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ABSTRACT
With the continuous scaling of integrated circuit (IC) technolo-
gies, electromigration (EM) prevails as one of the major reliability
challenges facing the design of robust circuits. With such aggres-
sive scaling in advanced technology nodes, signal nets experience
high switching frequency, which further exacerbates the signal
EM effect. Traditionally, signal EM fixing approaches analyze EM
violations after the routing stage and repair is attempted via itera-
tive incremental routing or cell resizing techniques. However, these
“EM-analysis-then fix” approaches are ill-equipped when faced with
the ever-growing EM violations in advanced technology nodes. In
this work, we propose a novel signal EM handling framework that (i)
incorporates EM detection and fixing techniques into earlier stages
of the physical design process, and (ii) integrates machine learning
based detection alongside a multistage mitigation. Experimental
results demonstrate that our framework can achieve 15× speedup
when compared to the state-of-the-art EDA tool while achieving
similar performance in terms of EM mitigation and overhead.

1 INTRODUCTION
As integrated circuit (IC) technologies continue to scale, electromi-
gration (EM) comes forth as one of the prominent reliability issues
challenging the design of robust circuits [1]. Complex chip function-
alities have been made possible by virtue of increasing transistor
densities and aggressive scaling of interconnects. However, these
two factors bring along higher current densities in metal wires, a
phenomenon that further exacerbates EM. Particularly, high current
densities lead to the migration of atoms in metal wires resulting
in opens and shorts over time [2]. Hence, the continuous drive
toward extreme scaling will keep compounding the EM problem
especially for signal nets that are expected to switch at gigahertz
speed, making EM design closure a challenging task [3, 4].

Addressing the EM challenge requires a two-step process: (i) vio-
lations detection and (ii) EM mitigation. Conventionally, EM check-
ing tools are invoked after the detailed routing stage [5, 6]. These
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tools compare the current densities in metal wires with technology-
specific design rules to detect EM violations. Next, the violations are
fixed with engineering change order (ECO) efforts [7]. EM checking
tools leverage post-routing information to detect violations, which
consequently limits the efficiency of their mitigation techniques.
In the routing phase, the locations of standard cells and the corre-
sponding current distribution are already fixed and the traditional
fixing approaches such as wire widening and cell resizing are not
effective enough to handle the ever-growing number of violations
in signal wires [4]. In fact, the methodology of “EM-analysis-then-
fix” is becoming obsolete at advanced nodes [8], which makes it of
vital importance to incorporate EM detection and fixing techniques
into earlier stages of physical design (PD).

Two clear benefits are associated with such early stage EM han-
dling. First, the number of EM violations can be decreased as the
result of using a larger set of mitigation techniques. Second, intro-
ducing early stage mitigation techniques can help reduce the re-
sulting overhead when compared to post-routing fixing techniques.
Thus, moving the EM detection and resolving steps to earlier stages
of the physical design can help in reducing runtime or the number
of iterations needed for design closure. Towards this goal, and given
the critical role placement plays in current distribution, we propose
a placement-based EM detection and adjustment framework.

EM failure has been dealt with at different design stages, in-
cluding placement [9] and routing [10–14]. However, the focus has
been concentrated on applying optimization techniques after EM
violations are already detected, or using approximation methods
to guess possible violations. In this work, we propose a novel EM
hotspot detection and mitigation framework based on information
available at the placement phase. In particular, three main steps
constitute our proposed approach. As a first step, a classification
model is trained through machine learning techniques to detect EM
hotspots based on features extracted from the placement scheme.
This model can be trained using data obtained from designs where
EM hotspots are already known, and then, it can be applied to de-
tect hotspots in new designs. In addition to its main role in hotspot
prediction, the model helps identify the placement-based features
that are critical for hotspot identification. Knowing these features is
fundamental for constructing effective EM adjustment techniques
at the placement stage.

In the second step, the placement scheme is adjusted by incor-
porating EM hotspot mitigation mechanism in the cost function
of the placement problem. This mechanism incorporates the detec-
tion model information about critical features to address the EM
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hotspots. At the end of this step, a new placement is obtained. As a
last step, the classification model is used again to detect hotspots
still present after placement adjustment and non-default routing
(NDR) rules are applied to address these hotspots in the routing
stage.

Our main contributions are summarized as follows:
• A novel EM hotspot detection and mitigation framework
has been proposed based on information available at the
placement stage, which enables early-stage EM handling
and reduces iterative EM fixing cost.
• An accurate cascaded logistic regression model is proposed
to detect signal EM hotspots at the placement stage.
• A multistage EM mitigation approach is proposed to address
the problematic nets detected by the classification model.
• Experimental results demonstrate that our framework can
achieve nearly the same EM violation reduction as the state-
of-the-art PD tool while achieving 15× speedup.

The rest of this paper is organized as follows. Section 2 gives an
overview of the proposed framework. Sections 3 and 4 provide a
detailed explanation of the EMdetectionmodel building process and
mitigation techniques. Section 5 demonstrates the effectiveness of
our approaches with comprehensive results, followed by conclusion
in Section 6.

2 PROPOSED APPROACH: AN OVERVIEW
The key idea of our proposed approach is to leverage machine
learning techniques to detect EM hotspots at placement stage and
exploit the trained models to guide EM mitigation. An overview of
the framework is presented in Figure 1.

Figure 1(a) shows the process of training an EM hotspot pre-
diction model. Starting from the input netlist of the training set, a
physical design (PD) tool is used to get the placement result. Next,
routing and EM evaluation are performed to get the EM hotspots
in the designs. Finally, the placement information is used along
with the EM hotspot results to train a classification model for EM
detection.

Figure 1(b) demonstrates the application of the EM detection
and mitigation framework. After having a trained model for EM de-
tection, PD tool is used to do placement, and then EM hotspots are
predicted using the classificationmodel given the placement-related
features. Next, placement is incrementally updated to mitigate pre-
dicted EM hotspots. Then, the EM detection model is used again to
detect remaining hotspots that are finally routed using NDR rules.

3 MACHINE LEARNING FOR EM DETECTION
3.1 Features Extraction
Despite the fact that the current profile for the design is not available
at the placement stage, multiple features that are highly correlated
with the current can be crafted. To elaborate on this, we consider
the three nets in Figure 2, A, B and C. One can expect net A to
have the highest current density. This is mainly because, unlike the
2-pin nets B and C, A is a 6-pin net connected with two large cells.
On the other hand, net C is the one least prone to EM. In practice,
although both B and C are 2-pin nets, Figure 2 clearly shows that
the neighborhoods around the pins of net B are more congested (i.e.,
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Figure 1: An overview of the hotspot detection model train-
ing (a) and its application in EM detection andmitigation (b)
is shown.

high pin density). This in turn can lead to detours when routing net
B; hence, longer wires, large wire capacitance and higher current.
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Figure 2: An illustration of a placement scheme with three
nets is shown.

In our approach, we extract a set of features from the placement
to be used for training the model for EM detection. These features
can be divided into two categories: (i) net-specific features and (ii)
neighborhood related features. The net-specific features used are
the following:

(1) Net half-parameter wirelength (HPWL)
(2) Number of net pins
(3) Net switching activity
(4) Maximum fall transition time
(5) Maximum capacitance
(6) Circuit frequency
On the other hand, neighborhood related features are used to

capture information about possible congestion around net pins.
To define these features, the placement region is divided into a
grid with fixed window size as shown by the gray-colored grid in



Figure 2. Then, for each net, a set of features is defined over all grid
windows containing pins connected to the net.

Using Figure 2 as an example, we consider the feature defined as
the average number of pins. To compute this feature for net A, we
first identify the grid windows containing pins of net A which are
the three windows in the first row, and second and third window in
the second row counting from the left. Then, we average the number
of pins in the five windows counting all pins in the windows, not
only those connected to net A. This results in a feature value equal
to 21

5 for net A. Computing the same feature for nets B and C gives
5 and 2 respectively. The full list of neighborhood related features
used is as follows:

(1) Average number of pins
(2) Average number of cells
(3) Average cell area
(4) Average area capacity (space not occupied by blocks)
(5) Average number of placement sites
It is important to note that all the features mentioned above

can be extracted without any knowledge about the final routing
scheme. Moreover, with the exception of switching activity that can
be obtained through high-level hardware simulation, all features
can be extracted from the placement scheme.

3.2 Data Preparation
Starting from the labeled training set, features defined in the previ-
ous section are extracted resulting in a feature vector with a Boolean
class label for each net in the design. Two important characteristics
of the resulting dataset should be examined. First, the dataset is
significantly imbalanced. In other words, the EM hotspot class (H) is
enormously outnumbered by the non-hotspot class (NH). Secondly,
the different features have different ranges of values. For instance,
HPWL has a wider range of possible values compared to the num-
ber of pins. These two characteristics can affect the training process
and the interpretability of the model, and hence, they should be
addressed before training.

In the scenario where the two classes are imbalanced, the train-
ing is expected to be biased towards the objective of learning the
larger class while neglecting the errors in predicting the smaller
one. Among the methods used to address such bias is class weight-
ing where higher weights are given to instances in the smaller
class when formulating the training objective. This can be done
by associating different costs with mispredicting instances from
different classes; i.e., mispredicting an instance from the smaller
class is associated with higher cost compared to mispredicting an
instance from the larger one.

On the other hand, having features with different ranges of
values can affect both the model training and its interpretability.
During training, numerical issues arising from such case can cause
convergence problems. In addition, in distance-based classification
models, different ranges of values can result in unwanted weighting
for the features. Moreover, having features with different ranges
makes the task of interpreting any model more challenging. For
example, important features in a trained model are usually inferred
from the weight given to each feature after the training phase.
For the case where all features have similar ranges, it suffices to
compare the absolute values of the weights to judge upon the

importance of the features. However, with features taking values in
different ranges, this comparison does not hold anymore. Therefore,
a normalization step is done to map all features to the [0, 1] interval
to ensure they all have the same weight when training the EM
detection model.

3.3 Cascaded Model for False Alarm Avoidance
The EM detection problem can be cast into a classification problem.
In practice, a wide range of classification models are available for
use, and these models vary in their complexity and application
space [15]. Two important characteristics of the EM detection ap-
plication contribute to the decision upon the classification model
to use. First, the problem is a binary classification problem (i.e.,
two class problem) with relatively small number of features. Sec-
ondly, the EM detection model is a part of an EM detection and
mitigation framework. Hence, in addition to the detection task,
we are interested in analyzing the trained model to arrive at the
features contributing the most to the prediction decision. Knowing
these features plays a significant role in the EM mitigation process
described in the next section. Therefore, the interpretability of the
trained model is critical from this perspective.

In practice, as the complexity of the classification model in-
creases, interpretabilty becomes more challenging. And since the
problem at hand is low-dimensional, we choose to use logistic re-
gression [15, 16] as the classification model. Such model is known to
behave well with binary classification problems and its regression
coefficients can be used to interpret the importance of the different
features.

As will be demonstrated in the result section, logistic regression
can achieve high EM detection accuracy at a small false alarm rate.
However, by examining the overall flow of the EM detection and mi-
gration framework and the relative number of H and NH instances,
false alarm rate should be addressed from a different perspective.
Technically, in a general classification problem, correctly labeling
99% of the target group (H in our case) with 3% false alarm rate can
be acceptable. However, given that the two groups are unbalanced,
even a 3% false alarm rate can result in a number of false alarms
that is a multiple of that of H instances.

Hence, with such number of false alarms, mitigation techniques
will perform a large number of unnecessary changes to the place-
ment and routing schemes; thus, introducing additional overheads.
To address this issue, we introduce the two-stage detection ap-
proach shown in Figure 3. In the first stage, a classification model
M1 is trained to detect EM hotspots using all the nets in the training
dataset. After the first stage, all nets with NH prediction will be
labeled as NH without further processing. For nets labeled H by M1,
a new model, M2, is trained to prune out false alarms. M2 is trained
using nets in the training dataset labeled H by M1. For those nets
going through the second stage, the final label will be the prediction
of M2.

In practice, when two models are trained, inference for new nets
can be done in a way analogous to the training process. First, an
initial prediction is obtained by applying M1, and if the prediction
is NH the net is given that as the final label. Otherwise, a new
prediction is obtained from M2, and the final label is that generated
by M2.
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Figure 3: The flow of the two stage detection approach is
shown.

This proposed approach helps reduce the number of false alarms
while preserving the interpretability characteristic of the model.
This translates to reducing the overhead incurred by the mitigation
process.

4 MACHINE LEARNING GUIDED EM
MITIGATION

4.1 Placement Adjustment
Besides its main role in detecting nets susceptible to EM failures,
the trained EM detection model points out the potential directions
to mitigate them The coefficients in the trained model indicate that
wirelength and cell density, the two features that can be optimized in
the given placement, contribute significantly to EM severity. There-
fore, we propose an incremental placement approach to mitigate
signal EM violations with minimal perturbation to the layout. The
major purpose of this technique is to achieve selective wirelength
reduction and cell density improvement.

Similar to a timing-driven placement [17], a net ni is assigned
a weight wi based on its EM criticality. The higher the weight
assigned to a given net is, the more is the push by the placer to
reduce its wirelength. Considering cell density as well, the cost for
a cell move is defined as:

wHPWL(1 + α · cd ), (1)

where wHPWL is the weighted wirelength sum of all the nets con-
nected to this cell, i.e., wHPWL =

∑
i wi HPWL(i), and cd denotes

the cell density cost computed according to [18, 19].
The incremental placement scheme is summarized inAlgorithm 1.

After detailed placement, PD tools are able to output high-quality
placement results in term of timing, power, and routability of a
design, which serve as the starting point for our signal EM opti-
mization. As a first step, the trained EM prediction model is used to
detect the set of EM hotspot netsH in the input placement scheme.
Next, the set of cells C connected by the nets H is identified and
reordered by their area. At this stage, the objective of the proposed
incremental placer is to move the cells in C in a way to minimize
the wirelength of the nets inH and mitigate the cell density around
the target cells.

The principal idea is to find a search region for a cell in the place-
ment region and move the cell to the best location in this region.
Different from the classical optimal region calculation method [20],
we use the weighted median to compute the optimal region for cell

Algorithm 1 Cell Move
Input: Initial placement, predicted EM hotspot netsH;
1: C← set of cells connected by H;
2: Reorder C;
3: repeat
4: for ci ∈ C do
5: Determine the search region of ci ;
6: Move ci to the position that minimizes the objective;
7: end for
8: until converged or maximum iteration reached
9: Legalize placement;

move since the nets have different weights in the current scheme.
Then, the optimal region is extended to larger search region.

We perform wirelength optimization to improve both wirelength
and density until less than 1% of the target cells are moved in an
iteration or the maximum number of iterations is reached. After
that, legalization is performed to remove possible overlaps.

4.2 Non-Default Routing for EM Adjustment
While the aforementioned incremental placement algorithm is tai-
lored to address the EM hotspots, it does not guarantee the mitiga-
tion of all detected hotspots. In other words, some EM hotspots can
be still present after the incremental placement adjustment stage.
For example, for the nets with high fanouts, the current flowing
through the main metal branch drives large capacitive loads, there-
fore, improving wirelength is not effective enough to solely resolve
the current issue.

However, we can still utilize the EM prediction model after the
proposed incremental placement. That is, we can set the router
to route those predicted hotspot nets with wider widths to avoid
iterative fixing. Practically, this option is readily available in many
PD tools through the non-default routing (NDR) rule option. As the
name implies, NDR applies non-default routing geometries to those
selected nets in the design based on user specification; i.e., instead
of the default single-width single-spacing (1W1S) scheme, a user set
scheme can be used to route specific nets in the design. This option
is leveraged to address the EM hotspots detected by the model
in Section 3.3 after incremental placement using a double-width
single-spacing (2W1S) NDR rule.

5 EXPERIMENTAL RESULTS
Throughout the experiments, TSMC 40nm CMOS physical design
kit (PDK) [21] was used for evaluating the efficacy of our proposed
framework. Moreover, slow process, voltage and temperature (PVT)
corners were used to generate a worst-case EM environment. The
five benchmark circuit netlists used are taken from ICCAD 2014
placement contest [19] andOpenCores [22] respectively. In addition,
physical design was performed using Synopsys IC Compiler (ICC)
2017 [7].

5.1 EM Prediction Model Comparison
Among the five available designs, three were used to train the
hotspot detection model, while the remaining two were used for
testing. The training data set consisting of designs b19, ecg, and



mmm contains a total of 426152 nets of which 2681 are hotspots.
Meanwhile, designs med and vga with 298197 nets, including 648
hotspots, are used for testing.

The confusion matrix summarizing the evaluation of the model
on the testing data when a single stage logistic regression (M1)
was used is shown in Table 1. While the results demonstrate high
true positive rate, the number of false alarms is more than 10× the
number of actual hotspots. On the other hand, Table 2 shows the
confusion matrix when the cascaded model (M1+M2) described in
Section 3.3 was used. One can notice a reduction of 65% in the
number of false alarms at the cost of missing 21 of the hotspots. This
cascaded model provides a compromise between the high accuracy
of the hotspot detection and the overhead induced from fixing nets
wrongly labeled as hotspots. The details will be demonstrated in
Section 5.3.

Table 1: Confusion matrix
of M1.

NH H
N̂H 290084 2
Ĥ 7465 646

Table 2: Confusion matrix
of M1+M2.

NH H
N̂H 295178 23
Ĥ 2371 625

5.2 Incremental Placement + NDR
As mentioned earlier, our mitigation flow consists of two steps:
incremental placement and NDR. We performed the two mitigation
techniques on the five designs to verify the effectiveness. The place-
ment algorithm in Section 4.1 was implemented in C++. During EM
mitigation at the placement stage, at most 6 incremental placement
iterations were allowed in the experiments, and the parameter α in
formulation (1) was set to 1. We set the same weightw for all the
hotspot nets asw = 2000/|H|, while keeping unity weight for NH
nets. The information of the detected hotspots is provided to ICC
for performing NDR.

To demonstrate the efficacy of each individual component in the
proposed multistage mitigation framework, we run several flows
as described below and the results are summarized in Table 3. We
first run clock tree synthesis (CTS) and default routing on the ini-
tial placement generated by the PD tool, and the number of the
final EM violations without any repair approaches is shown under
the column “Initial”. Second, we performed incremental placement
with the actual EM hotspots being known, and then run CTS and
routing. The number of final EM violations under this flow is under
column “Incr. place". Lastly, we run the incremental placement, CTS
and NDR routing and reported the final number of EM violations
under the column “Incr. place + NDR route". Note that the target
EM violations to repair for all the flow shown in Table 3 are re-
ported from ICC EM evaluation. It can be observed that incremental
placement solely reduces 37.1% of the violations on average, and
incremental placement and NDR routing reduces 74.1% violations,
which is about the same performance achieved when using EM
fixing in PD tool (73.1%).

Table 3: Comparison of PD tool EM repair, the incremental
placement flow, and incremental placement combined with
NDR flow in terms of final EM violations is shown.

Design Initial PD tool Incr. place Incr. place + NDR
b19 302 104 260 108
ecg 225 3 70 21
mmm 2,154 1,637 1,997 1,320
med 252 6 34 6
vga 396 80 360 83

Avg. improve — 73.1% 37.1% 74.1%

5.3 Framework Validation
The EM detection model was trained on three benchmarks, b19,
ecg and mmm, and we integrated the trained model into the pro-
posed framework, which is applied to the five benchmarks. Table
4 reports the number of EM violations, routed wirelength (Wire-
length), net area (Area), overall runtime, worst negative timing
slack (WNS), and total negative timing slack (TNS) at the end of
detailed routing in different flows. “Initial” denotes the default PD
flow without any EM fixing attempts, while “PD fixing” denotes
using wire widening throughout during the fixing stage. “M1” and
“M1+M2” represent the proposed EM detection and mitigation flow
with M1 and M1+M2 as the EM prediction model respectively.

We can see that the proposed M1+M2 flow fixes about the same
number of EM violations as the PD fixing flow. It also achieves 15×
speedup compared with the PD fixing flow. The runtime decompo-
sition for the PD tool fixing flow and our proposed flow with the
cascaded model is shown in Figure 4. One can see that, compared
to PD fixing flow whose runtime is dominated by post-route EM
fixing, the M1+M2 flow can perform the incremental placement in
less than 10 seconds and NDR takes nearly the same runtime as the
default routing.
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Figure 4: Runtime comparison between the PD fixing flow
(CTS + default route + PD fixing) and the proposed M1+M2
flow (incr. place + CTS + NDR) is shown.

6 CONCLUSION
In this work, we propose a novel EM hotspot detection and miti-
gation framework using learning-based detection and multistage
mitigation. Utilizing features extracted from the placement, a clas-
sification model is proposed to detect EM hotspots in the design.
In addition, an incremental placement strategy is proposed to miti-
gate the detected EM hotspots. EM hotspots still present after the



Table 4: Comparison of EM violation reduction, metal wirelength and area overhead, and timing impact for the designs pro-
duced by the conventional EM fixing flow and our proposed methodology using machine learning trained model.

Design Flow #EM Vio. Wirelength (um) Area (um2) Runtime (s) WNS (ns) TNS (ns)
Initial 302 2,242,990 165,284 943.4 -0.11 -0.85

b19 PD fixing 104 2,260,090 188,171 33,865.1 -0.09 -3.83
Nets: 219,289 M1 116 2,368,201 221,096 1,293.5 -0.09 -0.61

M1+M2 120 2,248,412 174,432 935.5 -0.10 -0.77
Initial 225 873,557 63,050 274.1 -0.17 -81.00

ecg PD fixing 3 874,541 63,420 1,470.1 -0.17 -81.97
Nets: 48,337 M1 3 996,912 67,072 420.6 -0.23 -83.2

M1+M2 9 884,589 65,727 270.7 -0.20 -91.88
Initial 2,154 1,823,239 132,646 471.8 -0.15 -9.43

mmm PD fixing 1,637 1,824,374 138,799 3,663.9 -0.15 -9.43
Nets: 158,526 M1 1,245 1,872,680 191,545 724.4 -0.16 -10.52

M1+M2 1,364 1,847,248 143,328 556.5 -0.16 -10.83
Initial 252 2,638,638 190,443 504.3 -0.19 -135.53

med PD fixing 6 2,642,620 199,231 3,124.5 -0.19 -141.38
Nets: 133,222 M1 11 2,746,344 260,535 12,971.9 -0.23 -161.12

M1+M2 11 2,655,013 207,188 635.2 -0.22 -148.43
Initial 396 3,169,437 227,432 633.7 -0.21 -116.74

vga PD fixing 80 3,227,050 268,042 25,529.2 -0.23 -144.39
Nets: 164,975 M1 84 3,306,214 300,918 1,113.9 -0.17 -84.71

M1+M2 87 3,228,308 272,295 1,038.8 -0.18 -86.02

Ratio wrt initial
PD fixing 0.269 1.006 1.083 19.10 0.983 1.760

M1 0.246 1.062 1.307 6.38 1.052 0.955
M1+M2 0.267 1.011 1.093 1.21 1.087 1.004

placement-stage mitigation are addressed through the NDR scheme
in the routing stage. Contrary to conventional EM mitigation flows,
the proposed approach addresses the EM problem at an earlier stage
in the PD process resulting in faster closure and versatile mitigation
techniques.
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