
Layout Symmetry Annotation for Analog Circuits with Graph
Neural Networks

Xiaohan Gao
CECA, CS Department
Peking University

xiaohangao@pku.edu.cn

Chenhui Deng
ECE Department
Cornell University
cd574@cornell.edu

Mingjie Liu
ECE Department

UT Austin
jay_liu@utexas.edu

Zhiru Zhang
ECE Department
Cornell University
zhiruz@cornell.edu

David Z. Pan
ECE Department

UT Austin
dpan@ece.utexas.edu

Yibo Lin∗
CECA, CS Department
Peking University
yibolin@pku.edu.cn

ABSTRACT
The performance of analog circuits is susceptible to various layout
constraints, such as symmetry, matching, etc. Modern analog place-
ment and routing algorithms usually need to take these constraints
as input for high quality solutions, while manually annotating such
constraints is tedious and requires design expertise. Thus, auto-
matic constraint annotation from circuit netlists is a critical step
to analog layout automation. In this work, we propose a graph
learning based framework to learn the general rules for annotation
of the symmetry constraints with path-based feature extraction and
label filtering techniques. Experimental results on the open-source
analog circuit designs demonstrate that our framework is able to
achieve significantly higher accuracy compared with the most re-
cent works on symmetry constraint detection leveraging graph
similarity and signal flow analysis techniques. The framework is
general and can be extended to other pairwise constraints as well.

1 INTRODUCTION
Analog circuits require many layout constraints to guide the layout
design for functionality and performance [1]. Due to the large vari-
ance in different analog circuits, in modern analog layout automa-
tion methodology, the workload of such annotation is approaching
manual drawing of layouts, limiting the wide acceptance of the
automation tools [2, 3].

Symmetry constraint is one of the substantial and representa-
tive constraints for layout design. To reject common-mode noise
and enhance circuit robustness, analog circuits may adopt topolo-
gies with devices matching with each other. These topologies not
only require devices designed with the same sizes, but also drawn
symmetrically in the layout to avoid mismatching parasitics from
process variations and layout dependent effects [1]. Meanwhile,
as symmetry constraints widely apply to analog layout designs,
the workload of annotating all of them is extremely high. Thus,

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431545

automatic annotation of such constraints is desired to alleviate the
designers’ workload.

In 2017, DARPA announced the Electronic Resurgence Initiative
(ERI) and started to sponsor the ALIGN and MAGICAL projects for
fully automated analog layout generation with “no-human-in-the-
loop” through its IDEA program [2–4]. Automatic annotation of
analog layout constraints is a key preprocessing step to guarantee
the performance of analog placement and routing in both projects.

On the other hand, in real-world, analog circuits contain a large
number of variants even for a single functionality. For example,
there are more than 100 operational transconductor amplifier (OTA)
topologies appeared in the textbook and research papers [1, 5]. Ex-
amples include telescopic, folded-cascode, and Miller-compensated.
Designers may also develop their customized structures to boost
the performance. This makes the automatic annotation challenging
and difficult to generalize.

Existing efforts on symmetry constraint annotation can be cat-
egorized into two major types: 1) circuit analysis [6]; 2) graph
matching [7–11]. The circuit analysis approaches usually require
expensive circuit simulation to detect symmetry and matching
constraints [6]. Graph matching based approaches include signal
flow based graph automorphism, pattern matching with circuit
template library, and graph similarity [7–11]. The performance
of these approaches is either highly-correlated to the coverage of
pattern library, or sensitive to the selection of similarity threshold.

There are also other works on analog sizing based on rules and
expert knowledge [12–14]. Recently, Kunal et al. [5] proposed a
graph learning based approach to annotating the primitive blocks
in the circuit hierarchy. The symmetry constraints are still encoded
in the primitive circuit library.

In this work, we propose a graph learning framework for sym-
metry constraint detection. We leverage graph neural networks to
learn a general set of rules of symmetry constraints from existing
circuits rather than relying on pre-constructed template libraries or
expensive circuit simulation. The major contributions of the work
are summarized as follows.

• We propose a graph learning framework for symmetry con-
straint detection. The framework is general and can be ex-
tended to other pairwise constraints as well.
• We map the symmetry constraint detection to a binary clas-
sification problem by measuring the similarity of node pair.
• We propose a path-based feature to mimic electric potential
in circuit analysis.

https://doi.org/10.1145/3394885.3431545

IPIN

on1 op1

IBIN

ONOP

(a) OTA output stage

V2P V2N

V2P V2N

V2P V2N

(b) Latch

Figure 1: Example of symmetry pairs with different neigh-
boring structures in the circuits.

• We develop a probability-based filtering technique to effec-
tively reduce the false positive rates.
• Experimental results on open-source analog circuits demon-
strate that our framework can achieve > 90% TPR and < 1%
FPR, comparing to the < 70% TPR and > 2% FPR achieved by
the recent graph matching based algorithm S3DET [11] and
the signal flow analysis based algorithm [3], respectively.

The rest of the paper is organized as follows. Section 2 formulates
the symmetry constraint detection problem; Section 3 explains the
algorithm details; Section 4 demonstrates the experimental results;
Section 5 concludes the paper.

2 PRELIMINARIES
2.1 Layout Symmetry Constraint
In this work, we tackle device-level symmetry constraints within
analog circuit blocks. We can generalize our approach to large ana-
log circuits providing the design hierarchy in the input netlist files.
If we define the netlist of an analog circuit as a graph 𝐺 = (𝑉 , 𝐸)
with vertices𝑉 representing devices like transistor, diode, capacitor,
resistor, etc., and hyperedges 𝐸 representing the interconnections,
then we can define symmetry pair as a pair of devices/vertices
(𝑣𝑖 , 𝑣 𝑗) that need to be placed symmetrically to a central line in
the layout. Figure 1 shows an example of symmetry pairs in two
circuits, the output stage of an operational transconductance ampli-
fier (OTA) and a latch. We refer one symmetry pair as a device-level
symmetry constraint.

2.2 Graph Neural Networks
With wide application of deep learning, neural networks are known
to be an effective and efficient model for tasks like classification
and regression. However, neural networks like ANN and CNN only
take vectors or tensors as input data, which are difficult to work
on graphs. Defferrard et al. generalize convolutional neural net-
works (CNNs) from regular grid (e.g., images) to general graphs
via graph convolutional filters [15]. Later, Kipf and Welling sim-
plify the convolutional operator and propose graph convolutional
network (GCN) [16].

Graph learning techniques can be categorized into transductive
and inductive settings. Under the transductive setting, the embed-
ding of each node is directly optimized and thus the training process
requires to see all the nodes. The original GCN [16] is one kind of
transductive approaches. The inductive approaches learn a general
rule from the training graphs through sample and aggregation of
structural information and node attributes [17], as shown in Fig-
ure 2. The learned model can be applied to unseen data. In this

Figure 2: Sample and aggregation to obtain node embed-
dings. The node embeddings can be used as the input to fully
connected (FC) layers for classification.

work, we would like to build a model to detect layout symme-
try constraints of unseen graphs, so an inductive approach like
GraphSage [17] is adopted.

2.3 Problem Formulation
We define the layout symmetry detection problem as follows. Given
a set of analog circuits with device sizes and labeled symmetry
pairs, our objective is to build a graph learning model to predict the
symmetry pairs from the circuit netlists with maximum accuracy.

For a circuit 𝐺 = (𝑉 , 𝐸) with |𝑉 | devices, we need to make
O(|𝑉 |2) pairwise predictions to obtain all symmetry pairs. The
number of actual symmetry pairs is usually much smaller than the
non-symmetry ones. Thus, this is a biased learning problem. We
adopt true positive rate (TPR), false positive rate (FPR) and F1-score
as the holistic accuracy measures. The definitions of TPR, FPR, and
F1-score are as follows,

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
, 𝐹𝑃𝑅 =

𝐹𝑃

𝑁
,

𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 ,
(1)

where𝑇𝑃 stands for the amount of truly predicted positive labels, 𝑃
for the amount of positive labels, 𝐹𝑃 for the amount of incorrectly
predicted positive labels, and 𝑁 for the amount of negative labels.
The target of the learning task is to maximize TPR and minimize
FPR, or equivalently to maximize the F1-score.

3 ALGORITHM
In this section, we explain the framework of our symmetry detec-
tion approach and algorithmic details. Figure 3 shows the overall
flow,which consists of threemain stages: pre-processing, GraphSage-
based detection model, and post-processing. The pre-processing
stage takes raw SPICE analog netlists as input and constructs graph
representations for each circuit. In this stage, we also extract fea-
ture vectors from the type information of the netlists and structure
of the graph. In the detection model stage, we map the symmetry
constraint detection problem into a binary classification problem.
We train GraphSage [17] in a supervised manner, which can pre-
dict potential symmetry constraints. All predicted pairs will go
through a rule-based filter and a probability-based filter in the post-
processing stage to eliminate most of the false positive pairs. The
detailed algorithms are presented as follows.

type-based

feature

graph

representation

concat

Sample and Aggregate binary classification

rule-based filter

probability-based filter

Predicted

symmetry constraints

1. sample from 1
st
/2

nd
 neighbors

2. aggregate from neighbors

binary cross
entropy loss

Node

embedding

v1
v2

pair set: (v1, v2) ...

1
st
 order

2
nd

 order

feature

vector

1
0
 /

0
1

0
⋮
1
⋮
0

SPICE

circuit netlist

Circuit-to-graph

converter

device/pin

type

one-hot vector

calc.

path length

path-based

feature

extract

type info

pre-processing GNN-based classification model post-processing

v1 ⋮
 ⋮

 ⋮

 ⋮ ⋮

trainset

model

sample & aggregate
testset

classifier

v1

v3

v1
v2

pair (v1, v2)

probability > 0.5

pair (v1, v3)

probability < 0.5

Figure 3: The overall flow.

(a)

(b)

Figure 4: Simplified graph representation. (a) Convert hyper-
edge to clique. (b) Solve the isomorphic problem.

3.1 Graph Representation & Feature Extraction
The framework takes SPICE netlists as input. We adopt simplified
graph representation from S3DET [11]. As shown in Figure 4(a),
both device instances and device pins are recognized as graph nodes
and there are edges connecting pin nodes with their device nodes.
The pins nodes form a clique if they share the same net, that is,
there is an edge between any two pins of the net.

3.1.1 Type-based feature. This simplified graph representation has
a problem that circuits with different topologies may have isomor-
phic graph representations, as shown in Figure 4(b). We improve
the representation by incorporating the type information of each
node to ensure unique topologies for different interconnections.

We encode the type information as part of the node feature.
We use a two-dimensional vector to indicate whether a node is
a device or a pin, where [0, 1], [1, 0] stand for a device and a pin,
respectively. Then, we transfer the device types (i.e., capacitor,
resistor, diode, NMOS, PMOS, IO) and pin types (i.e., source, drain,
gate, substrate, passive, cathode of a diode, and anode of a diode)
into a 13-dimensional one-hot vector. We introduce a power node

Algorithm 1 Path-based feature extraction
Input: Graph representation 𝐺 of analog circuits, VSS node 𝑣𝑣𝑠𝑠
Output: Path-based feature 𝑝 for each pin node
1: function AssignWeight(𝐺)
2: for edge 𝑒 : (𝑣1, 𝑣2) of graph 𝐺 do
3: if 𝑣1 is device or 𝑣2 is device then
4: set weight of edge 𝑒 to 0.5
5: else
6: set weight of edge 𝑒 to 0
7: end function
8: function ExtractFeature(𝐺, 𝑣𝑣𝑠𝑠)
9: AddWeight(𝐺)
10: for pin node 𝑣 of graph 𝐺 do
11: 𝑝 ← ShortestPathLength(𝑣𝑣𝑠𝑠 , 𝑣)
12: end function

and a GND node as auxiliary nodes and set their types to IO, which
our model can utilize for distinguishing them.

3.1.2 Path-based Feature. We also propose a novel path-based
feature inspired by the electric potential in circuit analysis. The
feature is not to simulate the circuit, but to characterize the “global
position” of each node in the graph by VSS/GND-sourced path
lengths. Taking Figure 1(b) as an example, the annotated symmetry
constraint in dotted rectangles is a pair of NMOS nodes. The neigh-
bor structures of the two nodes are not the same, but the electric
potential values of their corresponding pins are the same according
to DC analysis. We observe that the path length from the GND
node to the corresponding pins of the two nodes are also the same.

Algorithm 1 describes how to compute this feature. Given a
graph representation 𝐺 and the VSS nodes (we can extract these
special nodes from the naming convention in the netlists), we assign
weight to each edge and then calculate the shortest path length
from VSS node to each node. If there are multiple VSS/GND nodes
in one circuit, we add an extra node as new VSS node and add edges
with weight 0 between the extra node and VSS/GND nodes.

Table 1: The components of node features.

Component Device-or-pin Type (one-hot) Path-based feature

Dimension 2 13 1
Property local local global

K=0 K=1 K=2

ℎ𝑣1
0 ℎ𝑣1

1 ℎ𝑣1
2 ℎ𝑣2

0 ℎ𝑣2
1 ℎ𝑣2

2

ℎ𝑣3
0

ℎ𝑣3
1 ℎ𝑣3

2

Figure 5: Sample and aggregate.

The intuition is that most symmetry pairs have the similar DC
potential, according to our observation. Thus, we propose this
path-based feature as a symbolic electric potential at each pin
for capturing the global positions of nodes in the circuit. This
feature also helps alleviate the issue of lacking global information
in common graph learning [17] when generating node embeddings.
Table 1 summarizes the three features and their dimensions. They
are concatenated into a feature vector for graph learning.

3.2 Graph Learning Methodology
At this stage, we convert the symmetry constraint detection prob-
lem to a binary classification problem. Targeting the classification
of node pairs, We train a graph neural network and apply the
trained model to new circuits to generate node embeddings, which
will be used on predicting the probabilities of symmetry constraint.
We enhance the expressivity by replacing the explicit symmetry
patterns with node embeddings, which are dense vectors distilled
from local graph structure and node features. The distillation pro-
cess is trainable and the graphs with node features generated at the
previous stage will serve as the input of the process, so our node
embedding model will comprehensively consider the information
of neighbors and the structure of the graph.

We adapt GraphSage [17] for our node embedding model and
customize the loss function for our problem. As an embedding
framework, GraphSage has proved its superiority in problems like
node classification, clustering, and link prediction, which shows
its strong generalization ability for downstream tasks. Next, We
explain the detailed forward propagation and how we map the
symmetry constraint detection to binary classification.

3.2.1 Node Embedding. A complete procedure of a neural network
involves forward propagation and back propagation. We will depict
the previous part in this subsection and leave the details about the
objective function to the next subsection. The key components of
the forward propagation are sampling and aggregation. To explain
the two basic components, we demonstrate the Figure 5.

The illustration takes a two-step sampling-and-aggregation in-
ference as an example. 𝐾 denotes the aggregation depth, that is,
the number of neighborhood layers, and we set 𝐾 = 2 in this figure.
ℎ𝑘𝑣 denotes the node representation of node 𝑣 at current step 𝐾 = 𝑘 .
As for node 𝑣1, its sampled first-order neighbors are node 𝑣2 and

𝑣3. At step 𝐾 = 1, the algorithm aggregates node representation
from sampled neighbors for each node. To make it specific, new
node representation ℎ1𝑣1 is a combination of previous representa-
tions ℎ0𝑣1 , ℎ

0
𝑣2 and ℎ

0
𝑣3 . The algorithm also simultaneously proceeds

sampling and aggregation for other nodes like 𝑣2 and 𝑣3. As the pro-
cess iterates, node 𝑣1 can obtain feature information from further
neighborhoods.

Aggregator functions are crucial to the sampling and aggregation
process. The Mean aggregator we adopted concatenates the current
node representation ℎ𝑘−1𝑣 and the average of aggregated neighbor
node representations. N(𝑣) stands for the sampled neighbor set
of node 𝑣 and𝑊 is a learnable parameter matrix. 𝜎 (·) denotes an
activation function that introduces nonlinearity to our model. We
take ReLU as our activation function 𝜎 (·) in aggregation process.
The Equation 2 summarizes the mean aggregator,

ℎ𝑘𝑣 = 𝜎 (𝑊 · {ℎ𝑘−1𝑣 ⊕ 𝑀𝐸𝐴𝑁 (ℎ𝑘−1𝑢 ,∀𝑢 ∈ N (𝑣)})). (2)

3.2.2 Binary Classification. We formulate a new objective function
to adapt the node embedding methodology to symmetry constraint
annotation. We can designate a label for each node pair, which rep-
resents whether the node pair is a symmetric pair, 1 for symmetric,
0 for non-symmetric. Note that annotating the latent relationships
between devices can be transformed into predicting the labels for
device node pairs, the task is essentially a binary classification.

We split the mapping into two steps. The first step associates the
node embeddings with the value of labels, while the second step
finds a suitable loss function for back propagation. We figure out a
straightforward valid approach for the first step, known as bilinear
scoring function [18, 19], which is basically a mutation operator,
defined as follows:

𝑝𝑟𝑜𝑏 = 𝜎 (𝑧𝑇1𝑊𝑧2), (3)
where 𝑧1, 𝑧2 denotes the node embeddings of node 𝑣1, 𝑣2 and𝑊
is a trainable weight matrix. 𝜎 (·) is another activation function
involved. The probability 𝑝𝑟𝑜𝑏 that the label of pair (𝑣1, 𝑣2) is 1 is
determined by the mutation operator.

To train the aggregator functions mentioned before, we apply
binary cross entropy loss, a classic loss function of binary classifi-
cation. The loss function is designed for our target,

𝑙𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · log(𝑝𝑟𝑜𝑏𝑖) + (1 − 𝑦𝑖) · log(1 − 𝑝𝑟𝑜𝑏𝑖), (4)

where 𝑁 denotes the number of node pairs, 𝑦𝑖 and 𝑝𝑟𝑜𝑏𝑖 are the
GND truth label and predicted label of the 𝑖𝑡ℎ pair respectively.

3.3 Filters
Our model is able to annotate most of the symmetry constraints
by predicting symmetric labels for node pairs. To further reduce
the false alarm rate (to diminish the cases that a non-symmetric
pair is labeled as symmetry constraint), we raise two filters.

Rule-based filter. The first filter is based on rules that the sizes
and types of two device-level symmetric nodes are supposed to be
identical. The second filter focuses on eliminating the redundant
pairs on account of probabilities predicted before.

Probability-based filter. After the rule-based filter, we per-
form filtering based on the probability given by the graph neural
network model. We make a rational assumption that a device node
can appear in no more than one pair of nodes with device-level
symmetry constraint. Taking the assumption as a starting point, we

Algorithm 2 Probability-based Filter
Input: Probability list 𝑃𝑟𝑜𝑏 along with given pairs
Output: Symmetry pair set 𝑆𝑒𝑡𝑠𝑦𝑚
1: function ProbFilter(𝑃𝑟𝑜𝑏)
2: 𝑃𝑟𝑜𝑏𝑠𝑜𝑟𝑡𝑒𝑑 ← Sort(𝑃𝑟𝑜𝑏)
3: for node pair (𝑣𝑖 , 𝑣 𝑗) of 𝑃𝑟𝑜𝑏𝑠𝑜𝑟𝑡𝑒𝑑 do
4: if 𝑣𝑖 , 𝑣 𝑗 ∉ 𝑆𝑒𝑡𝑠𝑦𝑚 nodes set then
5: add (𝑣𝑖 , 𝑣 𝑗) to 𝑆𝑒𝑡𝑠𝑦𝑚
6: end function

can remove the misjudged constraints which have nodes recurring
in annotated pairs. The motivation of Algorithm 2 is selecting the
possible node pair with the highest probability every time, which
derives from the greedy algorithm. For each analog circuit, the
filter sorts all candidate pairs and always pick the pair in the front
of the queue to join the symmetry constraint set.

4 EXPERIMENTAL RESULTS
4.1 Baseline models
We compare our model with two other methods of symmetric con-
straint detection for analog circuits, S3DET [11] and signal flow
analysis (SFA), both developed in an open-source analog layout
generator MAGICAL [3]. The S3DET algorithm leverages graph
similarity to match components with similar neighboring struc-
tures. While it is originally validated for system symmetry con-
straints, the algorithm is generic and can be adapted to device-level
symmetry detection as well. The SFA implementation incorporates
a set of conventional algorithms for device-level symmetry anno-
tation: it first detect seed symmetry pairs like differential pairs
with pattern matching; then, it performs signal flow analysis [1] to
traverse the graph starting from the seed pairs and search for the
rest symmetry pairs.

To differentiate from the original S3DET for system symmetry
constraints, we name our device-level implementation as S3DET-dl.
We modify the subgraph extraction step of the original method to
fit device-level symmetry constraint detection. S3DET-dl extracts
neighbor subgraphs for two device nodes, and apply Kolmogorov-
Smirnov test to judge the similarity of two subgraphs.

4.2 Datasets
Our datasets are based on two sets, S3DET dataset and Minnesota
ALIGN dataset. The former is the dataset used by the S3DET project
[11] and we obtain from the authors. The latter is obtained from
the open-source repository of the Minnesota ALIGN team [2].

The SPICE files of the two datasets both encode the hierarchy
identified by the designers. In the netlists, the representation of a
circuit can be seen as a tree structure. The root node of the tree
represents the circuit itself, and other nodes correspond to a sub-
circuit. The sub-circuit corresponding to an upper node nests the
sub-circuits of its child nodes. The leaf nodes represent sub-circuit
blocks that are no longer divided in the design. In our experiment,
we detect the device-level symmetry constraints, which appear
in the leaf-level sub-circuits. We extract the leaf-level sub-circuits
with a certain scale and with symmetry constraints in them to
construct new datasets, 𝑆3-leaf and ALIGN-leaf.

The extracted datasets have a variety of circuit architectures, in-
cluding OTA (operational transconductance amplifier), comparator,

Table 2: Statistics of the datasets.

Datasets Circuits Nodes Edges Valid pairs Pos/Neg

𝑆3-leaf 10 1378 9149 1522 89/1433
ALIGN-leaf 5 580 2134 576 48/528

OTA 5 684 3422 750 45/705

DAC (digital-to-analog converter), and latch, etc. In addition to the
difference in circuit types, there are difference in the scale of the
circuits in our datasets and the distribution of device types, which
our model needs to handle as well.

We split the datasets by using 𝑆3-leaf as trainset and ALIGN-leaf
as testset, since the baseline model SFA encodes general patterns
covering symmetry constraints in 𝑆3-leaf. We name the entire
dataset composed of all the circuits as MIXED. We also select the
OTA circuits from all circuits to form a new dataset, named OTA.
We can verify the ability of our model to fit symmetry constraint
detection for a single circuit type. For dataset OTA, we randomly
split trainset and testset in a 3:2 ratio at circuit level. We make sure
that there is no information leak from the testset to training. In
our datasets, we define valid pair as a pair meeting the type rule.
The valid pairs are candidates for symmetry constraints. Within
valid pairs, there are positive ones with symmetry constraint and
negative ones without symmetry constraint. Table 2 summarizes
the statistics of our datasets.

4.3 Experimental Setup
Parameters used in our models and baselines are listed in Table 3.
When training our graph neural network model, we sample nodes
from their neighborhood at each iteration. As described in Section 3,
we define the neighbor domain of a node in a layered manner and
the depth 𝐾 of inner-loop depends on the number of neighbor
layers. For the convenience of experiments, we fix the parameter 𝐾
to 4. That is, for each node in the testset, we explore four layers of
neighbor domain in order to determine its node embedding value.
This is also consistent with the setting in S3DET which extracts
the neighbor subgraphs by extending two device nodes.

Beyond the number of aggregator functions, there is another
important parameter, sampling size 𝑆 , for the sampling process.
The sample size denotes the number of sampled nodes in each
neighbor layer, which can partially reflect the weight of that layer
for node embedding. The values of 𝑆 are supposed to ensure that
the algorithm can consider all pin node information for one node.
Also, if we choose a scale too large, the generated node embedding
will be inclined to the pin node since some nodes connect to pin
node with high degrees.

For the baseline model S3DET-dl, we need to set its parameter 𝑡𝑜𝑙 .
The parameter 𝑡𝑜𝑙 is the threshold for similarity score calculated in
S3DET-dl. If the similarity score of a pair of nodes is greater than
𝑡𝑜𝑙 , the pair will be annotated as symmetry constraints. We choose
the value which achieves the best results in testset for S3DET-dl.

As shown in Table2, the device pairs with symmetry constraints
only account for a small percentage of all device pairs. If we let
all pairs of trainset participate in training, the training data will
be extremely imbalanced. In order to learn a valid model, we turn
to resampling techniques. Resampling is a method that adding
some instances to the minority class or removing some instances
of the majority class to alleviate the imbalance issue. We designate

Table 3: Parameter setup

Parameters Source Value Meaning

K ours (MIXED, OTA) 4 aggregation depth
S ours (MIXED, OTA) 15 sample scale
r ours (MIXED, OTA) 2 proportion(neg/pos)
e ours (MIXED, OTA) 500 max training epoch
bs ours (MIXED, OTA) 256 batch size
lr ours (MIXED, OTA) 0.001 learning rate
hd ours (MIXED, OTA) 20 hidden dimension
tol S3DET-dl, MIXED 0.99 similarity tolerance
tol S3DET-dl, OTA 0.9999 similarity tolerance

Table 4: Symmetry constraint annotation results

Dataset MIXED OTA

Metric TPR FPR F1-score TPR FPR F1-score

S3DET-dl 0.667 0.0722 0.485 0.556 0.0741 0.556
SFA 0.667 0.0203 0.676 0.778 0.0185 0.824

ours-A 0.917 0.0833 0.579 1.000 0.0556 0.857
ours-B 0.806 0.0167 0.784 0.889 0.0185 0.889
ours-full 0.917 0.0074 0.904 1.000 0.0185 0.947

a smaller proportion 𝑟 of negative instances to positive instances
to resample the training data.

4.4 Performance
We conduct experiments on two tasks MIXED and OTA. Table
4 shows the comparison results of our models to other models
in symmetry constraint annotation. Beyond the aforementioned
baselines, we also compare our model (denoted as ours-full) to the
model without probability-based filter (denoted as ours-A) and the
model without path-based feature (denoted as ours-B). We use TPR,
FPR and F1-score as evaluation metrics.

A good model is expected to maximize TPR and F1-score and
minimize FPR. Our model outperforms other baselines in all three
metrics. We achieve a very low FPR (0.74% on MIXED and 1.85% on
OTA), which means that we rarely predict the node pairs without
symmetry constraints as positive. Probability-based filter promotes
removing false positive predictions. With extremely low FPR, we
canminimize the impact of over constraining the downstream tasks
like placement and routing. Comparing to the model without path-
based feature, our complete model achieves 11.1% improvement in
TPR for both tasks. Especially in the OTA task, our model detects
all the symmetry constraints.

Finally, we evaluate the runtime in training and testing, as sum-
marized in Table 5. We can see that the inference time per circuit is
comparable to the other two approaches and the one-time training
time is also very fast.

5 CONCLUSION
In this work, we propose a graph learning based framework for
layout symmetry annotation in analog circuits. By extraction of
both local and global features from the graph representations of the
analog netlists, we develop a graph neural network with a dedicated
training technique to learn the node similarity on imbalanced data.
We further propose a rule-based filter and a probability-based filter

Table 5: Runtime results (s)

Dataset MIXED OTA

Time Train time
Inference time
per circuit Train time

Inference time
per circuit

avg max avg max

S3DET-dl - 0.36 0.84 - 0.03 0.09
SFA - 0.66 0.92 - 0.43 0.49

ours 102.70 0.06 0.11 37.80 0.10 0.12

to effectively reduce the false positive rate. The experimental results
show that we can achieve higher true positive rate (> 90%) and
lower false positive rate (< 1%) compared with the recent detection
algorithms based on graph matching and signal flow analysis. In
the future, besides on further improving the accuracy, we plan
to extend the experiments to other pairwise constraints such as
matching and even non-pairwise constraints that involving more
than two devices, like concentric symmetry, matching, etc.

ACKNOWLEDGE
This project is supported in part by the National Key Research and
Development Program of China (No. 2019YFB2205001).

REFERENCES
[1] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New York, NY,

USA: McGraw-Hill, Inc., 2001.
[2] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns, R. Harjani, J. Hu,

D. A. Kirkpatrick, and S. S. Sapatnekar, “Align: Open-source analog layout au-
tomation from the ground up,” in Proc. DAC, 2019, pp. 1–4.

[3] B. Xu, K. Zhu,M. Liu, Y. Lin, S. Li, X. Tang, N. Sun, andD. Z. Pan, “Magical: Toward
fully automated analog ic layout leveraging human and machine intelligence,”
in Proc. ICCAD. IEEE, 2019, pp. 1–8.

[4] “DARPA IDEA program,” https://www.darpa.mil/attachments/eri_design_
proposers_day.pdf.

[5] K. Kunal, T. Dhar, M. Madhusudan, J. Poojary, A. Sharma, W. Xu, S. M. Burns,
J. Hu, R. Harjani, and S. S. Sapatnekar, “GANA: Graph convolutional network
based automated netlist annotation for analog circuits,” in Proc. DATE, 2020.

[6] E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli, “Generalized constraint
generation for analog circuit design,” in Proc. ICCAD, Nov 1993, pp. 408–414.

[7] M. Eick, M. Strasser, K. Lu, U. Schlichtmann, and H. E. Graeb, “Comprehensive
generation of hierarchical placement rules for analog integrated circuits,” IEEE
TCAD, vol. 30, no. 2, pp. 180–193, Feb 2011.

[8] Q. Hao, S. Dong, S. Chen, X. Hong, Y. Su, and Z. Qu, “Constraints generation for
analog circuits layout,” in ICCCAS, vol. 2, June 2004, pp. 1339–1343 Vol.2.

[9] Z. Zhou, S. Dong, X. Hong, Q. Hao, and S. Chen, “Analog constraints extraction
based on the signal flow analysis,” in Proc. ASICON, vol. 2, Oct 2005, pp. 825–828.

[10] P. Wu, M. P. Lin, and T. Ho, “Analog layout synthesis with knowledge mining,”
in Proc. ECCTD, Aug 2015, pp. 1–4.

[11] M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N. Sun, and D. Z. Pan,
“S3DET: Detecting system symmetry constraints for analog circuits with graph
similarity,” in Proc. ASPDAC. IEEE, 2020, pp. 193–198.

[12] T. Massier, H. Graeb, and U. Schlichtmann, “The sizing rules method for cmos
and bipolar analog integrated circuit synthesis,” IEEE TCAD, vol. 27, no. 12, pp.
2209–2222, Dec 2008.

[13] R. Harjani, R. A. Rutenbar, and L. R. Carley, “A prototype framework for
knowledge-based analog circuit synthesis,” in Proc. DAC, 1987, pp. 42–49.

[14] T. Massier, H. Graeb, and U. Schlichtmann, “The sizing rules method for cmos
and bipolar analog integrated circuit synthesis,” IEEE TCAD, vol. 27, no. 12, pp.
2209–2222, 2008.

[15] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Proc. NeurIPS, 2016, pp. 3844–
3852.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[17] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proc. NeurIPS, 2017, pp. 1024–1034.

[18] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[19] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep
graph infomax,” arXiv preprint arXiv:1809.10341, 2018.

https://www.darpa.mil/attachments/eri_design_proposers_day.pdf
https://www.darpa.mil/attachments/eri_design_proposers_day.pdf

