
High-Definition Routing Congestion Prediction for Large-Scale
FPGAs

Mohamed Baker Alawieh
ECE Department, UT Austin
mohdbaker@utexas.edu

Wuxi Li
ECE Department, UT Austin

wuxi.li@utexas.edu

Yibo Lin
ECE Department, UT Austin

yibolin@utexas.edu

Love Singhal
Intel Corporation

love.singhal@intel.com

Mahesh A. Iyer
Intel Corporation

mahesh.iyer@intel.com

David Z. Pan
ECE Department, UT Austin

dpan@ece.utexas.edu

ABSTRACT
To speed up the FPGAplacement and routing closure, we propose a novel
approach to predict the routing congestion map for large-scale FPGA
designs at the placement stage. After reformulating the problem into an
image translation task, our proposed approach leverages recent advance-
ment in generative adversarial learning to address the task. Particularly,
state-of-the-art generative adversarial networks for high-resolution im-
age translation are used along with well-engineered features extracted
from the placement stage. Unlike available approaches, our novel frame-
work demonstrates a capability of handling large-scale FPGA designs.
With its superior accuracy, our proposed approach can be incorporated
into the placement engine to provide congestion prediction resulting in
up to 7% reduction in routed wirelength for the most congested design
in ISPD 2016 benchmark.

1 INTRODUCTION
The ceaseless down scaling of integrated circuit (IC) technologies contin-
ues to drive, as a byproduct, an up scale in the challenges and complexity
associated with physical design. This in practice translates to extended
design closure time, as multiple expensive design iterations are needed
before converging at a final physical scheme, especially for large-scale
designs.

To address this challenge, research has focused lately on developing
predictive models that can make available, at early stages of the design
flow, useful predictions about later stages. Particularly, in modern Field-
Programmable Gate Array (FPGA) place and route flows, leveraging
routing congestion information during the placement step has demon-
strated significant performance improvement [1–4]. Thus, it is of vital
importance to develop accurate routing congestion prediction models
for large-scale FPGA designs.

Recently, advancements in machine learning have revolutionized
almost every field of research by introducing a far-reaching data-driven
perspective for problem solving, and electronic design automation (EDA)
is no exception here. In EDA, machine learning applications span differ-
ent tasks [5]. The main drive for this wide adoption is the exceptional
speedup associated with machine learning techniques which in turn
translates into faster design closure and better physical design quality.

Relevant to our work are the techniques proposed for routing con-
gestion prediction [6, 7]. In [6], design rule checking (DRC) violations
after detailed routing are predicted based on input placement solutions.
The work presents two modes: 1) prediction of the total number of
DRC violations with placement information only; 2) prediction of DRC
hotspots with placement and global routing solutions. The major appli-
cation of [6] is to guide detailed placement for the mitigation of local
DRC violations after detailed routing, while it is not designed for the
compliance of global routing congestion. On the other hand, the work in
[7] proposes predicting the routing congestion maps for FPGA designs.
It relies on features extracted from both placement and global routing
schemes to perform the task. Despite the fact that such a setup can help
accelerate the detailed routing process, it is of greater impact to predict
the full routing congestion map with features exclusively obtained from
the placement stage. Knowing that state-of-the-art FPGA placement
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engines are iterative, such a scenario can further speedup the design clo-
sure and improve routing quality by incorporating routing information
into the placement engine.

This issue was addressed in the latest work on FPGA routing con-
gesting prediction in [8] where predictions are made based on features
extracted from the placement stage solely. In [8], a conditional gen-
erative adversarial network is used to model the routing congestion
prediction as an image translation task. This model architecture, namely
pix2pix, has been adopted recently to address different tasks in EDA
[8–11]. While the scheme proposed in [8] is designed to provide routing
predictions at placement stage, the proposed model and its associated
features are ill-equipped to handle large-scale FPGA designs such as
those in ISPD 2016 benchmark [12].

In fact, the approach presented in [8] is not capable of scaling to
large designs due to three main limitations. The first is inherent in the
pix2pix model architecture which has limited resolution and thus, poses
a limit on the design size [13]. Additionally, the features extracted at
the placement stage in [8] depreciate with the increase in design scale.
In particular, the connectivity information is incorporated in the input
as a connectivity map with flying lines. While such a map is expressive
in small and uncongested designs with limited connectivity, it becomes
obsolete with large and dense designs. Hence, with connectivity infor-
mation distorted, the quality of the congestion prediction is expected to
degrade. Moreover, the feature maps used in [8] are based on the VTR
academic software [14] that cannot handle industrial-size designs.

To address these limitations, we propose a new placement-based
routing congestion prediction approach for large-scale FPGA designs.
Our proposed approach adopts a new conditional generative adversar-
ial network (CGAN) model, namely pix2pixHD, which performs high-
definition (HD) image translations for large images with high resolutions
[15]. With HD image translation, our approach can achieve high predic-
tion accuracy for large FPGA designs while relying on well-engineered
features that can encode the placement and connectivity information
for large-scale designs. Moreover, when substituting the congestion
prediction used in state-of-the-art congestion aware placement engine,
our prediction scheme results in better placement quality and achieves
up to 7% reduction in routed wirelength for the most congested design
in ISPD 2016 benchmark.

Our main contributions are summarized as follows:

• We cast the routing congestion problem as a high-definition
image-to-image translation task where features from placement
stage are used to estimate congestion map for large-scale FPGA
designs.

• AnewCGAN for high-definition image-translation, namely pix2pixHD,
is adopted to predict FPGA congestion.

• We propose using well-engineered features extracted from the
placement stage that are capable of encoding placement and
connectivity information for large-scale designs.

• Our proposed framework achieves superior modeling perfor-
mance compared to state-of-the-art FPGA congestion map pre-
diction methods [4, 8] when using advanced image similarity
evaluation metrics.

• Incorporating our approach into a placement engine results in up
to 7% reduction in routed wirelength compared with the widely
adopted congestion prediction method [4].



The remainder of this paper is organized as follows. In Section 2, we
present the problem formulation and the evaluation metrics used in
our experiments. Then, the details of our proposed large-scale FPGA
routing congestion prediction approach are shown in Section 3. Section 4
presents experimental results demonstrating the efficacy of our method,
and conclusions are presented in Section 5.

2 BACKGROUND
2.1 Problem Description
In the FPGA physical design process, placement and routing are the two
major stages that map a circuit description into the physical layout. Typ-
ically, such a process is iterative and requires multiple rounds of place
and route (PnR) before converging to the final layout. Conventionally,
the placement task was performed without taking routing requirements
and behavior into consideration. However, state-of-the-art FPGA place-
ment engines consider routability as one of the metrics governing the
placement process [1–3]. With primitive routability estimation methods,
fewer iterations are needed to get a clean design; thus a shorter design
closure time is experienced.

FPGA routing congestion map prediction task aims to take the benefit
from such inter-stage information passing into a next level by predicting
the entire routing congestion map of the design based on information
at the placement stage. This has many practical applications including
placement strategy selection and placement adjustment to mitigate
routability issues.

Precisely, the task is to train a model that is capable of estimating the
routing congestion map for large-scale FPGA designs. As an input, the
model takes a design netlist and a placement solution and it generates a
congestion map prediction as an output. Technically, a good way to pre-
serve spatial relations in the placement scheme is to encode features as
an image. Such an approach was adopted in [6, 8] where input features
are encoded into an image, and the desired output is generated in an
image format as well. In one of the approaches proposed in [6], a set of
features is first extracted from both the placement and global routing
stages and then mapped to different layers of an input image. Next, this
image is inputted to a trained model to predict an image showing the
location of DRC hotspots in the design. While this approach targets
detecting highly congested regions through DRC hotspot detection, it
does not have the objective of predicting the complete routing conges-
tion map. Besides, while no global routing information is needed to
predict the total number of DRC hotspots in [6], predicting the DRC
hotspot image, which reflects congestion locations, requires the global
routing information. Thus, the work in [6] does not address our problem
formulation in this work: estimating the complete routing congestion
map based on placement stage information.

On the other hand, the work in [8] addresses precisely this objective
by mapping the problem into an image translation task. In this task,
placement features are mapped into an input image and a model is
trained to predict the complete routing congestion map as an output
image. However, this work is ill-equipped to handle industrial-size FPGA
designs. Besides having a limited prediction resolution (256×256 pixels),
the features used to represent placement and netlist information are not
adequate for large-scale designs. For the connectivity information, it
relies on flying lines to encode the connections in the FPGA design as
shown in Figure 1(a). Clearly, this representation becomes obsolete for
large-scale FPGA designs with over 700K nets. Figure 1(b) shows the
connectivity representation with only 5K nets included, which, although
complicated, is still comprehensible. However, including the entirety
of 700K nets results in Figure 1(c) which is simply a blacked-out image
with no useful information since all pixels have a value equal to zero
(black color). Besides, keeping in mind the rectilinear nature of routing,
flying lines representation fails to reflect an accurate estimate of routing
demand at different locations in large designs. In addition, the image
representation for the placement in [8] is based on the VTR academic
software [14] that cannot handle industrial-size designs. Hence, such
features limit the applicability of the work in [8] to small FPGA designs
only.

(a)

(b) (c)
Figure 1: An example of connectivity representation used in [8] for a
small design is shown in (a). (b) and (c) show the results of using the
same representation for a large design with over 700K nets where (b)
shows only 5000 nets and (c) demonstrates the failure in handling all
700K nets.

In this work, we propose a routing congestion prediction approach
for large-scale FPGA designs which relies on a high-definition image
translation framework paired with well-engineered feature encoding.

2.2 Evaluation Metrics
With the problem formulated as an image translation task, adequate
image similarity metrics are needed to judge upon the quality of the
results. Here, we present the different evaluation metrics used in our
experiments to evaluate the proposed approach and compare it with
state-of-the-art approaches.

Two pixel-level metrics, namely normalized root-mean-square-error
and pixel accuracy, are used to evaluate the prediction. In addition, we
propose using two image similarity metrics that are relevant to the
FPGA routing congestion estimation task. The first is the structural
similarity index that can capture local congestion clusters that possess
spatial structures [16]. On the other hand, earth mover’s distance is
used as another metric to assess the difference in the pixel distribution
between the golden and predicted images [17, 18] .

Given an FPGA architecture of size H ×W , images Ŷ and Y with size
H ×W and range [0, 255] representing a predicted routing congestion
map and its corresponding golden map, the details of the used metrics
are presented below.

Definition 1 (Normalized Root-Mean-Square-Error - NRMS). NRMS
is defined as the normalized root mean square pixel difference between
Ŷ and Y . Mathematically, it can be expressed as:

NRMS =

√∑H
i=1

∑W
j=1(yi, j − ŷi, j )

2

(ymax − ymin ) · (H ×W )
. (1)

Definition 2 (Pixel Accuracy - PIX). Pixel accuracy is defined as the nor-
malized pixel-level difference between Ẑ andZ , the predicted congestion
map and the golden one after exposure normalization. Mathematically,
this can be expressed as:

PIX =
∑H
i=1

∑W
j=1 |zi, j − ẑi, j |

255 · (H ×W )
. (2)

Definition 3 (Structural Similarity Index - SSIM). Structural Similarity
Index is a perception-basedmetric that captures changes in the structural
information between images. It can be viewed as a quality measure of
one of the images being compared, provided the other image is regarded
as of perfect quality [16]. Mathematically, over a k × k window of the
images Yk and Ŷk , SSIM can be expressed as:

SSIMk =
(2µYk µŶk + c1) · (2σYk ,Ŷk + c2)

(µ2
Yk
+ µ2

Ŷk
+ c1) · (σ 2

Yk
+ σ 2

Ŷk
+ c2)

, (3)

where µYk is the pixel averages over window Yk and σ 2
Yk

is the corre-
sponding variance, σYk ,Ŷk is the covariance of Yk and Ŷk , and c1 and
c2 are two terms used to ensure division stability. Intuitively, the value
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of SSIMk is high when the pixel averages in the two windows are close
and the covariance between them is high.

Definition 4 (Earth Mover’s Distance - EMD). EMD is the minimum
amount of work to match the pixel distributions of Y and Ŷ , normalized
by the total weight of the lighter distribution. It is widely used in content-
based image retrieval to compute distances between the color histograms
of two images. EMD’s details are omitted due to page limit. Reader is
referred to [17, 18] for details.

3 CONGESTION MAP PREDICTION
3.1 Feature Extraction
To leverage the impressive success of conditional generative adversarial
networks for FPGA routing congestion prediction, this task should
be cast as image translation where the objective is to map an image
from the feature domain to the output domain. In the output domain,
the desired congestion map can be directly viewed as a Red-Green-
Blue (RGB) image with 2 non-zero channels representing the vertical
and horizontal routing congestion as shown in Figure 2 where the
vertical and horizontal congestion maps are mapped to the green and
red channels respectively, with the blue channel set to zero. Besides, to
ensure the generalization of the learned model, the dataset is normalized
such that the highest congestion level in the data is mapped to pixel
level 255.

Vertical Congestion Horizontal Congestion

0

47

95

0

42

84

Figure 2: Sample encoded routing congestion map is shown. Vertical
congestion is mapped to the green channel, while the horizontal one is
mapped to the red.

On the other hand, feature representation in the input space is not
trivial. In practice, two types of information need to be encoded in
the input image: (i) the placement scheme and (ii) the connectivity
information. While both types are present in the placement results
and the netlist, our task is to map them into an image format with
minimal loss in information relevant to the routing procedure. For the
placement information, pin density reflects an accurate representation
of the placement scheme. Besides, it provides an insight into the routing
congestion since regions with higher pin density are more likely to suffer
from congestion issues when routing. Therefore, we use pin density
as the first feature which mainly captures the necessary placement
information and encode it on the blue channel of the input image as
shown in Figure 3(a).

(a)

Pin Density

(b)

Vertical Demand

(c)

Horiznotal Demand
0
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255

0
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66
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40

80

Figure 3: Sample encoded feature map is shown. Pin density is mapped
to the blue channel, vertical demand is mapped to green, and the hori-
zontal is mapped to red.

As for the connectivity information, we propose a systematic ap-
proach to encode FPGA connectivity that, while reflecting the routing
demand, is capable of handling large-scale FPGA designs. Towards this
end, we adopt a routing demand estimation framework analogous to
those proposed in [4, 19]. The key idea is to compute, for each net, the
probability of it being routed on each of the vertical and horizontal grids
within its bounding box.

To elaborate on this, we consider the simple example shown in Figure
4. For a given net, the bounding box of its pins (red circles) is first ob-
tained where xnet and ynet represent the dimensions of the bounding
box. Horizontally, the net has a probability of 1/ynet to be routed in a
particular grid inside the bounding box along the x−axis. Similarly, it
has a probability of 1/xnet to be routed on each vertical grid along the
y−axis. Thus, the horizontal demand map is incremented by 1/ynet at
each location in the blue shaded region. Similarly, the vertical demand
map is incremented by 1/xnet at each location in that region. This rou-
tine is applied for all nets in the design to get the vertical and horizontal
demand maps. The vertical and horizontal demand maps are encoded
on the green and red channels of the input image as shown in Figure
3(b) and (c) respectively after applying a normalization step similar to
that used for the output.

xnet

ynet

Figure 4: A routing demand computation example is shown.

At the end of this process, we can obtain the 3-channel input image
carrying pin density information and the vertical and horizontal rout-
ing demand maps. On the other hand, the output image is formed by
encoding the vertical and horizontal congestion maps on two channels
of the image. An example normalized input/output RGB image pair is
shown in Figure 5 where the input and output images are presented in
Figure 5(a) and Figure 5(b) respectively.

3.2 HD Image Translation Model
With an adequate training dataset encoded as demonstrated in Section
3.1, a CGAN model designed for high-definition image translation can
be trained to predict congestion maps for large-scale FPGA designs.
Recently, CGAN model pix2pix [13] has been adopted in EDA to address
several challenges [8, 9]. A CGAN takes an input image in one domain
and tries to generate a mapped output in another domain. Typical ex-
amples include image colorization and aerial to map and edge to photo
translations.

Practically, a CGAN is composed of two main components: the gener-
ator and the discriminator. The generatorG is trained to produce images
in the output domain, based on an input image in another domain, that
cannot be distinguished from “real” images by an adversarially trained
discriminator, D, which is trained to do as well as possible at detecting
the generator “fakes”.

Despite its success in the aforementioned tasks, pix2pix falls short
of addressing the routing congestion prediction task for large-scale
FPGA designs due to its limited resolution (256 × 256). Such constraint
limits the size of FPGA designs the method can handle. To address this
limitation, we propose using a new pix2pixHD model developed for
high-definition image translation tasks [15]. With an output resolution
reaching 4096 × 2048, pix2pixHD fits well for large-scale FPGA routing
congestion task. To enable such a high-definition image generation,
pix2pixHD introduces threemain features: (i) a coarse-to-grain generator,
(ii) a multi-scale discriminator, and (iii) a robust adversarial learning
objective function [15].

3.2.1 Generator. The generator is decomposed into two sub networks:
a global generator (G1) and a local enhancer (G2). As shown in Figure
6, the global generator consists of three components: a convolutional

(a) (b)
Figure 5: An example input/output image pair is shown.
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front-endG1,C , a set of residual blocksG1,R [20], and a deconvolutional
back-end G1,D [15, 21]. The local enhancer has a similar structure,
however, it is designed to generate images with double the resolution
of the global generator. Moreover, as shown in Figure 6, the input to
the residual block G2,R is the sum of two feature maps: the output
feature map ofG2,C and the last feature map from the back-end of the
global generatorG1,D [15]. This is intended to help integrate the global
information from G1 to G2.

During training, the global generator is trained first and then the
local enhancer. Finally, we jointly fine-tune the entire generator together.
The architectural details for G1,C and G1,D in the global generator are
shown in Tables 1 and 2 respectively. As for G1,R , it is formed of nine
residual blocks each having two 3 × 3 convolutional layers with 1024
filters [20]. Similarly, G2,R in the local enhancer is composed of three
such residual blocks with 64 filters instead of 1024, and the details of
G2,C and G2,D are summarized in Table 3.

3.2.2 Discriminator. For high-resolution image generation, the discrim-
inator needs to have a large receptive field [15]. For that, a multi-scale
discriminator, with three discriminators (D1, D2 and D3) that operate at
different image scales, is used [15]. Both the real and synthesized images
are downsampled by a factor of 2 and 4 to create an image pyramid
of 3 scales. With this structure, the three discriminators are trained to
differentiate real and synthesized images at the 3 different scales. The
discriminator operating at the coarsest scale has the largest receptive
field with a global view. On the other hand, the one at the finest scale
encourages finer details in generated images. The 3 discriminators have
the same structure where a 70× 70 PatchGAN network is used [13] with
4 convolutional layers each having a filter size of 4 × 4 and with 64, 128,
256 and 512 filters respectively.

3.2.3 Training. With the three discriminator networks, the conven-
tional GAN objective function can be expressed as [13, 15]:

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk ). (4)

where
LGAN (G,Dk ) = Ex,y [logDk (x ,y)]

+ Ex [log (1 − Dk (x ,G(x)))].
(5)

To improve this loss, a feature mapping loss based on the discrimina-
tor is added to push the generator towards producing natural statistics
at multiple scale [15]. Specifically, we extract features from multiple
layers of the discriminator and learn to match these intermediate repre-
sentations from the real and the synthesized image [15]. Mathematically,
the feature matching loss can be expressed as:

Global 
Generator G1

G1,C

G1,R

G1,D

G2,C G2,D

G2,R

2x downsampling

Local Enhancer  G2

Figure 6: The the generator in the pix2pixHD model is shown. It com-
prises two components, a global generator G1 and a local enhancer G2.

Table 1: The details ofG1,C
are shown.

Lyr Filter # Filters Str
1 7 × 7 64 1
2 3 × 3 128 2
3 3 × 3 256 2
4 3 × 3 512 2
5 3 × 3 1024 2

Table 2: The details of G1,D are
shown.

Lyr Filter # Filters Str
1 3 × 3 512 1/2
2 3 × 3 256 1/2
3 3 × 3 128 1/2
4 3 × 3 64 1/2
5 7 × 7 3 1

Table 3: The details of G2 are shown.

Component Layer Filter # Filters Str

G2,R
1 7 × 7 32 1
2 3 × 3 64 2

G2,D
1 3 × 3 64 1/2
2 7 × 7 3 1

LFM (G,Dk ) = Ex,y

T∑
i=1

| |D
(i)
k (x ,y) − D

(i)
k (x ,G(x))| |1 (6)

whereT is the total number of layer and D(i)
k denotes the output feature

map of the discriminator Dk at the i−th layer. This feature matching
loss is related to the perceptual loss [21], which has been shown to be
useful for style transfer application [13]. The final loss function is the
sum of Equations (5) and (6) in addition to a VGG-loss term added to
enhance accuracy [15, 21].

4 EXPERIMENTAL RESULTS
In our experiments, we use ISPD 2016 contest benchmark [12] with
480×168 device size. Compared to VTR benchmark [14] used in previous
work [8] with less than 12K cells, 2016 contest benchmark [12] contains
large designs with up to 1.1M cells as shown in Table 4.

4.1 Data Preparation and Training Setups
For each benchmark, 200 different random net weighting schemes are
obtained, then the corresponding placement results are generated using
elfPlace [1]. Then, routing is performed using NCTU-GR [22] to obtain
the golden routing congestionmaps. As a first step, the feature extraction
process described in Section 3.1 is performed to prepare both the input
and output images for the learning task. Then, two evaluation setups
are performed. In Setup 1, 11 out of the 12 designs are used for training,
while the 12th design is used for testing. For each design d , testing is
performed using amodel that has seen all designs except ford . This setup
is intended to demonstrate the generalization capability of the model
outside the training dataset. While in Setup 2, the data corresponding
to each particular design is split into 80% used for training and 20%
used for testing. With this setup, the models see only the design of
interest during training; hence, they are design specific and can be used
to provide routing congestion information within the PnR iterations for
the given design.

4.2 Performance Evaluation
We use the evaluation metrics introduced in Section 2.2 to compare our
approach to the following existing ones:

RUDY [4]: a model-based congestion estimation. It was introduced
in Section 3.1 as one of the features used in our approach.

pix2pix [8, 13]: a machine learning approach based on the model
proposed in [8]. However, as shown in Section 2.1, the connectivity
feature used in [8] fails for large-scale designs, besides, the model can
only handle designs with size up to 256 × 256. Thus, to enable this
comparison, two adjustments were done. The first is that images are
scaled down to 256 × 256 and the CGAN model proposed in [8] is used
to predict congestion maps. In addition, we use the features proposed
in our work instead of those used in [8] which are not applicable for
large-scale designs. Hence, this approach can be summarized as using
features proposed in this work with the learning model proposed in [8]
along with proper image scaling.

4.2.1 Setup 1. With Setup 1, Figures 7 and 8 show the resulting con-
gestion maps corresponding to two samples from designs FPGA-2 and
FPGA-8, respectively. Both vertical and horizontal golden routing con-
gestion maps are shown in addition to the prediction results from the
proposed approach (Proposed), pix2pix, and RUDY. Evidently, one can
visually notice that the proposed approach can produce the best predic-
tion results. To quantify this superior performance, Tables 5 and 6 show
a comparison of the evaluation metrics across the different approaches
for both vertical and horizontal congestion respectively. In these tables,
the visual observation is validated numerically with the proposed ap-
proach out-performing other approaches in all evaluation metrics, on
average.

4.2.2 Setup 2. Compared to Setup 1, models in Setup 2 are design
specific, hence, they are expected to generate better results. This is
validated in Table 7 where a comparison between Setup 1 and Setup 2
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Table 4: The ISPD 2016 benchmark details are shown.

Benchmark #LUT #FF #RAM #DSP #Ctrl Set
FPGA-1 50K 55K 0 0 12
FPGA-2 100K 66K 100 100 121
FPGA-3 250K 170K 600 500 1281
FPGA-4 250K 172K 600 500 1281
FPGA-5 250K 174K 600 500 1281
FPGA-6 350K 352K 1000 600 2541
FPGA-7 350K 355K 1000 600 2541
FPGA-8 500K 216K 600 500 1281
FPGA-9 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281
Resources 538K 1075K 1728 768 N/A

Figure 7: A sample congestion prediction result is shown for FPGA-2.

Figure 8: A sample congestion prediction result is shown for FPGA-8.

using the proposed approach is shown. In the table, only the average
evaluation over the 12 benchmarks is reported due to space limit.

4.3 Applications
Our proposed routing congestion prediction approach has several appli-
cations; here, we present two important ones.

Routability-driven placement: our prediction framework is used
within the placement engine so that congestion can be accounted for
during the placement process. In the original implementation of elfPlace
[1], which is considered among the state-of-the-art routability-aware
placement engines, RUDY [4] is used to predict congestion during the
placement process. Here, we use our proposed approach instead and
compare the results with the original case with RUDY under two scenar-
ios. In the first scenario, the original routing capacity of the FPGA board
is assumed. Table 8 summarizes the results showing routed wirelength
(Rtd WL) when RUDY and our proposed approach are used for conges-
tion prediction during placement under full routing capacity. Knowing
that designs FPGA-5, 7 and 11 are the congested ones, it is clear that
our proposed approach can improve the placement quality to achieve
better routed wirelength. Besides, design FPGA-5 is by far the most
congested and our proposed routing congestion prediction can achieve
7% reduction in routed wirelength for this design.

On the other hand, and to further demonstrate the efficacy of our
proposed approach, the routing capacity is reduced to 88% its original
value in an attempt to push more designs towards congestion. Since
FPGA-5 is highly congested, it is excluded from this scenario because
any small reduction in routing capacity can make the design unroutable.

The new routing capacity (88% of original capacity) is chosen such that
all placements in the training dataset, excluding FPGA-5, are routable.
Also shown in Table 8 are the routed wirelength results for this scenario
where FPGA-11 is now the most congested design. As shown in the
table, our proposed approach can achieve better results for the con-
gested designs with more than 1% reduction in wirelength on FPGA-11.
It is important to note that FPGA-4 and FPGA-12 experienced minor
wirelength increases in scenarios 1 and 2 respectively. However, it is
clear that our proposed approach does not have inherent limitation in
handling specific design since FPGA-4 and FPGA-12 did not experience
performance degradation in scenarios 2 and 1 respectively; instead,
FPGA-4 experienced an improvement under scenario 2. These results
show that our predictions have better correlation with the golden so-
lution when compared to RUDY which enables improved placement
quality resulting in better wirelength during routing. Moreover, since
the prediction time for RUDY and and our proposed approach is negligi-
ble compared to the placement time, as will be shown in Section 4.4, the
overall placement time is not affected by the prediction method used.

Placement quality ranking: On the other hand, routing conges-
tion prediction can be used to rank placement quality when different
placements are available. Instead of routing all placements, those with
high congestion can be eliminated immediately. Table 9 compares the
number of matches among the 10% most congested placements between
the golden results and different prediction methods. As shown in the
figure, our predictions can achieve the best average matching.

4.4 Runtime Comparison
Based on the aforementioned performance evaluation, it is clear that
our proposed approach is the most suited to handle the routing con-
gestion prediction task for large designs. It can be used for placement
enhancement and ranking which can significantly improve routing
quality. Instead of running the complete routing scheme to get the con-
gestion information, the prediction model can provide this information
at the placement stage. Table 10 compares the runtime for the predic-
tion models to that of running the routing flow (denoted NCTU). The
proposed approach can achieve up to 5000× and 51× speedup when
using GPU and CPU-only respectively. More importantly, the prediction
time is constant and is independent of the design size.

5 CONCLUSION
In this work, we propose a novel routing congestion map prediction
framework for large-scale FPGA designs at the placement stage. It starts
by casting the problem as a high-definition image translation task, then
uses state-of-the-art HD image translation models. The proposed frame-
work uses as an input well-engineered features representing the place-
ment scheme and design connectivity for large-scale designs which
are encoded on different channels of the input image. Our proposed
approach demonstrates superior performance in terms of evaluation
metrics used when compared to existing approaches. Moreover, its
incorporation in the placement step results in up to 7% reduction in
wirelength.
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