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ABSTRACT
As modern integrated circuits scale up with escalating complex-
ity of layout design patterns, lithography hotspot detection, a key
stage of physical verification to ensure layout finishing and design
closure, has raised a higher demand on its efficiency and accuracy.
Among all the hotspot detection approaches, machine learning
distinguishes itself for achieving high accuracy while maintaining
low false alarms. However, due to the class imbalance problem,
the conventional practice which uses the accuracy and false alarm
metrics to evaluate different machine learning models is becoming
less effective. In this work, we propose the use of the area under the
ROC curve (AUC), which provides a more holistic measure for im-
balanced datasets compared with the previous methods. To system-
atically handle class imbalance, we further propose the surrogate
loss functions for direct AUC maximization as a substitute for the
conventional cross-entropy loss. Experimental results demonstrate
that the new surrogate loss functions are promising to outperform
the cross-entropy loss when applied to the state-of-the-art neural
network model for hotspot detection.

1 INTRODUCTION
With the rapid shrinking of semiconductor process technology
nodes, there is a widening gap between design demands and man-
ufacturing capabilities posed by the current mainstream 193nm
lithography. Due to the complexity of lithography systems and
process variation, the layout patterns that are hard to print become
lithography hotspots. Although numerous design for manufactura-
bility techniques have been proposed to improve manufacturing
yield, lithography hotspots still exist and need to be identified and
eliminated during physical verification. For the purpose of yield
improvement, efficient and accurate lithography hotspot detection
is desired for layout finishing and design closure in the physical
verification stage.

Existing hotspot detection methods mainly fall into three cat-
egories: lithography simulation, pattern matching, and machine
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learning techniques. Conventional lithography simulation locates
lithography hotspots using complicated lithography models. Prob-
lematic patterns are captured accurately through full-chip simula-
tions; however, it is associated with an expensive computational
cost [1]. To this end, pattern matching and machine learning based
techniques have been proposed for quick and accurate detection of
hotspots. Pattern matching is a direct and fast method for hotspot
detection. It forms a predefined library of hotspot layout patterns,
and then any new pattern is compared with the patterns in the
library [2, 3]. There are some extensions that use fuzzy pattern
matching to increase the coverage of the library [4–6]. However,
pattern matching, including fuzzy pattern matching, is ill-equipped
to handle never-before-seen hotspot patterns.

In contrast, machine learning approaches have demonstrated
good generalization capability to recognize unseen hotspot patterns
[7–16]. These methods generally perform one-time training on a
labeled dataset to build a machine learning model which learns the
internal relationships between layout patterns. In order to enhance
model scalability and get around spatial information loss induced
from feature representation, deep learning techniques have been
actively explored to further improve detection accuracy [17–20].
For these methods, the main target is to improve the accuracy of
the classifiers while reducing false alarms. Usually, accuracy (i.e.,
true positive rate) is a major concern at the expense of tolerating a
small number of false alarms, as missing any hotspot may result in
significant yield degradation.

One special characteristic of lithography hotspot detection tasks
is the imbalance in the layout datasets. Despite the fact that the
lithography defects are critical, their relative number is significantly
small across the whole chip after various resolution enhancement
techniques are applied. Ideally, we would like to have a model with
a high true positive rate (TPR) and a low false positive rate (FPR),
but in real-world scenarios, there is always a trade-off between the
two metrics. Assume there are two classifiers at hand. The first clas-
sifier successfully detects more hotspots than the second classifier,
but it also generates significantly more false alarms. It is hard to
conclude which one is better because we cannot tolerate such a
high number of non-hotspot clips falsely identified as hotspots. It
is a waste of time and efforts to fix those safe clips. A robust per-
formance evaluation and model selection for imbalanced learning
problems have been often accomplished with the support of the
receiver operating characteristic (ROC) curve which represents the
relationship between the true positive rate and the false positive
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rate of a family of classifiers resulted from different decision thresh-
olds [21]. Hence, the area under the ROC curve (AUC) is a more
proper model evaluation criterion in the sense of being a global
metric for all thresholds regardless of class prior probabilities.

Most existing methods still minimize misclassification error such
as cross-entropy during training while using certain class balancing
techniques. The most straightforward and common approach deal-
ing with imbalance is the use of sampling methods. Undersampling
and oversampling methods operate on the training data to improve
its balance. Other techniques, including cost-sensitive learning and
threshold moving, tackle the class imbalance on the level of the
classifier and adjust training or inference algorithms. Since AUC
has been widely used to measure performance for binary classifi-
cation tasks especially on imbalanced datasets, the question then
arises: is it possible to use AUC explicitly as the loss function in
order to systematically handle the class imbalance problem?

In this work, we examine the effectiveness of directly optimizing
a surrogate of AUC to boost the performance of neural network
models when facing class imbalance. Our main contributions in the
proposed LithoROC framework can be summarized as follows:

• We propose a ROC curve based measure for hotspot de-
tection algorithms, which provides a more holistic view of
imbalanced datasets than the conventional measure using
accuracy and false alarm.

• Wediscussmultiple loss functions for neural networkmodels
to explicitly optimize the proposed new measure other than
the conventional cross-entropy loss.

• Experimental results demonstrate that the new loss functions
are promising to outperform the cross-entropy loss when
applied to the state-of-the-art neural network model for
hotspot detection [20].

The rest of this paper is organized as follows. Section 2 reviews
the challenges in hotspot detection and gives the problem formula-
tion. Section 3 provides a detailed explanation of the proposed ap-
proach. Section 4 demonstrates the effectiveness of our approaches
with comprehensive results, followed by conclusion in Section 5.

2 PRELIMINARIES
Lithography simulation computes aerial images and then generates
the contours of printed patterns; therefore it can accurately detect
lithography hotspots even at a high computational cost. The hotspot
detection task to be solved by machine learning techniques can
be formulated as a two-class image classification problem. In this
way, machine learning based hotspot detection can bypass the
lithography simulations by associating layout features with hotspot
labels through a one-time training process. Then, the trained model
can make efficient prediction for new layout clips. Figure 1 gives
an example of hotspot and non-hotspot clips.

2.1 ROC Curve and AUC Score
For binary classification tasks, in order to separate the positive class
from the negative class, a decision threshold is usually defined to
map the continuous predicted score given by the model to a binary
category. For each setting of the decision threshold (Figure 2(a)), a
pair of true-positive rate and false-positive rate values is obtained.
By varying the decision threshold over the range [0, 1], the ROC

(a) Hotspot (b) Non-hotspot

Figure 1: Example of (a) lithography hotspot clip and (b)
non-hotspot clip.
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Figure 2: (a) An overlapping distribution of predicted scores
for positive and negative samples and (b) the ROC curves of
two example classifiers. As the threshold in (a) moves to the
left, both FPR and TPR in (b) go up accordingly.

curve showing the relationship between true positive rate and the
false positive rate can be obtained (Figure 2(b)). Moreover, as Fig-
ure 2(a) demonstrates, if the predicted score implies the classifier’s
belief that an sample belongs to the positive class, decreasing the de-
cision threshold (e.g., moving the threshold to the left) will increase
both true and false positive rates.

AUC is a threshold-independent metric which measures the frac-
tion of times a positive instance is ranked higher than a negative
one [21, 22]. Unlike single point metrics, the ROC curve compares
classifier performance across the entire range of class distributions,
and therefore, the AUC score is a general measure of classifier dis-
crimination performance. Figure 2(b) presents two ROC curves. The
closer the curve is pulled towards the upper left corner, the better
is the classifier’s ability to discriminate between the two classes.
Therefore, in Figure 2(b), classifier 2 has a better performance than
classifier 1.



2.2 Partial AUC Score
The AUC metric traces classifier performance across all thresh-
olds. However, it may summarize over regions of the ROC curve
in which one would never operate. For hotspot detection tasks,
the primary goal is to detect all possible hotspots. Nevertheless,
a practical classifier is not allowed to accomplish the goal at the
expense of introducing too many false alarms; the time and money
costs associated with fixing those false alarm hotspots render the
classifier less favorable than the traditional simulation approach.
In this case, our interest is to see the classifier’s ability to detect
hotspots in the region of the ROC curve corresponding only to
acceptably low FPRs.
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Figure 3: Comparison of the ROC curves over (a) the entire
FPR range and (b) the FPR range of interest.

To elaborate on this, consider the two classifiers shown in Fig-
ure 3. Classifier 1 has better AUC than classifier 2 according to
Figure 3(a). But if we zoom into the region of interest (e.g., FPR less
than 2%) in Figure 3(b), classifier 2 has better overall TPR in this
region and it outperforms classifier 1. Therefore, besides measuring
the overall AUC score of the classifier, we look into the partial AUC
defined in the following way [23, 24]:�AUC(t0, t1) = ∫ t1

t0
ROC(t)dt , (1)

where the interval (t0, t1) denotes the false positive rate region
of interest. We can further scale the partial AUC and derive the
normalized partial AUC given by [23]

AUC(t0, t1) =
1

t1 − t0

∫ t1

t0
ROC(t)dt . (2)

2.3 Handling Class Imbalance
Due to the fact that the lithography hotspots are critical, various
resolution enhancement techniques are applied to significantly
reduce their relative number. Therefore, when a grid scheme is
used to extract images from the design, only a small number of
images will encompass lithography hotspots while the majority
will correspond to sites in the design with no defects. This poses a
major challenge when formulating the task as a learning problem.

The class imbalance problem is encountered in many applica-
tion domains. It has been established that in certain cases, class
imbalance hinders the performance of standard classifiers [25], in
terms of training convergence and generalization of the model.
Sometimes the classifiers even achieve a low error rate by trivially
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Figure 4: Example of threshold moving.

predicting each sample to be negative when the dataset is biased
towards the negative class.

Various methods have been proposed to deal with the class im-
balance problem. Among them, oversampling and undersampling
alter the distribution of training data to make it more balanced.
Undersampling removes samples from the majority class until
all classes have the same amount of data. For example, one-side
selection carefully identifies and removes redundant examples close
to the boundary between classes [26]. A major disadvantage of un-
dersampling is that it discards potentially useful training samples.
Therefore, undersampling is rarely adopted for hotspot detection
tasks because those training datasets are highly imbalanced but
far from abundance. Oversampling is one of the most commonly
used methods. It simply replicates randomly selected samples from
minority classes, but this approach can increase the time necessary
to build a classifier, and may even lead to overfitting [27]. Advanced
sampling methods such as SMOTE [28] and its variant [29] create
artificial examples by interpolating neighboring data points. In ad-
dition, cluster-based oversampling first clusters the dataset and
then oversamples each cluster separately [30]. In this way, both
between-class and within-class imbalances are reduced. Since the
input data samples of hotspot detection tasks are images and optical
sources are symmetric, [31, 32] augment the training data with ro-
tation and flipping; besides, although general convolutional neural
networks (CNNs) are not rotate invariant, data augmentation by
rotation and flipping can help obtain some rotation invariance.

Cost sensitive learning assigns different cost to the misclas-
sification of samples from different classes [33, 34]. For hotspot
detection tasks, this is done by associating a greater cost with
false negatives than with false positives. [35, 36] study cost sen-
sitive learning of deep neural networks. [37] proposes a new loss
function for neural network training to make the networks more
sensitive to the minority class. To incorporate the cost sensitivity
into neural networks, one can place a heavier penalty on misclas-
sifying the minority class in the loss function such that minority
class contributes more to the update of weights. And then, we can
train the network by minimizing the misclassification cost instead
of the standard loss function.

Thresholdmoving adjusts the decision threshold of a classifier
to cope with the class imbalance problem. This approach is usually
applied in the test phase. As demonstrated in Figure 4, it moves
the threshold toward the majority class such that samples from the
minority class become harder to be misclassified. For traditional
machine learning methods, adjustment of the decision boundary is
straightforward. For example, it can be done by shifting the bias in
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Figure 5: Example illustration of convolutional neural network architecture for hotspot detection.

a support vector machine (SVM) model. However, it is less practical
to move the decision threshold directly when using neural network
based classifiers because these networks tend to be overconfident
in their prediction; the softmax outputs of the two neurons in last
fully-connected layer shown in Figure 5 are usually very close to
1 and 0. As it is hard to control the appropriate shift amount, this
method may take effect at cost of a large number of false alarms.
Instead, [20] biases the ground truth for negative samples from 0
to ϵ during the training phase.

Other approaches explore different training methods specific
to neural networks. [38] proposes a two-phase training method
which first trains the network on the balanced set and then fine-
tunes the output layers. The aforementioned approaches to tackle
class imbalance either operate on training data or adjust training
or inference methods. As we will demonstrate in the next section,
AUC can be interpreted as a ranking measure; that is, the AUC is
equal to the probability of ranking a random positive sample over
a random negative sample. Therefore, orderings of data samples
by the predicted probabilities is consistent even in the face of class
imbalance. In this sense, both the shape of the ROC curve and AUC
are insensitive to the class distribution. The question then arises,
given that AUC is a robust measure of classification performances
especially for imbalanced problems, is it possible to develop algo-
rithms that directly optimize this metric during the training phase?
In other words, can we optimize the ROC curve explicitly?

2.4 Problem Formulation
Traditionally, accuracy (i.e., true positive rate [39]) and the number
of false alarms (i.e., false positives) are the two prevailing met-
rics used for detection evaluation. Hence, the traditional hotspot
detection problem is usually defined as:

Problem 1 (Hotspot detection for accuracy optimization). Given
a set of layout clips consisting of hotspot and non-hotspot patterns,
the object of hotspot detection is to train a classifier that maximizes
the accuracy and minimizes the number of false alarms on the
testing dataset.

As we demonstrated in Section 2.1, evaluation of hotspot de-
tection models using accuracy and false alarms separately is not
effective, because it is hard to find a good trade-off between the
two metrics. Therefore, we propose to assess hotspot detection
models using the holistic metric, AUC. Furthermore, the model is
trained with the goal of optimizing the ROC curve in the form of
maximizing the normalized partial AUC score.

Problem 2 (Hotspot detection for ROC optimization). Given a set
of layout clips consisting of hotspot and non-hotspot patterns, the
object of hotspot detection is to train a classifier that maximizes
the normalized partial AUC score on the testing dataset.

3 ROC OPTIMIZATION
In this section, we derive the AUC with dedicated loss functions for
AUC optimization, and compare them with the cross entropy loss.

3.1 AUC Objective and Loss Functions
Given a dataset D = {(xi ,yi )}Ni=1, where xi ∈ Rd is i-th data
sample in the feature space and yi ∈ {−1,+1} is the true class
label of xi , we can further divide the dataset D into two sets: the
set of positive samples D+ = {(x+i ,+1)}

N +
i=1 and the set of negative

samplesD− = {(x−i ,−1)}
N −

i=1, whereN+ andN− denote the number
of positive and negative samples respectively, and N = N+ + N−.
Let f (x) denote the prediction model. It has been proven that AUC
is equivalent to the Wilcoxon-Mann-Whitney (WMW) statistic test
of ranks in the following sense [40–42]:

AUC =
1

N+N−

N+∑
i=1

N−∑
j=1

I (f (x+i ) > f (x−j )), (3)

where I (f (x+i ) > f (x−j )) is the indicator function given by

I (f (x+i ) > f (x−j )) =

{
1, if f (x+i ) > f (x−j ),

0, otherwise.
(4)

AUC averages the score of a positive sample having a higher
probability than a negative sample for all between-class pairs; it can
also be viewed as the probability that a positive sample is ranked
higher than a negative sample. This statistical interpretation led to
the capability of computing AUC without building the ROC curve
itself, by counting the number of positive-negative example misor-
derings in the ranking produced by classifier scores [43]. However,
AUC defined in Equation (3) is a sum of indicator functions which
is non-differentiable, to which gradient-based optimization meth-
ods cannot be applied. In order to make the problem tractable, it
is necessary to apply convex relaxation to the AUC. By replacing
I (f (x+i ) > f (x−j )) in Equation (3) with pairwise convex surrogate
loss Φ(f (x+i ) − f (x−j )), we can minimize the loss defined below as
a way to maximize the AUC score:

LΦ(f ) =
1

N+N−

N+∑
i=1

N−∑
j=1

Φ(f (x+i ) − f (x−j )). (5)

Various surrogate loss functions can be chosen here. Let z =
f (x+i ) − f (x−j ), then the pairwise squared loss (PSL), one of the
most commonly used surrogate loss functions, is given by [44, 45]

ΦPSL(z) = (1 − z)2. (6)

In [46, 47], pairwise hinge loss (PHL) is used as a surrogate function:

ΦPHL(z) = max(1 − z, 0). (7)



Similarly, [48] utilizes the pairwise logistic loss (PLL) to replace the
indicator function:

ΦPLL(z) = log(1 + exp(−βz)). (8)

[49] proposes the differentiable function given by the following
expression as the surrogate loss:

ΦR∗ (z) =

{
−(z − γ )p , if z > γ ,
0, otherwise,

(9)

where 0 < γ ≤ 1 and p > 1, and suggests that p = 2 or 3 generally
achieves the best results. Based on the observation that maximizing
the objective with Φ in the form of Equation (9) is ineffective to
maximize the WMW statistic because it focuses on maximizing
the difference between f (x+i ) and f (x−i ) instead of moving more
pairs of f (x+i ) and f (x−i ) to satisfy f (x+i ) − f (x−i ) > γ , the authors
further propose another function,

ΦR(z) =

{
(−(z − γ ))p , if z < γ ,
0, otherwise.

(10)
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Figure 6: Comparison of the four surrogate functions, where
β = 3 in PLL, and γ = 0.7 and p = 2 in R.

Figure 6 demonstrates the comparison of the four surrogate
functions. One can notice that the curve of function R is flat in the
region [γ , 1], which differentiates it from other three curves. The
key idea is, during the process of minimizing L in Equation (5), if
a positive sample has a higher output than a negative sample by
margin γ , this pair of samples will not contribute to the objective.

3.2 Comparison with Cross-Entropy Loss
Classifiers such as neural networks typically use cross-entropy (or
log-loss) as the cost function. Cross-entropy (CE) loss for binary
classifiers is defined as:

CE = −
1
N

N∑
i=1

yi log f (xi ) + (1 − yi ) log(1 − f (xi )). (11)

During the optimization process, CE in Equation (11) moves
f (x+i ) closer to 1 and f (x−i ) to 0, while AUC in Equation (3) tries
to force f (x+i ) > f (x−i ). One might consider a weak relationship
between CE and AUC, but in general the two objectives are quite
different. Cross-entropy takes into account the uncertainty of the
prediction based on how much the probability estimates vary from

the actual labels, and it has been used when calibration is impor-
tant [50]. Whereas, AUC is a rank statistic and is only affected by
the ranking of the samples induced by the predicted probabilities.
The order of the samples can be maintained while changing their
probability values.

For the hotspot detection problems where positive labels are few
but significant, we seek models that are able to predict positive
classes more correctly. Table 1 displays an example dataset contain-
ing ten data samples with only two positive labels, and two models
provide their predicted scores for each sample. As one can see,
the two models only behave differently on sample 8 and 9. Model
1 correctly classifies sample 9 as positive, and model 2 correctly
classifies sample 8 as negative. Model 1 is better than model 2 for
hotspot detection tasks in the sense that it captures all the hotspots
correctly even with one false alarm, while model 2 achieves zero
false alarms but misses one hotspot.

Here we compare AUCwith CE to see how differently they distin-
guish the two corresponding models when facing class imbalance.
The CE scores for the two models are both 0.36. Clearly, cross-
entropy believes the two models are performing equally. However,
the AUC scores of the twomodels are 0.94 and 0.75 respectively, and
hence, the AUC metric prefers model 1 over model 2. Cross-entropy
fails in this case because the loss function in Equation (11) is sym-
metric and does not differentiate between classes. AUC captures
the difference in classifying the imbalanced class and thus suits
better for class imbalance.

Table 1: Comparison of cross-entropy and AUC for model
selection on imbalanced dataset.

Sample No. 1 2 3 4 5 6 7 8 9 10
Label 0 0 0 0 0 0 0 0 1 1

Model 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8
Model 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8

4 EXPERIMENTAL RESULTS
We implement the LithoROC framework in Python with the Ten-
sorFlow library [51]. The effectiveness of AUC as the optimization
objective for neural networks is validated on the ICCAD 2012 CAD
contest benchmark set [52]. Table 2 summarizes the benchmark
information, the number of all the clips (#All) and the number of
hotspot clips (#H) in the training set (Train) and testing set (Test).
We configure the CNN architecture in a way similar to [20], which
gives the state-from-the-art performance for hotspot detection.
Each training process is repeated five times on the same dataset
with different random seeds, and the average results on the testing
set are shown in this section.

Table 3 demonstrates the impact of different loss functions on
classification performance. The CNN model in [20] is updated at
each step using the mini-batch gradient descent method which
randomly picks a group of instances. To overcome the bias towards
the majority class during the training process, [20] fixes the batch
size to 32 and ensures that the number of positive samples and
negative samples are the same in each mini-batch. In addition to
following this mini-batch configuration, we explore the impact of
imbalanced mini-batches by setting the the class ratio of positive



Table 2: ICCAD 2012 contest benchmark statistics [20].

Design Train Test
#All #H #All #H

ICCAD1 439 99 4,095 226
ICCAD2 5,459 174 41,796 498
ICCAD3 5,552 909 48,141 1,808
ICCAD4 4,547 95 32,067 177
ICCAD5 2,742 26 19,368 41

samples per mini-batch to 0.1 and 0.4 respectively. To ensure the
number of hotspots is not too small in each batch, the batch size is
increased to 64.

There are four convex surrogate loss functions discussed in Sec-
tion 3 and we choose the two representative loss functions, the pair-
wise square loss for AUC maximization (AUC-PSL) in Equation (6),
and the R loss for AUC maximization (AUC-R) in Equation (10). We
compare the two losses with the traditional cross-entropy loss (CE).
Here we set γ = 0.7 and p = 2 in Equation (10). Table 3 shows the
normalized partial AUC score on the testing data using different
loss functions and different mini-batch configurations, where F(α )
denote the the normalized partial AUC score given by Equation (2)
over the FPR range [0,α]. We consider α = 0.01, 0.02 and 1, because
the FPR reported in the recent literature is around 0.01 to 0.02 [20].
Reporting the results for α = 1 is to show the difference in the
AUC score and the partial AUC score. In Table 3, the state-of-the-
art classifier from [20] uses CE as the objective function, and sets
the batch size to 32 and the ratio of positive examples to 0.5. Its
performance for hotspot detection is near saturation, but we can
still observe utilizing AUC as the objective function for training
the CNN model helps advance the performance of the model under
low false positive rates, especially on design ICCAD3.
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Figure 7: Comparison of ROC curves with different loss
functions.

Figure 7 presents the ROC curves for design ICCAD3. The mean
ROC curve of the five runs and the corresponding variance of the
curve within ±1 standard deviation are shown. One can see that
the objective function AUC-R generates a significantly better ROC
curve than that of CE. A natural question is then how to choose
the margin parameter γ in Equation (10). Figure 8 plots the AUC
score versus the γ for various FPR ranges. To show the difference
between curves, instead of using FPR(0.01), FPR(0.02), FPR(1), we
use FPR(0.02), FPR(0.05), FPR(1), as the curves for FPR(0.01) and
FPR(0.02) are very close. As noted in Figure 8, when γ increases
from 0 to 0.5, the three AUC scores rise as well. That is because
CNN is typically overconfident in its predictions in the sense that

the output of the last fully-connected layer after softmax is very
close to 0 or 1. In this way, it is over-simple for the between-class
sample pairs to satisfy the constraint that a positive sample has as
higher output than a negative sample by γ , which actually does not
help guide the model to a good optimum. When γ is large enough,
the AUC scores for the test data are relatively insensitive.
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Figure 8: The normalized partial AUC scores at different γ
on design ICCAD3 testing data.

5 CONCLUSION
In this work, we propose to use AUC as a robust measure of classifier
discrimination performance for hotspot detection tasks. Different
surrogate loss functions for AUC maximization are proposed to be
used during training to systematically handle the class imbalance
problem. Experimental results demonstrate that the new loss func-
tions are promising to outperform the traditional cross-entropy
loss when applied to the state-of-the-art neural network model for
hotspot detection.
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