GPU Acceleration in VLSI Back-end Design: Overview and Case Studies

Yibo Lin
Department of Computer Science, Peking University
Website: https://yibolin.com
Email: yibolin@pku.edu.cn
Outline

- Introduction
- Challenges of GPU Acceleration
- Current Status
 - Placement
 - Routing
 - Timing analysis
- Case Studies
 - Placement
 - Timing analysis
- Conclusion & Future Work
IC Design Flow

Fabless Design House

System Design
- System Level Synthesis

Logic Design
- Logic Synthesis
- Floorplanning
- Placement
- Routing
- Timing Analysis
- Timing Closure
- DFM Closure

Backend Design
- Physical Design
- Physical Verification
- Floorplan
- Placement
- Routing
- Timing Analysis
- Timing Closure
- DFM Closure

Fab/Foundry
- Fabricate
- Package Test
Challenges in VLSI Design Automation

- Large scale: billions of transistors
- Numerous constraints from low-level manufacturing & high-level architecture
- Complicated design flow
- Long design cycles
Advances in GPU

Over 60x speedup in neural network training since 2013

[Courtesy NVIDIA]
Hardware Acceleration is NOT New for Physical Design

- Tom Black @ Standford, 1984
 - IEEE Design & Test of Computers
 - A Survey of Hardware Accelerators Used in Computer-Aided Design
 - Roughly 20 machines built and tested simulation, design rule checking, placement, and routing

- What has changed
 - CPU & GPU performance
 - Physical design algorithms
 - Problem scales
 - Development environment like CUDA since 2007, Tensorflow since 2015, PyTorch since 2016
 - ...
Challenges in GPU Acceleration

Successful acceleration in deep learning
- Conv., gemm/gemv, BLAS, ...
- Conv takes >80% runtime in CNN inference
- Multiply-accumulate (MAC), systolic array, ...

HPC community
- BLAS kernels
- Graph kernels: SSSP, page rank, BFS, ...

Physical Design
- No dominating steps
- Placement (~20%), routing (~40%)
- Timing analysis, routing congestion
- Iterative algorithms: ~1K to ~10K
- Single iteration is not slow
- Random memory access
- ~500ms data transfer, ~50ms computation
- All customized kernels, lack of parallelism
- BLAS, graph, heuristics, ...
Outline

- Introduction
- Challenges of GPU Acceleration
- Current Status
 - Placement
 - Routing
 - Timing analysis
- Case Studies
 - Placement
 - Timing analysis
- Conclusion & Future Work
Current Status – Placement

Input
Gate-level netlist
Standard cell library

Output
Legal placement solution

Objective
Optimize wirelength, routability

Cell Spreading in Placement
[RePIAce]
Current Status – Global Placement

- **Mathematical formulation**

$$\min_{x, y} \quad WL(x, y),$$

s.t. $$D(x, y) \leq t_d$$

- **Nonlinear placement objective**

$$\min \quad (\sum_{e \in E} WL(e; x, y)) + \lambda D(x, y)$$

Wirelength Density

- **Wirelength & density map acceleration**
 - [Lin+, DATE’18]

- **Nonlinear placement with clustering**
 - mPL6 [Cong+, ICCAD’09] 15x speedup

- **Force-directed TimerWolf**
 - [Kawam+, ICITC’15]
 - [Bredthauer+, ISPDC’18] 2-5x speedup

- **Nonlinear placement w. electrostatic analogy ePlace**
 - DREAMPlace [Lin+, DAC’19, TCAD’20] 30-40x speedup
Current Status – Detailed Placement

- Greedy and iterative nature

- Row-based interleaving algorithm
 - GDP [Dhar+, HPEC’18], 7x speedup over 20-thread CPU
 - Fill 3D dynamic programming table

- Misc. algorithms
 - ABCDPlace [Lin+, TCAD’20], 15x speedup over 20-thread CPU
 - Independent set matching, global swap, local reordering
Current Status – Routing

- Variations of shortest path problems
 - Single-source multiple targets
 - 3D grids with millions of nets
 - 10+ metal layers
 - May be highly congested
 - Minimize wirelength

A zoom-in 3D view
[curtesy samyzaf]

[Curtesy Umich]
Current Status – Routing

- **ASIC routing**
 - Global router [Han+, ICCD’13], decompose multi-pin nets to 2-pin nets, GPU-accelerated SSSP kernels
 - **2.5-3.9x** speedup with 2.5% WL degradation, over NCTUgr 2.0
 - Improve scheduling of nets [Han+, TVLSI’13]
 - **4x** speedup with 1% WL degradation, over NTHU-Route 2.0

- **FPGA routing**
 - GPU-accelerated SSSP kernels based on Bellman-Ford algorithm [Shen+, FPGA’17, TPDS’18]
 - **21x** speedup over sequential VPR 7.0 [Luu+, TRETS’14]

- **Challenges**
 - Lack of parallelism
 - Divergence of computation patterns between nets
 - Huge random memory access
Current Status – Timing Analysis

- Critical for performance and correct functionality of the chips
- Cell delay: non-linear delay model (NLDM)
- Net delay: Elmore delay model (Parasitic RC Tree)
- Timing propagation

[Courtesy Synopsys]
Current Status – Timing Analysis

- **Parallelization on CPU by multithreading**
 - [Huang+, ICCAD’15] [Lee+, ASP-DAC’18]...
 - cannot scale beyond 8-16 threads

- **Leveraging GPU?**
 - Single instruction multiple thread (SIMT) architecture

- **Statistical STA acceleration using GPU**
 - [Gulati+, ASPDAC’09] [Cong+, FPGA’10]...
 - Less challenging than STA based on pessimism

- **Accelerate STA using modern GPU**
 - Lookup table query and timing propagation [Wang, ICPP’14] [Murray, FPT’18]
 - 6.2x kernel time speed-up, but 0.9x of entire time because of data copying

- **Leveraging GPU is challenging**
 - Graph-oriented: diverse computational patterns and irregular memory access
 - Data copy overhead
Outline

- Introduction
- Challenges of GPU Acceleration
- Current Status
 - Placement
 - Routing
 - Timing analysis
- Case Studies
 - Placement
 - Timing analysis
- Conclusion & Future Work
Case Studies – DREAMPlace

- We propose a novel analogy by casting the **nonlinear placement optimization** into a **neural network training** problem

- Greatly leverage deep learning hardware (GPU) and software toolkit (e.g., PyTorch)

- Enable ultra-high parallelism and acceleration while getting the state-of-the-art results
Analogy between Neural Network Training and Placement

Casting the placement problem into neural network training

\[
\min_{\mathbf{w}} \sum_{i=1}^{n} f(\phi(x_i; \mathbf{w}), y_i) + \lambda R(\mathbf{w})
\]

Forward Propagation (Compute obj)

Data Instance \((x_i, y_i)\)

Neural Network \(\phi(\cdot; \mathbf{w})\)

Error Function \(f(\phi(x_i; \mathbf{w}), y_i)\)

Backward Propagation (Compute Gradient \(\frac{\partial \text{obj}}{\partial \mathbf{w}}\))

Train a neural network

\[
\min_{\mathbf{w}} \sum_{i=1}^{n} \text{WL}(e_i; \mathbf{w}) + \lambda D(\mathbf{w})
\]

Forward Propagation (Compute obj)

Net Instance \((e_i, 0)\)

Neural Network \(\text{WL}(\cdot; \mathbf{w})\)

Error Function \(\text{WL}(e_i; \mathbf{w})\)

Backward Propagation (Compute Gradient \(\frac{\partial \text{obj}}{\partial \mathbf{w}}\))

Solve a placement
Develop Placement Engine with Deep Learning Toolkit

- High-level Algorithms: Python
- Low-level OPs: C++/CUDA

Diagram:
- Placement Flow
 - Adam
 - Nesterov
 - SGD
 - Automatic Gradient
 - LG Flow
 - DP Flow
 - Conv
 - WL
 - LG Greedy
 - ReLU
 - Density
 - LG Abacus
 - DP ISM
 - DP Swap
Customized C++/CUDA Kernels

Wirelength OP

Smoothing HPWL by weighted average wirelength

\[W_{Ae} = \frac{\sum_{i \in e} x_i e^{x_i \gamma}}{\sum_{i \in e} e^{x_i \gamma}} - \frac{\sum_{i \in e} x_i e^{-x_i \gamma}}{\sum_{i \in e} e^{-x_i \gamma}} \]

Density Penalty OP

Electrostatic system analogy

Cell instance \quad Electric particle

\[a_{u,v} = DCT(DCT(\rho)^T)^T \]
\[\psi_{DCT} = IDCT(IDCT(\{ \frac{a_{u,v}}{w_u^2 + w_v^2} \})^T)^T \]
\[\xi^{X}_{DSCT} = IDXST(IDCST(\{ \frac{a_{u,v}w_u}{w_u^2 + w_v^2} \})^T)^T \]
\[\xi^{Y}_{DCST} = IDCT(IDXST(\{ \frac{a_{u,v}w_v}{w_u^2 + w_v^2} \})^T)^T \]

1.9x faster than net-by-net parallelization

1.4x faster than native DCT implementation used in TensorFlow
Experimental Results for Global Placement

DREAMPlace
- CPU: Intel E5-2698 v4 @2.20GHz
- GPU: 1 NVIDIA Tesla V100
- Single CPU thread was used

RePlAce [TCAD’18, Cheng+]
- CPU: 24-core 3.0 GHz Intel Xeon
- 64GB memory allocated

34x speedup

Same quality of results!

43x speedup

10M-cell design finishes within 5min c.f. 3h

Runtime (s)

RePlAce Threads
- 1
- 10
- 20
- 40

Runtime (s)

ISPD 2005 Benchmarks
- 200K~2M cells

Industrial Benchmarks
- 1M~10M cells
Runtime Breakdown on Bigblue4 (2M-Cell Design)

1 thread
- **GP-Nonlinear**: 71.9%
- **LG**: 5.9%
- **DP**: 21.1%

10 threads
- **GP-Nonlinear**: 65.0%
- **LG**: 11.7%
- **DP**: 21.1%
- **GP-IP**: 11.7%

DREAMPlace with GPU acceleration
- **IO**: 12.2%
- **GP**: 9.7%
- **LG**: 2.0%
- **DP**: 76.0%

DREAMPlace 2.0 ABCDPlace
- **15X speedup on DP with GPU acceleration**
- **1 min** for 10M-cell design
Detailed Placement – Sequential and Iterative Nature

- Local and greedy algorithms
 - Iterate between a subset of cells
- Lack of parallelism
 - Interdependency due to connectivity
- Irregular

For each window
Collect a subset of cells
Find the best permutation
Apply the movement
...

Independent Set Matching
Global Swap
Local Reordering
Concurrent Independent Set Matching

- Moving the refinement from a window to the entire layout
- Complicated graph analytics
 - Suitable algorithms for parallelization
 - Specialized parallelization scheme for GPU: know GPU architecture

Maximal independent set
- Blelloch’s algorithm

Balanced Partitioning
- K-means clustering

Bipartite Matching (Batched)
- Auction algorithm
Experimental Results for Detailed Placement

ABCDPlace
- CPU: Intel E5-2698 v4 @2.20GHz
- GPU: 1 NVIDIA Tesla V100

NTUplace3 [TCAD’08, Chen+]
- CPU: Intel E5-2698 v4 @2.20GHz

- GPU friendly DP algorithms
- GPU-accelerated graph solvers

Same quality of results!
10~15x speedup
10M-cell design finishes within 58s c.f. 26min

![Graph showing speedup over 1T](image)

- ISPD2005-20T
- Industrial-20T
- ISPD2015-20T
- ISPD2005-GPU
- Industrial-GPU
- ISPD2015-GPU

- Speedup over 1T
- #Cells (K)
Case Studies – Timing Analysis

- RC delay computation, task graph levelization, and timing propagation
 - Covers the runtime bottlenecks
- Implementation based on open source STA engine OpenTimer [Huang+, ICCAD2015]
RC Delay Computation

- The Elmore delay model

 - $load_u = \sum_v$ is child of $u \ capacity_v$

 - eg. $load_A = cap_A + cap_B + cap_C + cap_D = cap_A + load_B + load_D$

 - $delay_u = \sum_v$ is any node $load_v \times R_{Z \rightarrow LCA(u,v)}$

 - eg. $delay_B = load_A R_{Z \rightarrow A} + load_D R_{Z \rightarrow A} + load_B R_{Z \rightarrow B} + load_C R_{Z \rightarrow B} = delay_A + R_{A \rightarrow B} \ load_B$

 - $ldelay_u = \sum_v$ is child of $u \ capacity_v \times delay_v$

 - $\beta_v = \sum_v$ is any node $ldelay_v \times R_{Z \rightarrow LCA(u,v)}$
Task Graph Levelization

- Build level-by-level dependencies for timing propagation tasks.
 - Essentially a parallel topological sorting.

- Maintain a set of nodes called frontiers, and update the set using “advance” operation.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#nodes</th>
<th>Max In-degree</th>
<th>Max Out-degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>netcard</td>
<td>3999174</td>
<td>8</td>
<td>260</td>
</tr>
<tr>
<td>vga_lcd</td>
<td>397809</td>
<td>12</td>
<td>329</td>
</tr>
<tr>
<td>wb_dma</td>
<td>13125</td>
<td>12</td>
<td>95</td>
</tr>
</tbody>
</table>
Experimental Results for Timing Analysis

- NVIDIA CUDA, RTX 2080, 40 Intel Xeon Gold 6138 CPU cores
- Up to $3.69 \times$ speed-up (including data copy)
- Bigger performance margin with bigger problem size

Leon2 (21M nodes) Single-core CPU with 1 GPU is close to 40-core CPU
Conclusion and Future Work

- Recent efforts on accelerating backend design with GPU
 - Placement, routing, and timing analysis

- High-level challenges in physical design
 - Lack of parallelism and irregular computation patterns
 - High expectation to quality and inevitable quality degradation
 - Lack of available baseline implementations and high development overhead

- Future work
 - Algorithmic innovation to accelerate practical design stages, routability- or timing-driven PnR
 - Push limits on really hard kernels, e.g., bipartite matching, mazing routing, timing propagation
 - Universal frameworks or programming models that can support CPU/GPU programming naturally
Acknowledgement

David Z. Pan @ UT Austin
Mark Ren & Brucek Khailany @ NVIDIA

Tsung-Wei Huang @ Utah
Zizheng Guo @ PKU

Thanks!
Questions are welcome

Website: https://yibolin.com
Email: yibolin@pku.edu.cn