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Abstract—Automating analog layout design has long been con-
sidered a challenging problem. The literature has been exploring
fully automated analog layout tools, while designers still adopt
manual methodologies in practice, due to the performance gap
between generated layouts and manually crafted ones. Although
fully automated tools cannot generate flawless solutions yet, we
can enhance the design practice by incorporating designers’
expertise with intelligent and efficient automation process. In this
paper, we discuss two potential directions to leverage designers’
expertise, i.e., by utilizing machine intelligence to learn from
existing manual layouts, and allowing designers to efficiently edit
layouts with real-time interaction. We survey the recent work
dedicated to these two directions and hope to inspire more studies.

I. INTRODUCTION

Analog layout design has suffered from a low level of
automation for decades. Despite the recent efforts in fully
automated layout generation tools [1], [2], the performance
gap between generated layouts and manually crafted layouts
still exists. As a result, designers still prefer manual design
methodologies in practice. To enhance the performance of
layout automation tools, the literature starts exploring ways to
incorporate machine intelligence and human interaction during
the design process.

Leveraging machine intelligence like deep learning or deep
neural networks (DNN) can help extract human knowledge
from existing manual analog layouts. For example, analog
layout designs usually require versatile design constraints,
such as symmetry, matching, etc. Annotating all constraints
for each design and feeding to automation tools can be a
tedious work. An analog circuit can be naturally abstracted
to a hypergraph, and thus graph neural networks (GNNs) are
suitable for learning the annotation tasks. Several researches
have unleashed the power of GNNs on symmetry constraint
annotation [3], [4], [5], [6]. Other studies further try to explore
the possibility of directly generating partial or entire layouts
with generative models [7], [8].

Human interaction like interactive layout editing is another
promising way to take advantage of designers’ expertise.
Unlike the deep-learning-based layout automation approaches
making use of existing layouts, interactive layout editing
embraces human involvement when developing a layout with
automation tools [9], [10]. As an analog design could have
many specifications and different design styles, users may not
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Fig. 1: Overall flow for intelligent and interactive analog layout
automation.

always be satisfied with generated layouts. Interactive layout
editing overcomes the drawback of fully automated layout
generation that does not allow any user engagement. Designers
can edit the generated layout to approach their expectation,
but get freed from drawing an initial layout and manually
resolving design rule violations. In other words, interactive
layout editing promotes efficient use of human knowledge and
automation tools.

By surveying the literature, we observe that machine intelli-
gence can be helpful to learn human expertise and guide initial
layout generation, while interactive layout editing can close
the gap between generated layouts and human expectation.
We summarize the overall flow of such an intelligent and
interactive desgin methodology in Figure 1 and discuss the
related progress in this paper. The following sections are
organized as follows: Section II surveys the application of deep
learning for analog layout generation, Section III investigates
the studies in interactive analog layout editing, and Section IV
concludes the paper.

II. INTELLIGENT LAYOUT GENERATION

Rapid development of deep learning stimulates the research
for analog layout generation leveraging machine intelligence.
The studies can be mainly divided into three aspects: 1) learn
to annotate design constraints, such as symmetry constraints
[5], [3], [4], [6]; 2) guide analytical layout generation algo-
rithms [11], [12]; 3) generate partial or entire layouts directly
[7], [8].

A. Symmetry Constraint Annotation

Symmetry constraint is widely adopted in analog design to
guarantee matching and design performance. Analog layout
automation tools [13], [2] take a circuit netlist as input
and generate symmetry constraints for downstream layout
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Fig. 2: Different graph representations.

generation stages, like device placement and routing. Early
studies for symmetry annotation include circuit performance
analysis [14], graph matching [15], pattern matching [16], and
graph similarity [17]. These approaches either suffer from
scalability issues of circuit sizes [14] or flexibility issues
requiring comprehensive pattern libraries [16] and empirical
tuning of matching regions [15], [17].

Recent advancements in graph neural networks (GNNs)
open up a new direction for symmetry constraint annotation,
as an analog circuit is essentially a graph. We can leverage
GNNs to learn the annotation task and predict symmetry
constraints on unseen circuits. There are different ways to
abstract an analog circuit to a graph [3], [4], [5], [6], as
shown in Figure 2. Gao et al. [3] map devices and pins
to graph nodes and represents the hypergraph of the circuit
in Figure 2(a) with cliques. Chen et al. [4] adopt a similar
representation but consider only devices. Kunal et al. [5] adopt
a bipartite graph representation with all the nets, devices and
pins as graph nodes. These different graph representations
help embed structural features for symmetry annotation. With
graph abstraction, symmetry annotation can be converted into
a binary classification task of each node pair. By leveraging
GNN to encode node embedding, Gao et al. [3] propose a
GraphSage-based model [18] to determine whether a device-
level symmetry exists between a piar of devices. Chen et
al. [4] further encode graph embedding to tackle the system-
level symmetry between sub-circuits. Kunal et al. [5] adopts
graph convolutional networks to identify functionalities of
hierarchical circuit blocks and derive the symmetry constraints
from a pre-recorded library.

B. Guidance for Placement & Routing

Analog layout generation typically includes placement and
routing stages, which involve to solve optimization problems.
Conventional analog placement and routing algorithms adopt
analytical optimization [19], [20], [21] or heuristic searching
approaches like simulated annealing [22]. These methods
require explicit mathematical formulation, which may not be
able to leverage the design expertise from existing layouts.

Li et al. [11] propose to guide analog placement with graph
neural networks. As post-layout simulation is time-consuming
and there is no routing information at the placement stage, they
utilize graph neural networks to predict the impact of place-
ment on post-layout simulation performance. The proposed
performance prediction model is integrated into the objective
of a simulated-annealing-based placer. Experimental results
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Fig. 3: The flow of interactive layout editing.

show that the placer has the potential to achieve comparable
performance to manually crafted layouts.

Zhu et al. [12] propose an analog routing paradigm en-
hanced by a generative model that provides guidance for
the router to mimic the behavior of manual routing. The
generative model is based on variational autoencoder [23],
which learns the routing probability map from manual layouts.
The probability map is then incorporated into the cost function
of the A-star routing algorithm. They demonstrate significant
improvements on specific performance metrics with such
guidance.

C. Partial Layout Generation

In analog design, wells or doping areas are usually inserted
after device placement. This is not an easy task, as the solu-
tions generated by analytical algorithms are far from manual
ones. Xu et al. [7] propose WellGAN, to leverage generative
adversarial networks (GANs) for well generation to mimic the
manually crafted well patterns. With a post legalization step
to satisfy design rules and enclose all the target transistors,
WellGAN can produce well solutions similar to manual ones.

Gusmão et al. [8] propose to directly generate analog place-
ment results with a graph-to-sequence model, AGraph2Seq.
AGraph2Seq formulates placement constraints, including
proximity constraints, current-flow constraints, and symmetry
constraints, as input, and sequentially outputs the position
of each device. As a deep learning model may not generate
legal placement solutions, AGraph2Seq still needs analytical
approaches to satisfy all the design constraints.

III. INTERACTIVE LAYOUT EDITING

Interactive analog layout editing can serve as a bridge
connecting manual engineering efforts and automated layout
generation tools. The dilemma in analog layout design is that
manually drawing a layout can be time consuming, while the
layouts produced by fully automated tools are not satisfactory
enough for complex design requirements. An eclectic method-
ology is to generate an initial layout with automation tools
and involve designers for interactive layout editing, as shown
in Figure 3.
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A. Interactive Placement

Gao et al. [9] propose an interactive layout editing paradigm
for analog placement. As shown in Figure 1, interactive
placement starts with an initial placement solution from fully
automated tools. A designer can view the layout through
visualization and provides editing commands through a user
interface. Then, the designer interacts with the layout editing
tool and gets the desired layout in several edit-update-legalize-
show iterations.

The authors propose an extensible command set for manip-
ulating the placement layout, including {move, spacing,
swap, arrayAdd, symAdd}. Commands move, spacing,
and swap define fine-grained operations on device locations.
Commands arrayAdd and symAdd introduce high-level
constraint-related operations. Designers can edit the placement
solution with these commands and view the updated legal
results at real-time.

In order to meet the requirement of real-time interaction,
a new graph representation that combines the horizontal con-
straint graph (HCG) and vertical constraint graph (VCG) for
analog placement is proposed, i.e., mixed constraint graph
(MCG). As shown in Figure 5, a MCG consists of two kinds
of constraint edges, horizontal constraint edge (HCE), and
vertical constraint edge (VCE). HCE means that some device
is right to another device, like device V2 and device V3.
VCE is similar, which stands for the up-down relationship.
MCG possesses a helpful property with its topological sort:
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Fig. 6: Example of routing with topology guidance.

given a topological sort of a MCG, moving any device to
its top left has no impact on the devices before that device
in the topological order. “No impact” means that it will
not cause new overlaps or introduce new illegal placement
parts. Then, the authors propose a linear-time legalization
algorithm that traverses the MCG once and eliminates the
illegal placement part by simply moving the devices to up
right. Symmetry constraints can also be handled by splitting
the MCG according to the symmetry axis. The right figure of
Figure 5 shows a topological sort of the MCG. The algorithm
traverses the devices in the order of {V1, V2, V3} and moves
V3 to its up right to eliminate the overlap between itself and
V2, which is a simple run of the legalization algorithm.

B. Interactive Routing

Routing is the most tedious and time-consuming procedure
in the analog layout design flow due to sophisticated con-
straints, especially when designers have to manually finish all
the wiring. Interactive routing aims at incorporating designers’
expertise to close the performance gap [10]. Given the initial
routing solution generated by automation tools, designers are
able to adjust the routing topology with commands and get a
legal routing solution without DRC violations instantly.

The editing commands for routing are shown in Figure 4,
including basic commands like removing and rerouting a
single net, setting particular wire width, as well as superior
commands like adjusting the spacing between two designated
wires and specifying rough routing topologies for nets. Take
the netTopology command as an example. It allows design-
ers to set topology guidance for specific nets. As demonstrated
in Figure 6, we minimize the distance between the objective
nodes and the guiding path when performing the A-star-
based routing algorithm. We consider the Manhattan distance
between the objective node and each segment of the guiding
path as the distance metric. In this way, the routing algorithm
will generate a routing path close to the guiding path and
meanwhile avoid obstacles.

C. Results for Demonstration

Figure 7 demonstrates the results of interactive analog
layout editing on two real-world circuits, OTA and LDO. We
perform interactive placement on OTA by adding a symmtery
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Fig. 7: An example of interactive analog layout flow with OTA
and LDO.

constraint on devices 1© and 2©. We also perform interactive
routing on LDO and get a legalized routing topology by
removing wires 1© & 3© from electrically sensitive regions
2© & 4©. The post-layout simulation performance of the

two circuits is significantly improved after interactive layout
editing [10].

IV. CONCLUSIONS

With growing challenges in analog layout design, analog
layout automation becomes a promising direction to speedup
design cycles. We point out that existing layout automation
tools can be enhanced with machine intelligence and human
interaction. In this paper, we present the recent techniques on
deep learning for analog layout generation and an interactive
paradigm for analog layout editing. We hope this paper will
inspire future work on intelligent and interactive analog layout
automation.
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