S3DET: Detecting System Symmetry Constraints for Analog Circuit with Graph Similarity

Mingjie Liu1, Wuxi Li1, Keren Zhu1, Biying Xu1, Yibo Lin2, Linxiao Shen1, Xiyuan Tang1, Nan Sun1, and David Z. Pan1

1ECE Department, The University of Texas at Austin
2CS Department, Peking University
Analog/Mixed-Signal IC Design

典型现代SoCs:

• 少于25%的总芯片面积用于模拟；然而，75%或更多设计工作。

模拟/混合信号IC设计仍然在各个阶段高度手动化

• 非常耗时且容易出错

Image Sources: IBS and Dr. Handel Jones, 2012
Challenges in Analog Layout Automation

- Heavily rely on geometric constraints
 - Need to guarantee precise properties
 - Symmetry and ratio matching between devices

Comparator Schematic

Comparator Layout
System Symmetry Constraints

- System designs require matching between building block cells

Time-Interleaved SAR ADC

Die Photo
System Symmetry Constraints

- Mismatch could cause significant system performance degradation
 - 0.1% mismatch in clock timing would result in 15dB SNDR degradation
 - Require calibration (design techniques) + careful implementation (layout)

Mismatch in clock skew between SAR channels
Prior Works: Symmetry Constraint Detection

- Prior works focus on level symmetry constraints for building blocks
 - Symmetry between transistors (Mosfets and BJTs)
- Sensitivity analysis [Charbon, ICCAD’93]
 - Identify geometry constraints through electrical simulations
- Graph matching algorithms
 - Graph automorphism + signal flows [Hao, ICCAS’04] [Zhou, ASICON’05]
 - Template circuit + subgraph isomorphism [Wu, ECCTD’15]
 - Pattern library + structural signal flow graphs [Eich, TCAD’11]
Prior Works: Symmetry Constraint Detection

♦ Prior works face significant challenges when migrating to systems
 • Sensitivity analysis is unaffordable for system level designs: Transistor level spice simulations of ADCs take hours
 • Graph matching algorithms are computationally expensive: System designs normally consist over hundreds of devices
 • Difficult to generate templates/patterns for systems designs: Highly flexible and custom-designed architectures and circuits
 • Passive devices are critical in matching constraints: Capacitors and resistors
System Symmetry Constraints

- System design netlists contain hierarchy
 - Normally already well-partitioned based on functionality
 - Yield important design considerations
 - An over-simplified example:
System Symmetry Constraints

- System symmetry constraints:
 - Each node in the hierarchy tree should consist constraints between its children
System Symmetry Constraints

- **Netlist preprocessing**
 - Label cells as digital or analog, propagate label through hierarchy tree
 - Generate symmetry candidates: cells with same labels

- **Graph abstraction**
 - Vertices: device and pins, Edges: connections
 - Easily extendable to passive devices

Label Propagation

Graph Abstraction
Overall Flow of S^3DET

For any v in the hierarchy graph:
 For any pair of children (g_1, g_2) of v:
 Compare (g_1, g_2) to identify symmetry constraint;
Symmetry ambiguity

- Only detecting subcircuits similarities does not work well in practice
- Designers tend to reuse building blocks if possible
- Widely used digital standard cells create lots of issues

\[A, B, C, \text{ and } D \text{ are the similar filters} \]
\[\text{Only } (A,B) \text{ and } (C,D) \text{ need matching} \]
\[\text{Over-constraints, such as } (A,C) \text{ and } (A,D) \text{ create overhead in layout parasitic or infeasible floorplans} \]
Resolving symmetry ambiguity

- Extract neighboring circuit topology for each cell
- Determine symmetry based on extracted subgraph similarity

- A, B, C, and D are the same filters
- The neighboring circuits of A is more similar compared with B, than C
- Detect symmetry based on the “context” of the circuit system
Main Idea: Determine symmetry based on extracted subgraph similarity

• Q: Why extract subgraphs?
 • A: Include neighboring circuit and system “context” to resolve ambiguity

• Q: Why graph similarity?
 • A1: Graph isomorphism including neighboring circuits rare
 • A2: Graph similarity provides numeric values for comparisons

• Problem1: We need a scalable graph similarity measurement.
• Problem2: How large subgraphs to extract?
Graph similarity with spectral graph analysis

- Graph Laplacian matrix includes both degree and adjacency information.
- Its eigenvalues measure node cluster cohesiveness and have been used to approximate sparsest cuts and VLSI circuit partitions.
- We use Kolmogorov-Smirnov (K-S) statistics.

\[
D_n = \sup_x |F_{1,n}(x) - F_{2,m}(x)|
\]

- The p-value from the K-S test measures the eigenvalue distribution similarity, which we use as the quantitative measurement for graph similarity.
- The higher the p-value, the more similar the graphs.

Gera et al., “Identifying network structure similarity using spectral graph theory”, Applied Network Science, 2018
How large subgraphs to extract?

- Both too large and small subgraphs would result in over-constraints
- Too large: both subgraphs are the entire system graph and always be isomorphic
- Too small: does not include enough system context

The subgraph size need to consider

- The size of the subcircuits A, B
- The proximity of the subcircuits $dist(A, B)$
- Calculate $dist(A, B)$ with graph centers
Commonly used graph centrality measures

- Jordan Center:

\[
\min_{v} \max_{u \in V} d(v, u)
\]

- Eigenvector Centrality:

\[
\max_{v} \left(x_{v} = \sum_{u \in N(v)} x_{u} \right)
\]

- PageRank Center:

\[
\max_{v} \left(PR(v) = \vartheta \sum_{u \in N(v)} \frac{PR(u)}{\deg(u)} + \frac{1 - \vartheta}{|V|} \right)
\]

- We use the average of the three measures
Determining subgraph sizing:

- Radius of subgraph $= \frac{1}{2} \text{dist}(\text{graph}A, \text{graph}C)$
- Similarity of (A,C) is low for the proposed subgraph radius and successfully filtered this over-constraint, while a small and large subgraphs lead to over-constraint
Experimental Results

- Tested S3DET on 3 ADC designs and compare with labels given by designers
 - ✓ 1000+ nodes
 - ✓ 4000+ edges

<table>
<thead>
<tr>
<th>Design</th>
<th>ADC Architecture</th>
<th>#Valid Pairs</th>
<th>#Nodes</th>
<th>#Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CT ΔΣ</td>
<td>190</td>
<td>1300</td>
<td>4158</td>
</tr>
<tr>
<td>II</td>
<td>SAR</td>
<td>776</td>
<td>2924</td>
<td>7427</td>
</tr>
<tr>
<td>III</td>
<td>CT ΔΣ SAR Hybrid</td>
<td>1229</td>
<td>4618</td>
<td>11674</td>
</tr>
</tbody>
</table>
Experimental Results

- Different graph centrality have different results
- Baseline is only matching cell topology
- Overall lower false alarms (less over-constraints) with comparable accuracy and precision

More than 10x reduction in over-constraints
Different graph centrality have different results

Baseline is only matching cell topology

Overall lower false alarms (less over-constraints) with comparable accuracy and precision

<table>
<thead>
<tr>
<th>Design</th>
<th>Jordan</th>
<th>Eigenvector</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>20.0s</td>
<td>9.5s</td>
<td>10.7s</td>
</tr>
<tr>
<td>II</td>
<td>8m37.7s</td>
<td>4m13.6s</td>
<td>10m29.0s</td>
</tr>
<tr>
<td>III</td>
<td>13m52.8s</td>
<td>8m34.2s</td>
<td>13m13.9s</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

Conclusions:

• S³DET: Method of detection system symmetry constraints
• Subgraph extraction with graph centrality
• Graph similarity with spectral graph analysis
• Effectively resolve constraint ambiguity and reduce false alarms

Future Work:

• Extend to array-like regularity constraints
• Fully automated layout generation for system level AMS designs
Thank You
Comparisons with Graph Edit Distance (GED)

- Continuously remove edges randomly from a graph
- Results of 50 simulations indicate strong correlations between GED and K-S p-value