a)

𝒎𝑖 =
∑︁

𝑗 ∈𝑵 (𝑖)
𝒎𝑖 𝑗 (6b)

𝒉(𝑙+1)
𝑖

= 𝜙ℎ

(
𝒉(𝑙)
𝑖

,𝒎𝑖

)
(6c)

𝒙 (𝑙+1)
𝑖

= 𝒙 (𝑙)
𝑖

+
∑︁
𝑗≠𝑖

(x(𝑙)
𝑖

− 𝒙 (𝑙)
𝑗

)𝜙𝑥 (𝒎̂𝑖 𝑗 ) (6d)

where N(𝑖) denotes the neighbors of node 𝑖 , and 𝜙𝑒 , 𝜙ℎ, 𝜙𝑥 are
non-linear mappings, and𝑚𝑖 𝑗 is the message passed from node 𝑖 to
node 𝑗 .

As mentioned in Section 2.3, there may be only translation
equivariance in placement/routing solvers. Thus, we replace the
∥𝒙 (𝑙)

𝑖
−𝒙 (𝑙)

𝑗
∥ term in Eq. (6a) by position encoding 𝑃𝐸 (𝒙 (𝑙)

𝑖
, 𝒙 (𝑙)

𝑗
) =(

𝑑, (𝑥 (𝑙)
𝑖

− 𝑥
(𝑙)
𝑗

)/𝑑, (𝑦 (𝑙)
𝑖

− 𝑦
(𝑙)
𝑗

)/𝑑
)
, where 𝑑 denotes ∥𝒙 (𝑙)

𝑖
− 𝒙 (𝑙)

𝑗
∥

and 𝒙 (𝑙)
𝑖

= (𝑥 (𝑙)
𝑖

, 𝑦
(𝑙)
𝑖

). Different from EGCL, we further propose a

Fourier encoding inspired by NeRF [22], which is

𝐹𝐸 (𝑑) = (sin𝜋𝑑, sin 2𝜋𝑑 + 𝜋/2, ..., sin 2𝑖𝜋𝑑 + 𝜋 (𝑖 mod 2)
2 ) . (7)

The function can map continuous input into a higher dimensional
space to enable our model to more easily approximate a higher
frequency function. Then the final position encoding is

𝑃𝐸 =
(
𝐹𝐸 (𝑑), (𝑥 (𝑙)

𝑖
− 𝑥

(𝑙)
𝑗

)/𝑑, (𝑦 (𝑙)
𝑖

− 𝑦
(𝑙)
𝑗

)/𝑑
)
. (8)

Since all other parts in EGCL keep E(2)-equivariance, and the
position coding keeps translation equivariance, EGCL has trans-
lation equivariance. Notice that HGCL obviously has translation
equivalence, the translation equivariant of the whole network can
be guaranteed.

Our input data only contains the location information of macros,
which only account for a very small part of the nodes in the entire
graph. As a result, if we directly put the whole graph into EGCL,
there will be a lot of data missing in the graph, which is difficult
to overcome. To consider the relative position relation between
any two macros, we regard the relation between all macros as a
complete graph. Note that if the number of macros is too large
to build a complete graph, we can only connect K nearest macros
to each macro. Meanwhile, since the position information of cells
is unknown, only macro nodes are included in the input graph.
Macro positions and the macro features extracted from the up-
stream hypergraph neural network are used as the input coordinate
embedding and node embedding of the downstream EGCLs.

3.6 Pairwise Rank Loss
We use the EHNN model as the scoring function mentioned in
Section 2.4. During the training stage, the dataset is partitioned by
design. In each iteration, a pair of different solutions ⟨𝑥𝑖 , 𝑥 𝑗 ⟩ of the
same design is fed to the model and a pair of scores ⟨𝑠𝑖 = 𝑓 (𝑥𝑖 ), 𝑠 𝑗 =
𝑓 (𝑥 𝑗 )⟩ is obtained. Let 𝑥𝑖 ≻ 𝑥 𝑗 denote the true label ⟨𝑦𝑖 , 𝑦 𝑗 ⟩ of the
pair⟨𝑥𝑖 , 𝑦 𝑗 ⟩ satisfies 𝑦𝑖 > 𝑦 𝑗 . The model predicted probability of
𝑥𝑖 ≻ 𝑥 𝑗 is defined in RankNet [17] as

𝑃 (𝑥𝑖 ≻ 𝑥 𝑗 ) = Sigmoid(𝑠𝑖 − 𝑠 𝑗 ) =
1

1 + exp{−(𝑠𝑖 − 𝑠 𝑗 )}
. (9)

Then a binary cross-entropy function can be used as the loss func-
tion. LambdaRank [23] uses a weighted cross entropy loss,

𝐿𝑖 𝑗 = log{1 + exp{−(𝑠𝑖 − 𝑠 𝑗 )}|Δ𝑍𝑖 𝑗 |, (10)
where Δ𝑍𝑖 𝑗 is the difference of the desired metric caused by swap-
ping the ranks of the samples 𝑖, 𝑗 . Different from DCG score used
in LambdaRank, which is sensitive to the global bias of the labels,
the softmax function is adopted as the metric in our work, that is

Δ𝑍𝑖 𝑗 =
exp(𝑦𝑖 )∑𝑛

𝑝=1 exp(𝑦𝑝 )
−

exp(𝑦 𝑗 )∑𝑛
𝑝=1 exp(𝑦𝑝 )

. (11)
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Let 𝐷 be the set of all designs, and 𝑑 ∈ 𝐷 be the collection of
solutions of the corresponding design. The final loss function is

𝐿𝑜𝑠𝑠 =
∑︁
𝑑∈𝐷

∑︁
𝑖∈𝑑

∑︁
𝑦𝑖>𝑦 𝑗 , 𝑗 ∈𝑑

𝐿𝑖 𝑗 . (12)

4 EXPERIMENTAL RESULTS
In this section, we present the details of the experiments and the
analysis of the results.

4.1 Experimental Settings
4.1.1 Dataset. 12 circuits from ISPD 2015 benchmark [24] con-
taining macros are selected to generate the training data and test
data. Statistics for these circuits can be found in Table 1. The fixed
macros are freed to be movable and placed together with cells by
the open-source placer DREAMPlace [15]. After convergence, we
perturb the macros in the macro legalization stage to generate about
300 layouts for each circuit with different macro positions. Then
the placer is restarted to accomplish cell placement. The placement
results are routed by the open-source global router CU.GR [16]
to obtain the global routing metrics (wirelength, vias, and shorts)
as labels. We use hMETIS [19] to cluster the cells in the netlist to
reduce the training and running time. To verify the generalization
performance of the model, the circuits in the dataset are divided
into 2 groups, each containing six designs. When group 1 is used
for training, group 2 is used for testing and vice versa.

Table 1: Dataset statistics.

Group Design
Name Macros Macro

Coverage Instances Nets Macro
Placements

des perf a 4 50% 108666 110281 300
fft a 6 65% 33641 32088 300

1 matrix mult a 10 67% 154460 154284 296
matrix mult c 10 67% 151247 151612 296
superblue14 336 48% 633661 619697 299
superblue19 280 60% 521805 511606 298
edit dist a 6 29% 129993 131134 300

fft b 11 69% 33646 32088 300
2 matrix mult b 10 67% 151247 151612 294

pci bridge32 b 8 47% 29283 29417 299
superblue11 a 1443 59% 954445 935613 284
superblue16 a 419 48% 698367 680450 299

4.1.2 Configuration. The prediction model is implemented with
Pytorch Geometric [25]. The CNN baseline is based on a pre-trained
VGG11 [26] presented by Pytorchwith the classifier part replaced by
an MLP regressor and fine tuned with the method proposed in [11].
The GNN baseline is composed of 3 HGCLswith a hidden dimension
of 16, and the coordinates are used as input instance features. The
hidden dimension of the EHNN model is set to 16, and the number
of HGCL and EGCL layers are 2 and 4 respectively. MacroRank
uses the same model with EHNN but is trained with pairwise rank
loss while the other 3 models are trained with mean absolute error
(MAE) loss. Those models are all trained by Adam optimizer with a
learning rate of 10−3. The training process of each model lasts 400
epochs. Note that although MacroRank needs to sample paired data
in each iteration, the number of iterations in one epoch is set to be
the same as that in other models. We evaluate each of the models
after the last training epoch. The training time of CNN, GNN, EHNN,
and MacroRank are 1h, 2.2h, 4.5h, and 6.6h respectively. Our code
is available in https://github.com/PKU-IDEA/MacroRank.

4.2 Performance and Comparison
We test CNN, GNN, EHNN, andMacroRank on both 2 groups, where
MacroRank denotes EHNN trained with pairwise rank loss. The
experimental results are listed in Table 2 and Table 3.

Table 2: Result of routing performance prediction with dif-
ferent models. The lower the MRE, the higher Kendall’s 𝜏 ,
and the better the prediction.

Metric Mean Relative Error (MRE) Kendall’s 𝜏
Labels Model\Group Group 1 Group 2 Average Group 1 Group 2 Average

Wirelength

CNN [11] 0.336 0.232 0.283 -0.015 0.234 0.109
GNN [27] 0.801 0.522 0.662 0.243 0.227 0.235
EHNN 0.798 0.175 0.486 0.224 0.029 0.127

MacroRank† - - - 0.417 0.344 0.381

Vias

CNN [11] 0.832 0.678 0.755 -0.009 -0.014 -0.011
GNN [27] 0.425 0.603 0.514 0.269 0.163 0.216
EHNN 0.192 0.371 0.281 0.205 -0.166 0.0195

MacroRank† - - - 0.365 0.240 0.302

Shorts

CNN [11] 6.740 2.292 4.516 0.297 0.299 0.298
GNN [27] 7.612 2.040 4.826 0.278 0.198 0.238
EHNN 2.889 2.001 2.445 0.211 0.208 0.209

MacroRank† - - - 0.297 0.305 0.301
† MacroRank = EHNN + LTR

4.2.1 Comparison of Relative Error and Correlation Coefficients.
Since MacroRank does not predict the true label directly, we only
analyze the differences between the three regression models (CNN,
GNN, and EHNN) based on the MRE. First, GNN performs the worst
among the three models, which indicates that it is not a good way
to simply take the coordinates as input node features in GNN. On
the opposite, EHNN dominates GNN in all groups and outperforms
CNN [11] in almost all groups except the first group of wirelength
prediction. It confirms the effectiveness of leveraging equivariance
in our GNN model to model position information. Besides, the
contrast between EHNN and CNN [11] also demonstrates that
introducing interconnection information can better help the model
to make predictions on the quality of macro placement solutions.

Although EHNN achieves lower MRE, it performs quite poorly
on Kendall’s 𝜏 . The reason mainly lies in what we discussed in
Section 2.4, using regression loss like MAE or MSE cannot directly
reflect the quality of relative order prediction. Figure 6 visualizes
the relationship between real wirelength and the predicted one by
different models, which also confirms our conclusion. MacroRank
achieves the best Kendall’s 𝜏 on all the groups, more precisely, 49.5%
better thanCNN [11]. A visualization of the outputs ofMacroRank is
shown in Figure 6, which shows that the output score of MacroRank
has a much better positive correlation with the true label.

4.2.2 Comparison of Top-30 prediction. Finally, we estimate the
QoR of the top-30 solutions selected by those models by averaging
the real routing performance metrics (wirelength, vias, and shorts)
of the top-30 solutions selected by each model on every design from
the test set (about 300 samples per design, see Table 1). The average
of all the samples in the test set is chosen as the baseline (Mean in
Table 3). The result is shown in Table 3. MacroRank outperforms
all other models and improves wirelength, vias, and shorts by 8.1%,
2.3%, and 10.6% over the CNN [11], 15.3%, 1.6%, and 53.8% over the
GNN [27], 10.0%, 2.3%, and 36.7% over the EHNN. The comparison
shows that our model is practical and can effectively guide users to
choose good solutions from possible candidates.

5 CONCLUSION
In this paper, we propose MacroRank leveraging translation equiv-
ariance and a Learning to Rank technique that can rank macro
placement solutions based on their routing quality. The proposed
model is able to accurately predict the relative order of the quality
of macro placement solutions at the early macro placement stage,
to guide our macro placement process. The experimental results
on ISPD2015 benchmark show that compared with the most recent
CNN-based model [11], our framework can improve the Kendall
rank correlation coefficient by 49.5% and the average performance

https://github.com/PKU-IDEA/MacroRank
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Table 3: Average performance of the top-30 solutions selected by different models from the test set (about 300 samples per
design, see Table 1). The final average is calculated by dividing each item by the corresponding Mean*. The bold ones are the
best, and the brown ones are the second best.

Metrics Wirelength (2 × 105𝜇𝑚) Vias (×105) Shorts (×105)
Design\Model Mean* CNN [11] GNN [27] EHNN MacroRank† Mean* CNN [11] GNN [27] EHNN MacroRank† Mean* CNN [11] GNN [27] EHNN MacroRank†
des perf a 17.516 19.553 20.406 15.142 17.805 5.095 5.194 5.238 4.928 4.997 7.794 6.386 9.261 3.458 3.933

fft a 5.845 5.118 5.805 6.166 5.526 1.534 1.528 1.566 1.520 1.543 2.125 0.312 2.265 3.188 3.030
matrix mult a 28.681 30.737 35.765 23.905 25.288 6.467 6.548 6.748 6.285 6.321 9.102 16.836 16.062 2.105 1.311
matrix mult c 27.816 24.595 28.586 26.901 22.813 6.284 6.351 6.241 6.263 6.075 11.223 2.626 13.957 7.905 2.665
superblue14 346.573 354.187 336.416 352.569 293.825 39.848 39.503 38.800 40.583 38.702 12.002 8.771 9.063 8.937 7.850
superblue19 248.976 253.602 226.386 241.326 209.756 30.616 30.833 29.773 31.219 29.813 5.569 5.192 4.907 4.657 5.220
edit dist a 26.814 28.613 26.300 29.314 25.711 7.207 7.116 7.053 7.432 7.024 6.794 7.587 5.341 10.619 7.154

fft b 6.799 5.975 5.686 7.529 6.422 1.550 1.564 1.579 1.523 1.580 1.944 0.212 2.925 2.756 0.675
matrix mult b 28.664 23.561 30.515 26.733 23.211 6.327 6.358 6.374 6.417 6.132 12.121 3.803 6.577 5.749 4.448
pci bridge32 b 6.515 6.078 6.300 7.124 6.107 1.500 1.506 1.498 1.512 1.493 1.049 0.813 0.974 1.335 1.068
superblue11 a 553.656 538.208 515.019 513.904 444.291 54.625 54.645 55.284 54.300 55.742 11.801 13.973 9.105 14.035 10.612
superblue16 a 394.954 297.142 429.541 297.175 297.831 41.702 41.486 37.582 43.372 37.616 24.695 13.891 18.970 11.507 8.456

Average 1.000 0.951 1.015 0.968 0.880 1.000 1.003 0.996 1.003 0.980 1.000 0.731 1.017 0.904 0.661
† MacroRank = EHNN + LTR
* Mean denotes the average of all the samples in the test set.
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(a) CNN [11]
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(b) GNN [27]
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(c) EHNN
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(d) MacroRank=EHNN+LTR

Figure 6: Visualizations of normalized outputs predicted by
different models. All above are tested on mgc_edit_dist_a.
Notice that MacroRank predicts the order preserving score
rather than directly regressing on the wirelength.

of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias,
and shorts, respectively.
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